

Exercise 14.1

Page No: 14.4

Question 1: Three angles of a quadrilateral are respectively equal to 110⁰, 50⁰ and 40⁰. Find its fourth angle.

Solution:

Three angles of a quadrilateral are 110⁰, 50⁰ and 40⁰

Let the fourth angle be 'x'

We know, sum of all angles of a quadrilateral = 360°

 $110^{\circ} + 50^{\circ} + 40^{\circ} + x^{\circ} = 360^{\circ}$

 $=> x = 360^{\circ} - 200^{\circ}$

=>x = 160⁰

Therefore, the required fourth angle is 160°.

Question 2: In a quadrilateral ABCD, the angles A, B, C and D are in the ratio of 1:2:4:5. Find the measure of each angles of the quadrilateral.

Solution:

Let the angles of the quadrilaterals are A = x, B = 2x, C = 4x and D = 5x

We know, sum of all angles of a quadrilateral = 360°

 $A + B + C + D = 360^{\circ}$

 $x + 2x + 4x + 5x = 360^{\circ}$

 $12x = 360^{\circ}$

 $x = 360^{\circ}/12 = 30^{\circ}$

Therefore, $A = x = 30^{\circ}$

 $B = 2x = 60^{\circ}$

$$C = 4x = 120^{\circ}$$

 $D = 5x = 150^{\circ}$

Question 3: In a quadrilateral ABCD, CO and DO are the bisectors of $\angle C$ and $\angle D$ respectively. Prove that $\angle COD = 1/2$ ($\angle A + \angle B$).

Solution:

In ΔDOC,

 $\angle CDO + \angle COD + \angle DCO = 180^{\circ}$ [Angle

[Angle sum property of a triangle]

or $1/2\angle CDA + \angle COD + 1/2\angle DCB = 180^{\circ}$

$$\angle \text{COD} = 180^{\circ} - 1/2(\angle \text{CDA} + \angle \text{DCB})$$
(i)

Also

We know, sum of all angles of a quadrilateral = 360°

 \angle CDA + \angle DCB = 360^o - (\angle DAB + \angle CBA)(ii)

Substituting (ii) in (i)

 $\angle COD = 180^{\circ} - 1/2 \{360^{\circ} - (\angle DAB + \angle CBA) \}$

We can also write, $\angle DAB = \angle A$ and $\angle CBA = \angle B$

 $\angle COD = 180^{0} - 180^{0} + 1/2(\angle A + \angle B))$

 $\angle COD = 1/2(\angle A + \angle B)$ Hence Proved.

Question 4: The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Solution:

The angles of a quadrilateral are 3x, 5x, 9x and 13x respectively.

We know, sum of all interior angles of a quadrilateral = 360⁰

Therefore, $3x + 5x + 9x + 13x = 360^{\circ}$

 $30x = 360^{\circ}$

or x = 12⁰

Hence, angles measures are

 $3x = 3(12) = 36^{\circ}$

 $5x = 5(12) = 60^{\circ}$

 $9x = 9(12) = 108^{0}$

 $13x = 13(12) = 156^{\circ}$

Exercise 14.2

Page No: 14.18

Question 1: Two opposite angles of a parallelogram are $(3x - 2)^0$ and $(50 - x)^0$. Find the measure of each angle of the parallelogram.

Solution:

Given: Two opposite angles of a parallelogram are $(3x - 2)^0$ and $(50 - x)^0$. We know, opposite sides of a parallelogram are equal.

 $(3x - 2)^0 = (50 - x)^0$

3x + x = 50 + 2

4x = 52

x = 13

Angle x is 13⁰

Therefore, $(3x-2)^{0} = (3(13) - 2) = 37^{0}$

 $(50-x)^{0} = (50 - 13) = 37^{0}$

Adjacent angles of a parallelogram are supplementary.

 $x + 37 = 180^{0}$

 $x = 180^0 - 37^0 = 143^0$

Therefore, required angles are : 37⁰, 143⁰, 37⁰ and 143⁰.

Question 2: If an angle of a parallelogram is two-third of its adjacent angle, find the angles of the parallelogram.

Solution:

Let the measure of the angle be x. Therefore, measure of the adjacent angle is 2x/3.

We know, adjacent angle of a parallelogram is supplementary.

 $x + 2x/3 = 180^{\circ}$

 $3x + 2x = 540^{\circ}$

 $5x = 540^{\circ}$

or $x = 108^{\circ}$

Measure of second angle is $2x/3 = 2(108^{\circ})/3 = 72^{\circ}$ Similarly measure of 3^{rd} and 4^{th} angles are 108° and 72°

Hence, four angles are 108°, 72°, 108°, 72°

Question 3: Find the measure of all the angles of a parallelogram, if one angle is 24⁰ less than twice the smallest angle.

