RD Sharma Solutions for Class 9 Maths Chapter 15 Area of Parallelogram and Triangles

Exercise 15.1

Page No: 15.3
Question 1: Which of the following figures lie on the same base and between the same parallel. In such a case, write the common base and two parallels:

Solution:

(i) Triangle APB and trapezium ABCD are on the common base $A B$ and between the same parallels $A B$ and DC.
So,
Common base $=A B$
Parallel lines: $A B$ and $D C$
(ii) Parallelograms $A B C D$ and $A P Q D$ are on the same base $A D$ and between the same parallels $A D$ and BQ.

Common base = AD
Parallel lines: AD and BQ Parallelogram and Triangles
(iii) Consider, parallelogram $A B C D$ and $\triangle P Q R$, lies between the same parallels $A D$ and $B C$. But not sharing common base.
(iv) $\triangle Q R T$ and parallelogram PQRS are on the same base $Q R$ and lies between same parallels $Q R$ and PS.

Common base = QR
Parallel lines: QR and PS
(v) Parallelograms PQRS and trapezium SMNR share common base SR, but not between the same parallels.
(vi) Parallelograms: PQRS, AQRD, BCQR are between the same parallels. Also, Parallelograms: PQRS, BPSC, APSD are between the same parallels.

RD Sharma Solutions for Class 9 Maths Chapter 15 Area of Parallelogram and Triangles

Exercise 15.2

Question 1: If figure, $A B C D$ is a parallelogram, $A E \perp D C$ and $C F \perp A D$. If $A B=16 \mathrm{~cm}, A E=8 \mathrm{~cm}$ and $C F=$ 10 cm , find AD.

Solution:
In parallelogram $A B C D, A B=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{CF}=10 \mathrm{~cm}$
Since, opposite sides of a parallelogram are equal, then
$A B=C D=16 \mathrm{~cm}$

We know, Area of parallelogram = Base \times Corresponding height
Area of parallelogram ABCD:
$C D \times A E=A D \times C F$
$16 \times 18=A D \times 10$
$A D=12.8$

Measure of $A D=12.8 \mathrm{~cm}$

Question 2: In Q.No. 1, if $A D=6 \mathrm{~cm}, C F=10 \mathrm{~cm}$ and $A E=8 \mathrm{~cm}$, find $A B$.
Solution: Area of a parallelogram $A B C D$:

From figure:
$A D \times C F=C D \times A E$
$6 \times 10=C D \times 8$
$C D=7.5$
Since, opposite sides of a parallelogram are equal.
$\Rightarrow \mathrm{AB}=\mathrm{DC}=7.5 \mathrm{~cm}$

Question 3: Let $A B C D$ be a parallelogram of area $124 \mathrm{~cm}^{2}$. If E and F are the mid-points of sides $A B$ and $C D$ respectively, then find the area of parallelogram AEFD.

Solution:

ABCD be a parallelogram.
Area of parallelogram $=124 \mathrm{~cm}^{2} \quad$ (Given)
Consider a point P and join AP which is perpendicular to $D C$.
Now, Area of parallelogram EBCF $=\mathrm{FC} \times \mathrm{AP}$ and
Area of parallelogram AFED $=D F \times A P$
Since F is the mid-point of $D C$, so $D F=F C$
From above results, we have
Area of parallelogram AEFD $=$ Area of parallelogram $E B C F=1 / 2$ (Area of parallelogram $A B C D$)
= $124 / 2$
$=62$
Area of parallelogram AEFD is $62 \mathrm{~cm}^{2}$.
Question 4: If ABCD is a parallelogram, then prove that
$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{BCD})=\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ACD})=1 / 2 \operatorname{ar}\left(| |^{\mathrm{gm}} \mathrm{ABCD}\right)$

Solution:

$A B C D$ is a parallelogram.

