RD Sharma Solutions for Class 9 Maths Chapter 14 Quadrilaterals

Exercise 14.1

Question 1: Three angles of a quadrilateral are respectively equal to $110^{\circ}, 50^{\circ}$ and 40°. Find its fourth angle.

Solution:

Three angles of a quadrilateral are $110^{\circ}, 50^{\circ}$ and 40°

Let the fourth angle be ' x '
We know, sum of all angles of a quadrilateral $=360^{\circ}$
$110^{0}+50^{0}+40^{\circ}+x^{0}=360^{\circ}$
$\Rightarrow x=360^{\circ}-200^{\circ}$
$\Rightarrow>x=160^{\circ}$
Therefore, the required fourth angle is 160°.
Question 2: In a quadrilateral $A B C D$, the angles A, B, C and D are in the ratio of 1:2:4:5. Find the measure of each angles of the quadrilateral.

Solution:

Let the angles of the quadrilaterals are $A=x, B=2 x, C=4 x$ and $D=5 x$
We know, sum of all angles of a quadrilateral $=360^{\circ}$
$A+B+C+D=360^{\circ}$
$x+2 x+4 x+5 x=360^{\circ}$
$12 x=360^{\circ}$
$x=360^{\circ} / 12=30^{\circ}$

Therefore,
$\mathrm{A}=\mathrm{x}=30^{\circ}$
$B=2 x=60^{\circ}$
$C=4 x=120^{\circ}$
$D=5 x=150^{0}$

Question 3: In a quadrilateral $A B C D, C O$ and $D O$ are the bisectors of $\angle C$ and $\angle D$ respectively. Prove that $\angle C O D=1 / 2(\angle A+\angle B)$.

Solution:

In $\triangle D O C$,
$\angle C D O+\angle C O D+\angle D C O=180^{\circ} \quad[$ Angle sum property of a triangle $]$
or $1 / 2 \angle C D A+\angle C O D+1 / 2 \angle D C B=180^{\circ}$
$\angle C O D=180^{\circ}-1 / 2(\angle C D A+\angle D C B)$
Also
We know, sum of all angles of a quadrilateral $=360^{\circ}$
$\angle \mathrm{CDA}+\angle \mathrm{DCB}=360^{\circ}-(\angle \mathrm{DAB}+\angle \mathrm{CBA})$
Substituting (ii) in (i)
$\angle C O D=180^{\circ}-1 / 2\left\{360^{\circ}-(\angle D A B+\angle C B A)\right\}$
We can also write, $\angle \mathrm{DAB}=\angle \mathrm{A}$ and $\angle \mathrm{CBA}=\angle \mathrm{B}$
$\left.\angle C O D=180^{\circ}-180^{\circ}+1 / 2(\angle A+\angle B)\right)$
$\angle C O D=1 / 2(\angle A+\angle B)$
Hence Proved.

Question 4: The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Solution:

The angles of a quadrilateral are $3 x, 5 x, 9 x$ and $13 x$ respectively.
We know, sum of all interior angles of a quadrilateral $=360^{\circ}$
Therefore, $3 x+5 x+9 x+13 x=360^{\circ}$
$30 x=360^{\circ}$
or $x=12^{0}$

Hence, angles measures are
$3 x=3(12)=36^{0}$
$5 x=5(12)=60^{\circ}$
$9 x=9(12)=108^{0}$
$13 x=13(12)=156^{\circ}$

Exercise 14.2

Question 1: Two opposite angles of a parallelogram are (3x-2) and (50-x) ${ }^{0}$. Find the measure of each angle of the parallelogram.

Solution:

Given: Two opposite angles of a parallelogram are $(3 x-2)^{0}$ and $(50-x)^{0}$.
We know, opposite sides of a parallelogram are equal.
$(3 x-2)^{0}=(50-x)^{0}$
$3 x+x=50+2$
$4 x=52$
$x=13$

Angle x is 13^{0}
Therefore,
$(3 x-2)^{0}=(3(13)-2)=37^{0}$
$(50-x)^{0}=(50-13)=37^{0}$
Adjacent angles of a parallelogram are supplementary.
$x+37=180^{\circ}$
$x=180^{\circ}-37^{\circ}=143^{\circ}$
Therefore, required angles are : $37^{\circ}, 143^{\circ}, 37^{\circ}$ and 143°.
Question 2: If an angle of a parallelogram is two-third of its adjacent angle, find the angles of the parallelogram.

