

Exercise 15.1

Page No: 15.3

Question 1: Which of the following figures lie on the same base and between the same parallel. In such a case, write the common base and two parallels:

Solution:

(i) Triangle APB and trapezium ABCD are on the common base AB and between the same parallels AB and DC.

So, Common base = AB Parallel lines: AB and DC

(ii) Parallelograms ABCD and APQD are on the same base AD and between the same parallels AD and BQ.

Common base = AD Parallel lines: AD and BQ

(iii) Consider, parallelogram ABCD and Δ PQR, lies between the same parallels AD and BC. But not sharing common base.

(iv) ΔQRT and parallelogram PQRS are on the same base QR and lies between same parallels QR and PS.

Common base = QR Parallel lines: QR and PS

(v) Parallelograms PQRS and trapezium SMNR share common base SR, but not between the same parallels.

(vi) Parallelograms: PQRS, AQRD, BCQR are between the same parallels. Also, Parallelograms: PQRS, BPSC, APSD are between the same parallels.

Exercise 15.2

Page No: 15.14

Question 1: If figure, ABCD is a parallelogram, AE \perp DC and CF \perp AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.

Solution:

In parallelogram ABCD, AB = 16 cm, AE = 8 cm and CF = 10 cm

Since, opposite sides of a parallelogram are equal, then

AB = CD = 16 cm

We know, Area of parallelogram = Base x Corresponding height

Area of parallelogram ABCD:

 $CD \times AE = AD \times CF$

16 x 18 = AD x 10

AD = 12.8

Measure of AD = 12.8 cm

Question 2: In Q.No. 1, if AD = 6 cm, CF = 10 cm and AE = 8 cm, find AB.

Solution: Area of a parallelogram ABCD:

From figure: AD × CF = CD × AE

6 x 10 = CD x 8

CD = 7.5

Since, opposite sides of a parallelogram are equal.

=> AB = DC = 7.5 cm

Question 3: Let ABCD be a parallelogram of area 124 cm². If E and F are the mid-points of sides AB and CD respectively, then find the area of parallelogram AEFD.

Solution: ABCD be a parallelogram. Area of parallelogram = 124 cm² (Given)

Consider a point P and join AP which is perpendicular to DC.

Now, Area of parallelogram EBCF = FC x AP and

Area of parallelogram AFED = DF x AP

Since F is the mid-point of DC, so DF = FC

From above results, we have

Area of parallelogram AEFD = Area of parallelogram EBCF = 1/2 (Area of parallelogram ABCD)

= 124/2 = 62

Area of parallelogram AEFD is 62 cm².

Question 4: If ABCD is a parallelogram, then prove that

 $ar(\Delta ABD) = ar(\Delta BCD) = ar(\Delta ABC) = ar(\Delta ACD) = 1/2 ar(||^{gm} ABCD)$

Solution:

ABCD is a parallelogram.

When we join the diagonal of parallelogram, it divides it into two quadrilaterals. Step 1: Let AC is the diagonal, then, Area (Δ ABC) = Area (Δ ACD) = 1/2(Area of II^{gm} ABCD)

Step 2: Let BD be another diagonal

Area (Δ ABD) = Area (Δ BCD) = 1/2(Area of II^{gm} ABCD)

Now, From Step 1 and step 2, we have

Area ($\triangle ABC$) = Area ($\triangle ACD$) = Area ($\triangle ABD$) = Area ($\triangle BCD$) = 1/2(Area of II^{gm} ABCD)

Hence Proved.

Exercise 15.3

Page No: 15.40

Question 1: In figure, compute the area of quadrilateral ABCD.

Solution:

A quadrilateral ABCD with DC = 17 cm, AD = 9 cm and BC = 8 cm (Given)

In right ΔABD, Using Pythagorean Theorem,

 $AB^2 + AD^2 = BD^2$

 $15^2 = AB^2 + 9^2$

AB² = 225-81=144

AB = 12

Area of $\triangle ABD = 1/2(12 \times 9) \text{ cm}^2 = 54 \text{ cm}^2$

In right ΔBCD: Using Pythagorean Theorem,

 $CD^2 = BD^2 + BC^2$

 $17^2 = BD^2 + 8^2$

 $BD^2 = 289 - 64 = 225$

or BD = 15

```
Area of \Delta BCD = 1/2(8x17) \text{ cm}^2 = 68 \text{ cm}^2
```


Now, area of quadrilateral ABCD = Area of \triangle ABD + Area of \triangle BCD

 $= 54 \text{ cm}^2 + 68 \text{ cm}^2$

= 112 cm²

Question 2: In figure, PQRS is a square and T and U are, respectively, the mid-points of PS and QR . Find the area of Δ OTS if PQ = 8 cm.

Question 3: Compute the area of trapezium PQRS in figure.