RD Sharma Solutions for Class 9 Maths Chapter 15 Area of Parallelogram and Triangles

When we join the diagonal of parallelogram, it divides it into two quadrilaterals.
Step 1: Let $A C$ is the diagonal, then, Area $(\triangle A B C)=$ Area $(\triangle A C D)=1 / 2$ (Area of $\left.\|^{g m} A B C D\right)$
Step 2: Let BD be another diagonal
Area $(\triangle A B D)=$ Area $(\triangle B C D)=1 / 2\left(\right.$ Area of $\left.\|^{g m} A B C D\right)$
Now,
From Step 1 and step 2, we have
Area $(\triangle A B C)=\operatorname{Area}(\triangle A C D)=\operatorname{Area}(\triangle A B D)=\operatorname{Area}(\triangle B C D)=1 / 2\left(\right.$ Area of $\left.\|{ }^{g m} A B C D\right)$
Hence Proved.

RD Sharma Solutions for Class 9 Maths Chapter 15 Area of Parallelogram and Triangles

Exercise 15.3

Question 1: In figure, compute the area of quadrilateral ABCD.

Solution:
A quadrilateral ABCD with $\mathrm{DC}=17 \mathrm{~cm}, \mathrm{AD}=9 \mathrm{~cm}$ and $\mathrm{BC}=8 \mathrm{~cm}$ (Given)
In right $\triangle A B D$,
Using Pythagorean Theorem,
$A B^{2}+A D^{2}=B D^{2}$
$15^{2}=A B^{2}+9^{2}$
$A B^{2}=225-81=144$
$A B=12$
Area of $\triangle A B D=1 / 2(12 \times 9) \mathrm{cm}^{2}=54 \mathrm{~cm}^{2}$
In right $\triangle B C D$:
Using Pythagorean Theorem,
$C D^{2}=B D^{2}+B C^{2}$
$17^{2}={B D^{2}}^{2} 8^{2}$
$B D^{2}=289-64=225$
or $B D=15$
Area of $\triangle B C D=1 / 2(8 \times 17) \mathrm{cm}^{2}=68 \mathrm{~cm}^{2}$

Now, area of quadrilateral $A B C D=$ Area of $\triangle A B D+$ Area of $\triangle B C D$
$=54 \mathrm{~cm}^{2}+68 \mathrm{~cm}^{2}$
$=112 \mathrm{~cm}^{2}$

Question 2: In figure, PQRS is a square and T and U are, respectively, the mid-points of PS and QR . Find the area of $\triangle O T S$ if $P Q=8 \mathrm{~cm}$.

Solution:

T and U are mid points of PS and QR respectively (Given)
Therefore, $\mathrm{TU} \| \mathrm{PQ}=>\mathrm{TO}| | \mathrm{PQ}$
In $\triangle P Q S$,
T is the mid-point of $P S$ and $T O \| P Q$
So, $T O=1 / 2 \quad \mathrm{PQ}=4 \mathrm{~cm}$
($\mathrm{PQ}=8 \mathrm{~cm}$ given)

Also, TS = $1 / 2 \mathrm{PS}=4 \mathrm{~cm}$
[$\mathrm{PQ}=\mathrm{PS}, \mathrm{As}$ PQRS is a square)
Now,
Area of $\triangle \mathrm{OTS}=1 / 2(\mathrm{TO} \times \mathrm{TS})$
$=1 / 2(4 \times 4) \mathrm{cm}^{2}$
$=8 \mathrm{~cm}^{2}$
Area of $\triangle O T S$ is $8 \mathrm{~cm}^{2}$.

Question 3: Compute the area of trapezium PQRS in figure.

Solution:

From figure,

Area of trapezium PQRS = Area of rectangle PSRT + Area of \triangle QRT
$=P T \times R T+1 / 2(Q T \times R T)$
$=8 \times R T+1 / 2(8 \times R T)$
$=12 \mathrm{RT}$
In right $\triangle Q R T$,
Using Pythagorean Theorem,
$Q R^{2}=Q T^{2}+R T^{2}$
$R T^{2}=Q R^{2}-Q T^{2}$
$R T^{2}=17^{2}-8^{2}=225$
or $\mathrm{RT}=15$
Therefore, Area of trapezium $=12 \times 15 \mathrm{~cm}^{2}=180 \mathrm{~cm}^{2}$

RD Sharma Solutions for Class 9 Maths Chapter 15 Area of Parallelogram and Triangles

Question 4: In figure, $\angle A O B=90^{\circ}, A C=B C, O A=12 \mathrm{~cm}$ and $O C=6.5 \mathrm{~cm}$. Find the area of $\triangle A O B$.