Solution:

Given: One angle of a parallelogram is 24^0 less than twice the smallest angle. Let x be the smallest angle, then

 $x + 2x - 24^0 = 180^0$

 $3x - 24^0 = 180^0$

 $3x = 108^0 + 24^0$

 $3x = 204^{0}$

 $x = 204^{\circ}/3 = 68^{\circ}$

So, x = 68⁰

Another angle = $2x - 24^{\circ} = 2(68^{\circ}) - 24^{\circ} = 112^{\circ}$

Hence, four angles are 68⁰, 112⁰, 68⁰, 112⁰.

Question 4: The perimeter of a parallelogram is 22cm. If the longer side measures 6.5cm what is the measure of the shorter side?

Solution:

Let x be the shorter side of a parallelogram.

Perimeter = 22 cm

Longer side = 6.5 cm

Perimeter = Sum of all sides = x + 6.5 + 6.5 + x

22 = 2 (x + 6.5)

$$11 = x + 6.5$$

or x = 11 – 6.5 = 4.5

Therefore, shorter side of a parallelogram is 4.5 cm

Exercise 14.3

Page No: 14.38

Question 1: In a parallelogram ABCD, determine the sum of angles $\angle C$ and $\angle D$. Solution:

In a parallelogram ABCD , $\angle C$ and $\angle D$ are consecutive interior angles on the same side of the transversal CD.

So, $\angle C + \angle D = 180^{\circ}$

Question 2: In a parallelogram ABCD, if $\angle B = 135^{\circ}$, determine the measures of its other angles. Solution:

Given: In a parallelogram ABCD, if $\angle B = 135^{\circ}$

Here, $\angle A = \angle C$, $\angle B = \angle D$ and $\angle A + \angle B = 180^{\circ}$

 $\angle A + 135^{\circ} = 180^{\circ}$

∠A = 45⁰

Answer: $\angle A = \angle C = 45^{\circ}$

 $\angle B = \angle D = 135^{\circ}$

Question 3: ABCD is a square. AC and BD intersect at O. State the measure of $\angle AOB$. Solution:

We know, diagonals of a square bisect each other at right angle.

So, $\angle AOB = 90^{\circ}$

Question 4: ABCD is a rectangle with $\angle ABD = 40^{\circ}$. Determine $\angle DBC$. Solution:

Each angle of a rectangle = 90°

So, $\angle ABC = 90^{\circ}$

 $\angle ABD = 40^{\circ}$ (given)

Now, $\angle ABD + \angle DBC = 90^{\circ}$ $40^{\circ} + \angle DBC = 90^{\circ}$ or $\angle DBC = 50^{\circ}$.

Exercise 14.4

Page No: 14.55

Question 1: In a \triangle ABC, D, E and F are, respectively, the mid points of BC, CA and AB. If the lengths of sides AB, BC and CA are 7 cm, 8 cm and 9 cm, respectively, find the perimeter of \triangle DEF.

Solution: Given: AB = 7 cm, BC = 8 cm, AC = 9 cm

In ∆ABC,

In a \triangle ABC, D, E and F are, respectively, the mid points of BC, CA and AB.

According to Midpoint Theorem:

EF = 1/2BC, DF = 1/2AC and DE = 1/2AB

Now, Perimeter of $\Delta DEF = DE + EF + DF$

= 1/2 (AB + BC + AC)

= 1/2 (7 + 8 + 9)

= 12

Perimeter of $\Delta DEF = 12cm$

Question 2: In a $\triangle ABC$, $\angle A = 50^{\circ}$, $\angle B = 60^{\circ}$ and $\angle C = 70^{\circ}$. Find the measures of the angles of the triangle formed by joining the mid-points of the sides of this triangle.

Solution:

In ∆ABC,

D, E and F are mid points of AB, BC and AC respectively.

In a Quadrilateral DECF:

By Mid-point theorem,

DE || AC => DE = AC/2

And CF = AC/2 => DE = CF

Therefore, DECF is a parallelogram.

 $\angle C = \angle D = 70^{\circ}$ [Opposite sides of a parallelogram]

Similarly,

ADEF is a parallelogram, $\angle A = \angle E = 50^{\circ}$

BEFD is a parallelogram, $\angle B = \angle F = 60^{\circ}$

Hence, Angles of $\triangle DEF$ are: $\angle D = 70^{\circ}$, $\angle E = 50^{\circ}$, $\angle F = 60^{\circ}$.

Question 3: In a triangle, P, Q and R are the mid points of sides BC, CA and AB respectively. If AC = 21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.