Solution:

From figure,

Area of trapezium PQRS = Area of rectangle PSRT + Area of ΔQRT

 $= PT \times RT + 1/2 (QT \times RT)$

 $= 8 \times RT + 1/2(8 \times RT)$

= 12 RT

In right ΔQRT, Using Pythagorean Theorem,

 $QR^2 = QT^2 + RT^2$

 $RT^2 = QR^2 - QT^2$

 $RT^2 = 17^2 - 8^2 = 225$

or RT = 15

Therefore, Area of trapezium = 12×15 cm² = 180 cm²

Question 4: In figure, $\angle AOB = 90^{\circ}$, AC = BC, OA = 12 cm and OC = 6.5 cm. Find the area of $\triangle AOB$.

Solution:

Given: A triangle AOB, with $\angle AOB = 90^{\circ}$, AC = BC, OA = 12 cm and OC = 6.5 cm

As we know, the midpoint of the hypotenuse of a right triangle is equidistant from the vertices.

So, CB = CA = OC = 6.5 cm

 $AB = 2 CB = 2 \times 6.5 cm = 13 cm$

In right ΔOAB: Using Pythagorean Theorem, we get

 $AB^2 = OB^2 + OA^2$

 $13^2 = OB^2 + 12^2$

 $OB^2 = 169 - 144 = 25$

or OB = 5 cm

Now, Area of $\triangle AOB = \frac{1}{2}(Base x height) cm^2 = \frac{1}{2}(12 x 5) cm^2 = 30 cm^2$

Question 5: In figure, ABCD is a trapezium in which AB = 7 cm, AD = BC = 5 cm, DC = x cm, and distance between AB and DC is 4 cm. Find the value of x and area of trapezium ABCD.

Solution:

Given: ABCD is a trapezium, where AB = 7 cm, AD = BC = 5 cm, DC = x cm, and Distance between AB and DC = 4 cm

Consider AL and BM are perpendiculars on DC, then

AL = BM = 4 cm and LM = 7 cm.

In right ΔBMC : Using Pythagorean Theorem, we get

 $BC^2 = BM^2 + MC^2$

 $25 = 16 + MC^2$

 $MC^2 = 25 - 16 = 9$

or MC = 3

Again, In right ∆ ADL : Using Pythagorean Theorem, we get

 $AD^2 = AL^2 + DL^2$

 $25 = 16 + DL^2$

 $DL^2 = 25 - 16 = 9$

or DL = 3

Therefore, x = DC = DL + LM + MC = 3 + 7 + 3 = 13 => x = 13 cm

Now,

Area of trapezium ABCD = 1/2(AB + CD) AL

= 1/2(7+13)4 = 40

Area of trapezium ABCD is 40 cm².

Question 6: In figure, OCDE is a rectangle inscribed in a quadrant of a circle of radius 10 cm. If OE = 2V5 cm, find the area of the rectangle.

Solution:

From given: Radius = OD = 10 cm and OE = 2V5 cm

In right ∆DEO, By Pythagoras theorem

 $OD^2 = OE^2 + DE^2$

 $(10)^2 = (2\sqrt{5})^2 + DE^2$

 $100 - 20 = DE^2$

DE = 4√5

Now,

Area of rectangle OCDE = Length x Breadth = OE x DE = $2\sqrt{5} \times 4\sqrt{5} = 40$

Area of rectangle is 40 cm².

Question 7: In figure, ABCD is a trapezium in which AB || DC. Prove that $ar(\Delta AOD) = ar(\Delta BOC)$

Solution:

ABCD is a trapezium in which AB || DC (Given)

To Prove: $ar(\Delta AOD) = ar(\Delta BOC)$

Proof:

From figure, we can observe that \triangle ADC and \triangle BDC are sharing common base i.e. DC and between same parallels AB and DC.

Then, $ar(\Delta ADC) = ar(\Delta BDC)$ (1)

 Δ ADC is the combination of triangles, Δ AOD and Δ DOC. Similarly, Δ BDC is the combination of Δ BOC and Δ DOC triangles.

Equation (1) => ar(ΔAOD) + ar(ΔDOC) = ar(ΔBOC) + ar(ΔDOC)

or $ar(\Delta AOD) = ar(\Delta BOC)$

Hence Proved.

Question 8: In figure, ABCD, ABFE and CDEF are parallelograms. Prove that $ar(\Delta ADE) = ar(\Delta BCF)$.

Solution:

Here, ABCD, CDEF and ABFE are parallelograms:

Which implies: AD = BC DE = CF and AE = BF

Again, from triangles ADE and BCF:

AD = BC, DE = CF and AE = BF

By SSS criterion of congruence, we have

 $\Delta ADE \cong \Delta BCF$

Since both the triangles are congruent, then $ar(\Delta ADE) = ar(\Delta BCF)$. Hence Proved,

Question 9: Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that: $ar(\Delta APB) \times ar(\Delta CPD) = ar(\Delta APD) \times ar(\Delta BPC)$.

Solution:

Consider: BQ and DR are two perpendiculars on AC.

To prove: $ar(\Delta APB) \times ar(\Delta CPD) = ar(\Delta APD) \times ar(\Delta BPC)$.