Solution:

Let the measure of the angle be x. Therefore, measure of the adjacent angle is $2 x / 3$.
We know, adjacent angle of a parallelogram is supplementary.
$x+2 x / 3=180^{\circ}$

RD Sharma Solutions for Class 9 Maths Chapter 14 Quadrilaterals

$3 x+2 x=540^{\circ}$
$5 x=540^{\circ}$
or $x=108^{0}$
Measure of second angle is $2 x / 3=2\left(108^{\circ}\right) / 3=72^{\circ}$
Similarly measure of $3^{\text {rd }}$ and $4^{\text {th }}$ angles are 108° and 72°
Hence, four angles are $108^{\circ}, 72^{\circ}, 108^{\circ}, 72^{0}$
Question 3: Find the measure of all the angles of a parallelogram, if one angle is 24^{0} less than twice the smallest angle.

Solution:

Given: One angle of a parallelogram is 24° less than twice the smallest angle.
Let x be the smallest angle, then
$x+2 x-24^{0}=180^{\circ}$
$3 x-24^{0}=180^{0}$
$3 x=108^{0}+24^{0}$
$3 x=204^{0}$
$x=204^{\circ} / 3=68^{\circ}$
So, $x=68^{0}$
Another angle $=2 x-24^{\circ}=2\left(68^{\circ}\right)-24^{\circ}=112^{\circ}$
Hence, four angles are $68^{\circ}, 112^{\circ}, 68^{\circ}, 112^{0}$.
Question 4: The perimeter of a parallelogram is 22 cm . If the longer side measures 6.5 cm what is the measure of the shorter side?

Solution:

Let x be the shorter side of a parallelogram.
Perimeter $=22 \mathrm{~cm}$
Longer side $=6.5 \mathrm{~cm}$

Perimeter $=$ Sum of all sides $=x+6.5+6.5+x$

$$
\begin{aligned}
& 22=2(x+6.5) \\
& 11=x+6.5
\end{aligned}
$$

or $x=11-6.5=4.5$

Therefore, shorter side of a parallelogram is 4.5 cm

Exercise 14.3

Question 1: In a parallelogram $A B C D$, determine the sum of angles $\angle C$ and $\angle D$.

Solution:

In a parallelogram $A B C D, \angle C$ and $\angle D$ are consecutive interior angles on the same side of the transversal CD.

So, $\angle C+\angle D=180^{\circ}$
Question 2: In a parallelogram $A B C D$, if $\angle B=135^{\circ}$, determine the measures of its other angles.
Solution:
Given: In a parallelogram $A B C D$, if $\angle B=135^{\circ}$
Here, $\angle \mathrm{A}=\angle \mathrm{C}, \angle \mathrm{B}=\angle \mathrm{D}$ and $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$\angle A+135^{\circ}=180^{\circ}$
$\angle A=45^{\circ}$

Answer:
$\angle A=\angle C=45^{\circ}$
$\angle B=\angle D=135^{\circ}$
Question 3: $A B C D$ is a square. $A C$ and $B D$ intersect at O. State the measure of $\angle A O B$.
Solution:
We know, diagonals of a square bisect each other at right angle.
So, $\angle A O B=90^{\circ}$
Question 4: $A B C D$ is a rectangle with $\angle A B D=40^{\circ}$. Determine $\angle D B C$.

Solution:

Each angle of a rectangle $=90^{\circ}$
So, $\angle A B C=90^{\circ}$
$\angle A B D=40^{\circ}$ (given)
Now, $\angle A B D+\angle D B C=90^{\circ}$
$40^{\circ}+\angle D B C=90^{\circ}$
or $\angle D B C=50^{\circ}$.

RD Sharma Solutions for Class 9 Maths Chapter 14 Quadrilaterals

Exercise 14.4

Question 1: In a $\triangle A B C, D, E$ and F are, respectively, the mid points of $B C, C A$ and $A B$. If the lengths of sides $A B, B C$ and $C A$ are $7 \mathrm{~cm}, 8 \mathrm{~cm}$ and 9 cm , respectively, find the perimeter of $\triangle D E F$.

Solution:

Given: $A B=7 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}, \mathrm{AC}=9 \mathrm{~cm}$
In $\triangle A B C$,
In a $\triangle A B C, D, E$ and F are, respectively, the mid points of $B C, C A$ and $A B$.

