

RD Sharma Solutions for Class 9 Maths Chapter 10 Congruent Triangles

Exercise 10.5

Page No: 10.51

Question 1: ABC is a triangle and D is the mid-point of BC. The perpendiculars from D to AB and AC are equal. Prove that the triangle is isosceles.

Solution:

Given: D is the midpoint of BC and PD = DQ in a triangle ABC.

To prove: ABC is isosceles triangle.

In \triangle BDP and \triangle CDQ

PD = QD (Given)

BD = DC (D is mid-point)

 $\angle BPD = \angle CQD = 90^{\circ}$

By RHS Criterion: $\triangle BDP \cong \triangle CDQ$

BP = CQ ... (i) (By CPCT)

In $\triangle APD$ and $\triangle AQD$

PD = QD (given)

AD = AD (common)

APD = AQD = 90°

By RHS Criterion: $\triangle APD \cong \triangle AQD$

So, PA = QA ... (ii) (By CPCT)

Adding (i) and (ii)

RD Sharma Solutions for Class 9 Maths Chapter 10 Congruent Triangles

BP + PA = CQ + QA

AB = AC

Two sides of the triangle are equal, so ABC is an isosceles.

Question 2: ABC is a triangle in which BE and CF are, respectively, the perpendiculars to the sides AC and AB. If BE = CF, prove that Δ ABC is isosceles

Solution:

ABC is a triangle in which BE and CF are perpendicular to the sides AC and AB respectively s.t. BE = CF.

To prove: Δ ABC is isosceles

In \triangle BCF and \triangle CBE, \triangle BFC = CEB = 90° [Given]

BC = CB [Common side]

And CF = BE [Given]

By RHS congruence criterion: $\Delta BFC \cong \Delta CEB$

So, \angle FBC = \angle EBC [By CPCT]

=>∠ ABC = ∠ ACB

AC = AB [Opposite sides to equal angles are equal in a triangle]
Two sides of triangle ABC are equal.

Therefore, \triangle ABC is isosceles. Hence Proved.

RD Sharma Solutions for Class 9 Maths Chapter 10 Congruent Triangles

Question 3: If perpendiculars from any point within an angle on its arms are congruent. Prove that it lies on the bisector of that angle.

Solution:

Consider an angle ABC and BP be one of the arm within the angle.

Draw perpendiculars PN and PM on the arms BC and BA.

In \triangle BPM and \triangle BPN,

$$\angle$$
 BMP = \angle BNP = 90° [given]

BP = BP [Common side]

MP = NP [given]

By RHS congruence criterion: ΔBPM≅ΔBPN

So, \angle MBP = \angle NBP [By CPCT]

BP is the angular bisector of ∠ABC. Hence proved