Now, L.H.S. = $ar(\Delta APB) \times ar(\Delta CDP)$

= $(1/2 \times AP \times BQ) \times (1/2 \times PC \times DR)$

= $(1/2 \times PC \times BQ) \times (1/2 \times AP \times DR)$

= $ar(\Delta APD) \times ar(\Delta BPC)$

= R.H.S.

Hence proved.

Question 10: In figure, ABC and ABD are two triangles on the base AB. If line segment CD is bisected by AB at O, show that $ar(\Delta ABC) = ar(\Delta ABD)$.

Solution:

Draw two perpendiculars CP and DQ on AB.

Now,

 $ar(\Delta ABC) = 1/2 \times AB \times CP$ (1)

 $ar(\Delta ABD) = 1/2 \times AB \times DQ$ (2)

To prove the result, $ar(\Delta ABC) = ar(\Delta ABD)$, we have to show that CP = DQ.

In right angled triangles, ΔCPO and ΔDQO

∠CPO = ∠DQO = 90°

CO = OD (Given)

 $\angle COP = \angle DOQ$ (Vertically opposite angles)

By AAS condition: $\triangle CP0 \cong \triangle DQO$ So, CP = DQ(3) (By CPCT)

From equations (1), (2) and (3), we have

 $ar(\Delta ABC) = ar(\Delta ABD)$

Hence proved.

Exercise VSAQs

Page No: 15.55

Question 1: If ABC and BDE are two equilateral triangles such that D is the mid-point of BC, then find ar(\triangle ABC) : ar(\triangle BDE).

Solution:

Given: ABC and BDE are two equilateral triangles. We know, area of an equilateral triangle = $\sqrt{3}/4$ (side)²

Let "a" be the side measure of given triangle.

Find ar($\triangle ABC$):

 $ar(\triangle ABC) = \sqrt{3}/4 (a)^2$

Find ar(\triangle BDE):

 $ar(\triangle BDE) = \sqrt{3}/4 (a/2)^2$

(D is the mid-point of BC)

```
Now, ar(\triangle ABC) : ar(\triangle BDE)
```

```
or v3/4 (a)<sup>2</sup> : v3/4 (a/2)<sup>2</sup>
```

or 1:1/4

or 4:1

This implies, $ar(\triangle ABC)$: $ar(\triangle BDE) = 4:1$

Question 2: In figure, ABCD is a rectangle in which CD = 6 cm, AD = 8 cm. Find the area of parallelogram CDEF.

Solution:

ABCD is a rectangle, where CD = 6 cm and AD = 8 cm (Given)

From figure: Parallelogram CDEF and rectangle ABCD on the same base and between the same parallels, which means both have equal areas.

Area of parallelogram CDEF = Area of rectangle ABCD(1)

Area of rectangle ABCD = CD x AD = $6 \times 8 \text{ cm}^2 = 48 \text{ cm}^2$

Equation (1) => Area of parallelogram CDEF = 48 cm^2 .

Question 3: In figure, find the area of ΔGEF .

Solution:

From figure:

Parallelogram CDEF and rectangle ABCD on the same base and between the same parallels, which means both have equal areas.

Area of CDEF = Area of ABCD = $8 \times 6 \text{ cm}^2$ = 48 cm^2

Again,

Parallelogram CDEF and triangle EFG are on the same base and between the same parallels, then Area of a triangle = $\frac{1}{2}$ (Area of parallelogram)

In this case,

Area of a triangle EFG = $\frac{1}{2}$ (Area of parallelogram CDEF) = $\frac{1}{2}(48 \text{ cm}^2) = 24 \text{ cm}^2$.

Question 4: In figure, ABCD is a rectangle with sides AB = 10 cm and AD = 5 cm. Find the area of Δ EFG.

Solution:

From figure:

Parallelogram ABEF and rectangle ABCD on the same base and between the same parallels, which means both have equal areas.

Area of ABEF = Area of ABCD = $10 \times 5 \text{ cm}^2 = 50 \text{ cm}^2$

Again,

Parallelogram ABEF and triangle EFG are on the same base and between the same parallels, then Area of a triangle = $\frac{1}{2}$ (Area of parallelogram)

In this case,

Area of a triangle EFG = $\frac{1}{2}$ (Area of parallelogram ABEF) = $\frac{1}{2}(50 \text{ cm}^2) = 25 \text{ cm}^2$.

Question 5: PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm. A is any point on PQ. If PS = 5 cm, then find ar(\triangle RAS).

Solution:

```
PQRS is a rectangle with PS = 5 cm and PR = 13 cm (Given)
```


In \triangle PSR: Using Pythagoras theorem,

 $SR^2 = PR^2 - PS^2 = (13)^2 - (5)^2 = 169 - 25 = 114$

or SR = 12

Now, Area of \triangle RAS = 1/2 x SR x PS

= 1/2 x 12 x 5

= 30

Therefore, Area of \triangle RAS is 30 cm².