According to Midpoint Theorem:
$E F=1 / 2 B C, D F=1 / 2 A C$ and $D E=1 / 2 A B$
Now, Perimeter of $\triangle D E F=D E+E F+D F$
$=1 / 2(A B+B C+A C)$
$=1 / 2(7+8+9)$
$=12$

Perimeter of $\triangle D E F=12 \mathrm{~cm}$
Question 2: In a $\triangle A B C, \angle A=50^{\circ}, \angle B=60^{\circ}$ and $\angle C=70^{\circ}$. Find the measures of the angles of the triangle formed by joining the mid-points of the sides of this triangle.

Solution:

In $\triangle A B C$,
D, E and F are mid points of $A B, B C$ and $A C$ respectively.
In a Quadrilateral DECF:

By Mid-point theorem,
$D E \| A C=>D E=A C / 2$
And CF $=\mathrm{AC} / 2$
$\Rightarrow D E=C F$
Therefore, DECF is a parallelogram.
$\angle C=\angle D=70^{\circ}$
[Opposite sides of a parallelogram]

Similarly,
ADEF is a parallelogram, $\angle \mathrm{A}=\angle \mathrm{E}=50^{\circ}$
BEFD is a parallelogram, $\angle B=\angle F=60^{\circ}$
Hence, Angles of $\triangle D E F$ are: $\angle D=70^{\circ}, \angle E=50^{\circ}, \angle F=60^{\circ}$.
Question 3: In a triangle, P, Q and R are the mid points of sides $B C, C A$ and $A B$ respectively. If $A C=21$ $\mathrm{cm}, B C=\mathbf{2 9} \mathrm{cm}$ and $A B=30 \mathrm{~cm}$, find the perimeter of the quadrilateral ARPQ.

Solution:

In $\triangle A B C$,
R and P are mid points of $A B$ and $B C$

By Mid-point Theorem
$R P \| A C=>R P=A C / 2$
In a quadrilateral, ARPQ
$R P \| A Q=>R P=A Q$
[A pair of side is parallel and equal]
Therefore, ARPQ is a parallelogram.
Now, $A R=A B / 2=30 / 2=15 \mathrm{~cm}$
[$\mathrm{AB}=30 \mathrm{~cm}$ (Given)]
$A R=Q P=15 \mathrm{~cm}$
[Opposite sides are equal]
And $R P=A C / 2=21 / 2=10.5 \mathrm{~cm}$
[$\mathrm{AC}=21 \mathrm{~cm}$ (Given)]
$R P=A Q=10.5 \mathrm{~cm}$
[Opposite sides are equal]
Now,
Perimeter of $A R P Q=A R+Q P+R P+A Q$
$=15+15+10.5+10.5$
$=51$
Perimeter of quadrilateral ARPQ is 51 cm .
Question 4: In a $\triangle A B C$ median $A D$ is produced to X such that $A D=D X$. Prove that $A B X C$ is a parallelogram.

Solution:

In a quadrilateral ABXC,
$\mathrm{AD}=\mathrm{DX}$ [Given]
$B D=D C$ [Given]
From figure, Diagonals $A X$ and $B C$ bisect each other.
ABXC is a parallelogram.
Hence Proved.

Question 5: In a $\triangle A B C, E$ and F are the mid-points of $A C$ and $A B$ respectively. The altitude $A P$ to $B C$ intersects $F E$ at Q. Prove that $A Q=Q P$.

Solution:

In a $\triangle A B C$
E and F are mid points of $A C$ and $A B$ (Given)
$E F|\mid B C=>E F=B C / 2$ and
[By mid-point theorem]
In $\triangle A B P$
F is the mid-point of $A B$, again by mid-point theorem
FQ || BP
Q is the mid-point of $A P$
$A Q=Q P$
Hence Proved.
Question 6: In a $\triangle A B C, B M$ and $C N$ are perpendiculars from B and C respectively on any line passing through A. If L is the mid-point of $B C$, prove that $M L=N L$.

Solution:

Given that,

In $\triangle \mathrm{BLM}$ and $\triangle \mathrm{CLN}$
$\angle \mathrm{BML}=\angle \mathrm{CNL}=90^{\circ}$
$B L=C L$
[L is the mid-point of $B C$]
$\angle \mathrm{MLB}=\angle \mathrm{NLC}$
[Vertically opposite angle]
By ASA criterion:
$\Delta B L M \cong \Delta C L N$

So, LM = LN
[By CPCT]
Question 7: In figure, triangle $A B C$ is a right-angled triangle at B. Given that $A B=9 \mathrm{~cm}, A C=15 \mathrm{~cm}$ and D, E are the mid-points of the sides $A B$ and $A C$ respectively, calculate
(i) The length of BC
(ii) The area of $\triangle A D E$.