Solution:

In ΔABC,

R and P are mid points of AB and BC

By Mid-point Theorem

RP || AC => RP = AC/2

In a quadrilateral, ARPQ

RP || AQ => RP = AQ [A pair of side is parallel and equal]

Therefore, ARPQ is a parallelogram.

Now, AR = AB/2 = 30/2 = 15 cm [AB = 30 cm (Given)]

AR = QP = 15 cm [Opposite sides are equal]

And RP = AC/2 = 21/2 = 10.5 cm [AC = 21 cm (Given)]

```
RP = AQ = 10.5cm
[ Opposite sides are equal ]
```

Now,

```
Perimeter of ARPQ = AR + QP + RP + AQ
```

= 15 +15 +10.5 +10.5

= 51

Perimeter of quadrilateral ARPQ is 51 cm.

Question 4: In a \triangle ABC median AD is produced to X such that AD = DX. Prove that ABXC is a parallelogram.

Solution:

In a quadrilateral ABXC,

AD = DX [Given]

BD = DC [Given]

From figure, Diagonals AX and BC bisect each other.

ABXC is a parallelogram. Hence Proved.

Question 5: In a \triangle ABC, E and F are the mid-points of AC and AB respectively. The altitude AP to BC intersects FE at Q. Prove that AQ = QP.

Solution:

In a $\triangle ABC$ E and F are mid points of AC and AB (Given) EF || BC => EF = BC/2 and [By mid-point theorem] In $\triangle ABP$ F is the mid-point of AB, again by mid-point theorem FQ || BP

Q is the mid-point of AP AQ = QP Hence Proved.

Question 6: In a \triangle ABC, BM and CN are perpendiculars from B and C respectively on any line passing through A. If L is the mid-point of BC, prove that ML = NL.

Solution:

Question 7: In figure, triangle ABC is a right-angled triangle at B. Given that AB = 9 cm, AC = 15 cm and D, E are the mid-points of the sides AB and AC respectively, calculate

(i) The length of BC

(ii) The area of $\triangle ADE$.

Solution:

In $\triangle ABC$, $\angle B=90^{0}$ (Given) AB = 9 cm, AC = 15 cm (Given)

By using Pythagoras theorem

 $AC^2 = AB^2 + BC^2$

 $=>15^2 = 9^2 + BC^2$

=>BC² = 225 - 81 = 144

or BC = 12

Again,

AD = DB = AB/2 = 9/2 = 4.5 cm [D is the mid-point of AB

D and E are mid-points of AB and AC

DE || BC => DE = BC/2 [By mid-point theorem]

Now, Area of $\triangle ADE = 1/2 \times AD \times DE$

= 1/2 x 4.5 x 6

=13.5

Area of $\triangle ADE$ is 13.5 cm²

Question 8: In figure, M, N and P are mid-points of AB, AC and BC respectively. If MN = 3 cm, NP = 3.5 cm and MP = 2.5 cm, calculate BC, AB and AC.

Solution:

Given: MN = 3 cm, NP = 3.5 cm and MP = 2.5 cm.

M and N are mid-points of AB and AC

By mid-point theorem, we have

 $MN \parallel BC \implies MN = BC/2$

or BC = 2MN

BC = 6 cm

[MN = 3 cm given)

Similarly,

AC = 2MP = 2 (2.5) = 5 cm

AB = 2 NP = 2 (3.5) = 7 cm

Question 9: ABC is a triangle and through A, B, C lines are drawn parallel to BC, CA and AB respectively intersecting at P, Q and R. Prove that the perimeter of Δ PQR is double the perimeter of Δ ABC.

Solution:

ABCQ and ARBC are parallelograms.

Therefore, BC = AQ and BC = AR

=>AQ = AR

=>A is the mid-point of QR

Similarly B and C are the mid points of PR and PQ respectively.

By mid-point theorem, we have

AB = PQ/2, BC = QR/2 and CA = PR/2

or PQ = 2AB, QR = 2BC and PR = 2CA

=>PQ + QR + RP = 2 (AB + BC + CA)

=> Perimeter of $\triangle PQR = 2$ (Perimeter of $\triangle ABC$) Hence proved.

Question 10: In figure, BE \perp AC, AD is any line from A to BC intersecting BE in H. P, Q and R are respectively the mid-points of AH, AB and BC. Prove that \angle PQR = 90^o.

Solution:

BE_AC and P, Q and R are respectively mid-point of AH, AB and BC. (Given)

In \triangle ABC, Q and R are mid-points of AB and BC respectively.

By Mid-point theorem:

QR || AC(i)

In $\triangle ABH$, Q and P are the mid-points of AB and AH respectively

QP || BH(ii)

But, BE⊥AC

From (i) and (ii) we have,

QP⊥QR

=>∠PQR = 90⁰

Hence Proved.