Solution:

In $\triangle A B C$,
$\angle B=90^{\circ}$ (Given)
$A B=9 \mathrm{~cm}, A C=15 \mathrm{~cm}$ (Given)
By using Pythagoras theorem
$A C^{2}=A B^{2}+B C^{2}$
$=>15^{2}=9^{2}+B C^{2}$
$=>B^{2}=225-81=144$
or $B C=12$
Again,
$A D=D B=A B / 2=9 / 2=4.5 \mathrm{~cm} \quad[D$ is the mid-point of $A B$
D and E are mid-points of $A B$ and $A C$
$D E|\mid B C=>D E=B C / 2 \quad$ [By mid-point theorem]

Now,
Area of $\triangle A D E=1 / 2 \times A D \times D E$
$=1 / 2 \times 4.5 \times 6$
$=13.5$
Area of $\triangle \mathrm{ADE}$ is $13.5 \mathrm{~cm}^{2}$

Question 8: In figure, M, N and P are mid-points of $A B, A C$ and $B C$ respectively. If $M N=3 \mathrm{~cm}, N P=3.5$ cm and $M P=2.5 \mathrm{~cm}$, calculate $B C, A B$ and $A C$.

Solution:

Given: $\mathrm{MN}=3 \mathrm{~cm}, \mathrm{NP}=3.5 \mathrm{~cm}$ and $\mathrm{MP}=2.5 \mathrm{~cm}$.
M and N are mid-points of $A B$ and $A C$
By mid-point theorem, we have
$M N \| B C=>M N=B C / 2$
or $B C=2 M N$
$B C=6 \mathrm{~cm}$
[$\mathrm{MN}=3 \mathrm{~cm}$ given)
Similarly,
$\mathrm{AC}=2 \mathrm{MP}=2(2.5)=5 \mathrm{~cm}$
$A B=2 N P=2(3.5)=7 \mathrm{~cm}$
Question 9: $A B C$ is a triangle and through A, B, C lines are drawn parallel to $B C, C A$ and $A B$ respectively intersecting at P, Q and R. Prove that the perimeter of $\triangle P Q R$ is double the perimeter of $\triangle A B C$.

Solution:

$A B C Q$ and $A R B C$ are parallelograms.
Therefore, $B C=A Q$ and $B C=A R$
$=>A Q=A R$
=>A is the mid-point of QR
Similarly B and C are the mid points of $P R$ and $P Q$ respectively.
By mid-point theorem, we have
$A B=P Q / 2, B C=Q R / 2$ and $C A=P R / 2$
or $P Q=2 A B, Q R=2 B C$ and $P R=2 C A$
$\Rightarrow P Q+Q R+R P=2(A B+B C+C A)$
=> Perimeter of $\triangle P Q R=2$ (Perimeter of $\triangle A B C$)
Hence proved.

Question 10: In figure, $B E \perp A C, A D$ is any line from A to $B C$ intersecting $B E$ in $H . P, Q$ and R are respectively the mid-points of $A H, A B$ and $B C$. Prove that $\angle P Q R=90^{\circ}$.

Solution:

$B E \perp A C$ and P, Q and R are respectively mid-point of $A H, A B$ and $B C$. (Given)
In $\triangle A B C, Q$ and R are mid-points of $A B$ and $B C$ respectively.
By Mid-point theorem:
QR || AC(i)
In $\triangle A B H, Q$ and P are the mid-points of $A B$ and $A H$ respectively
QP || BH

But, $B E \perp A C$

From (i) and (ii) we have,
$Q P \perp Q R$
$=>\angle P Q R=90^{\circ}$

Hence Proved.

RD Sharma Solutions for Class 9 Maths Chapter 14 Quadrilaterals

Exercise VSAQs

Question 1: In a parallelogram $A B C D$, write the sum of angles A and B.

Solution:

In parallelogram $A B C D$, Adjacent angles of a parallelogram are supplementary.
Therefore, $\angle A+\angle B=180^{\circ}$
Question 2: In a parallelogram $A B C D$, if $\angle D=115^{\circ}$, then write the measure of $\angle A$.
Solution:
In a parallelogram $A B C D$,
$\angle D=115^{\circ}$ (Given)
Since, $\angle \mathrm{A}$ and $\angle \mathrm{D}$ are adjacent angles of parallelogram.
We know, Adjacent angles of a parallelogram are supplementary.
$\angle A+\angle D=180^{\circ}$
$\angle A=180^{\circ}-115^{\circ}=65^{\circ}$
Measure of $\angle A$ is 65°.

Question 3: PQRS is a square such that $P R$ and $S Q$ intersect at 0 . State the measure of $\angle P O Q$.

Solution:

PQRS is a square such that $P R$ and $S Q$ intersect at O. (Given)
We know, diagonals of a square bisects each other at 90 degrees.

So, $\angle \mathrm{POQ}=90^{\circ}$
Question 4: In a quadrilateral $A B C D$, bisectors of angles A and B intersect at O such that $\angle A O B=75^{\circ}$, then write the value of $\angle C+\angle D$.

Solution:

$\angle A O B=75^{\circ}$ (given)

In a quadrilateral $A B C D$, bisectors of angles A and B intersect at O, then
$\angle A O B=1 / 2(\angle A D C+\angle A B C)$
or $\angle A O B=1 / 2(\angle D+\angle C)$
By substituting given values, we get
$75^{\circ}=1 / 2(\angle D+\angle C)$
or $\angle C+\angle D=150^{\circ}$
Question 5: The diagonals of a rectangle $A B C D$ meet at O. If $\angle B O C=44^{\circ}$, find $\angle O A D$.

Solution:

$A B C D$ is a rectangle and $\angle B O C=44^{\circ}$ (given)
$\angle A O D=\angle B O C$ (vertically opposite angles)
$\angle A O D=\angle B O C=44^{\circ}$
$\angle O A D=\angle O D A$ (Angles facing same side)
and $O D=O A$
Since sum of all the angles of a triangle is 180°, then
So, $\angle O A D=1 / 2\left(180^{\circ}-44^{\circ}\right)=68^{\circ}$
Question 6: If PQRS is a square, then write the measure of $\angle \mathrm{SRP}$.

Solution:

PQRS is a square.
=> All side are equal, and each angle is 90° degrees and diagonals bisect the angles.
So, $\angle S R P=1 / 2\left(90^{\circ}\right)=45^{\circ}$
Question 7: If $A B C D$ is a rectangle with $\angle B A C=32^{\circ}$, find the measure of $\angle D B C$.

Solution:

$A B C D$ is a rectangle and $\angle B A C=32^{\circ}$ (given)

We know, diagonals of a rectangle bisects each other.
$\mathrm{AO}=\mathrm{BO}$
$\angle D B A=\angle B A C=32^{\circ}$ (Angles facing same side)

Each angle of a rectangle $=90$ degrees
So, $\angle \mathrm{DBC}+\angle \mathrm{DBA}=90^{\circ}$
or $\angle D B C+32^{\circ}=90^{\circ}$
or $\angle D B C=58^{\circ}$

Question 8: If $A B C D$ is a rhombus with $\angle A B C=56^{\circ}$, find the measure of $\angle A C D$.

Solution:

In a rhombus $A B C D$,
$\angle A B C=56^{\circ}$
So, $\angle B C D=2$ ($\angle A C D$) (Diagonals of a rhombus bisect the interior angles)
or $\angle A C D=1 / 2(\angle B C D)$.....(1)
We know, consecutive angles of a rhombus are supplementary.
$\angle B C D+\angle A B C=180^{\circ}$
$\angle B C D=180^{\circ}-56^{\circ}=124^{\circ}$
Equation (1) $=><A C D=1 / 2 \times 124^{\circ}=62^{\circ}$

Question 9: The perimeter of a parallelogram is 22 cm . If the longer side measure 6.5 cm , what is the measure of shorter side?

Solution:

Perimeter of a parallelogram $=22 \mathrm{~cm}$. (Given)
Longer side $=6.5 \mathrm{~cm}$
Let x be the shorter side.
Perimeter $=2 x+2 \times 6.5$
$22=2 x+13$
$2 x=22-13=9$
or $x=4.5$
Measure of shorter side is 4.5 cm .

Question 10: If the angles of a quadrilateral are in the ratio 3:5:9:13, then find the measure of the smallest angle.

Solution:

Angles of a quadrilateral are in the ratio $3: 5: 9: 13$ (Given)
Let the sides are $3 x, 5 x, 9 x, 13 x$
We know, sum of all the angles of a quadrilateral $=360^{\circ}$

$$
\begin{aligned}
& 3 x+5 x+9 x+13 x=360^{\circ} \\
& 30 x=360^{\circ} \\
& x=12^{\circ}
\end{aligned}
$$

Measure of smallest angle $=3 x=3(12)=36^{\circ}$.