Exercise VSAQs

Page No: 14.62

Question 1: In a parallelogram ABCD, write the sum of angles A and B.

Solution:

In parallelogram ABCD, Adjacent angles of a parallelogram are supplementary.

Therefore, $\angle A + \angle B = 180^{\circ}$

Question 2: In a parallelogram ABCD, if $\angle D = 115^{\circ}$, then write the measure of $\angle A$. Solution:

In a parallelogram ABCD, $\angle D = 115^{\circ}$ (Given)

Since, $\angle A$ and $\angle D$ are adjacent angles of parallelogram.

We know, Adjacent angles of a parallelogram are supplementary.

 $\angle A + \angle D = 180^{\circ}$

 $\angle A = 180^{\circ} - 115^{\circ} = 65^{\circ}$

Measure of $\angle A$ is 65° .

Question 3: PQRS is a square such that PR and SQ intersect at O. State the measure of \angle POQ.

Solution:

PQRS is a square such that PR and SQ intersect at O. (Given)

We know, diagonals of a square bisects each other at 90 degrees.

So, $\angle POQ = 90^{\circ}$

Question 4: In a quadrilateral ABCD, bisectors of angles A and B intersect at O such that $\angle AOB = 75^{\circ}$, then write the value of $\angle C + \angle D$.

Solution:

 $\angle AOB = 75^{\circ}$ (given)

In a quadrilateral ABCD, bisectors of angles A and B intersect at O, then

 $\angle AOB = 1/2 (\angle ADC + \angle ABC)$

or $\angle AOB = 1/2 (\angle D + \angle C)$

By substituting given values, we get

 $75^{\circ} = 1/2 (\angle D + \angle C)$

or $\angle C + \angle D = 150^{\circ}$

Question 5: The diagonals of a rectangle ABCD meet at O. If $\angle BOC = 44^{\circ}$, find $\angle OAD$.

Solution:

ABCD is a rectangle and $\angle BOC = 44^{\circ}$ (given)

 $\angle AOD = \angle BOC$ (vertically opposite angles)

 $\angle AOD = \angle BOC = 44^{\circ}$

 $\angle OAD = \angle ODA$ (Angles facing same side)

and OD = OA Since sum of all the angles of a triangle is 180°, then

So, ∠OAD = 1/2 (180 ° - 44 °) = 68 °

Question 6: If PQRS is a square, then write the measure of \angle SRP.

Solution:

PQRS is a square. => All side are equal, and each angle is 90° degrees and diagonals bisect the angles.

So, ∠SRP = 1/2 (90°) = 45°

Question 7: If ABCD is a rectangle with $\angle BAC = 32^{\circ}$, find the measure of $\angle DBC$.

Solution:

ABCD is a rectangle and $\angle BAC=32^{\circ}$ (given)

We know, diagonals of a rectangle bisects each other. AO = BO

 $\angle DBA = \angle BAC = 32^{\circ}$ (Angles facing same side)

Each angle of a rectangle = 90 degrees

So, $\angle DBC + \angle DBA = 90^{\circ}$

or ∠DBC + 32 ° = 90 °

or ∠DBC = 58°

Question 8: If ABCD is a rhombus with $\angle ABC = 56^\circ$, find the measure of $\angle ACD$.

Solution:

In a rhombus ABCD, <ABC = 56° So, <BCD = 2 (<ACD) (Diagonals of a rhombus bisect the interior angles) or <ACD = 1/2 (<BCD)(1)

We know, consecutive angles of a rhombus are supplementary.

 $\angle BCD + \angle ABC = 180^{\circ}$

∠BCD = 180° - 56° = 124°

Equation (1) => <ACD = 1/2 x 124 ° = 62 °

Question 9: The perimeter of a parallelogram is 22 cm. If the longer side measure 6.5 cm, what is the measure of shorter side?

Solution:

Perimeter of a parallelogram = 22 cm. (Given) Longer side = 6.5 cm Let x be the shorter side. Perimeter = $2x + 2 \times 6.5$ 22 = 2x + 132x = 22 - 13 = 9or x = 4.5Measure of shorter side is 4.5 cm.

Question 10: If the angles of a quadrilateral are in the ratio 3:5:9:13, then find the measure of the smallest angle.

Solution:

Angles of a quadrilateral are in the ratio 3 : 5 : 9 : 13 (Given)

Let the sides are 3x, 5x, 9x, 13x

We know, sum of all the angles of a quadrilateral = 360°

 $3x + 5x + 9x + 13x = 360^{\circ}$

30 x = 360 °

x = 12 °

Measure of smallest angle = $3x = 3(12) = 36^{\circ}$.