Solution:
Given: A triangle $A O B$, with $\angle A O B=90^{\circ}, A C=B C, O A=12 \mathrm{~cm}$ and $O C=6.5 \mathrm{~cm}$
As we know, the midpoint of the hypotenuse of a right triangle is equidistant from the vertices.

So, $C B=C A=O C=6.5 \mathrm{~cm}$
$A B=2 C B=2 \times 6.5 \mathrm{~cm}=13 \mathrm{~cm}$

In right $\triangle O A B$:
Using Pythagorean Theorem, we get
$A B^{2}=O B^{2}+O A^{2}$
$13^{2}=O B^{2}+12^{2}$
$O B^{2}=169-144=25$
or $\mathrm{OB}=5 \mathrm{~cm}$
Now, Area of $\triangle A O B=1 / 2($ Base x height $) \mathrm{cm}^{2}=1 / 2(12 \times 5) \mathrm{cm}^{2}=30 \mathrm{~cm}^{2}$
Question 5: In figure, $A B C D$ is a trapezium in which $A B=7 \mathrm{~cm}, A D=B C=5 \mathrm{~cm}, D C=x \mathrm{~cm}$, and distance between $A B$ and $D C$ is 4 cm . Find the value of x and area of trapezium $A B C D$.

Solution:

Given: $A B C D$ is a trapezium, where $A B=7 \mathrm{~cm}, A D=B C=5 \mathrm{~cm}, D C=x \mathrm{~cm}$, and Distance between $A B$ and $D C=4 \mathrm{~cm}$

Consider $A L$ and $B M$ are perpendiculars on $D C$, then
$A L=B M=4 \mathrm{~cm}$ and $L M=7 \mathrm{~cm}$.

In right $\triangle \mathrm{BMC}$:
Using Pythagorean Theorem, we get
$B C^{2}=B M^{2}+M C^{2}$
$25=16+M C^{2}$
$M C^{2}=25-16=9$
or $M C=3$

Again,
In right \triangle ADL :
Using Pythagorean Theorem, we get
$A D^{2}=A L^{2}+D L^{2}$
$25=16+L^{2}$
$D L^{2}=25-16=9$
or $\operatorname{DL}=3$

RD Sharma Solutions for Class 9 Maths Chapter 15 Area of Parallelogram and Triangles

Therefore, $\mathrm{x}=\mathrm{DC}=\mathrm{DL}+\mathrm{LM}+\mathrm{MC}=3+7+3=13$
$\Rightarrow x=13 \mathrm{~cm}$

Now,

Area of trapezium $A B C D=1 / 2(A B+C D) A L$
$=1 / 2(7+13) 4$
$=40$
Area of trapezium ABCD is $40 \mathrm{~cm}^{2}$.
Question 6: In figure, OCDE is a rectangle inscribed in a quadrant of a circle of radius 10 cm . If $O E=$ $2 \sqrt{5} \mathrm{~cm}$, find the area of the rectangle.

Solution:
From given:
Radius $=\mathrm{OD}=10 \mathrm{~cm}$ and $\mathrm{OE}=2 \mathrm{~V} 5 \mathrm{~cm}$
In right $\triangle \mathrm{DEO}$,
By Pythagoras theorem
$O D^{2}=O E^{2}+D E^{2}$
$(10)^{2}=(2 \mathrm{~V} 5)^{2}+\mathrm{DE}^{2}$
$100-20=\mathrm{DE}^{2}$
$D E=4 \sqrt{ } 5$

RD Sharma Solutions for Class 9 Maths Chapter 15 Area of Parallelogram and Triangles

Now,
Area of rectangle OCDE $=$ Length \times Breadth $=\mathrm{OE} \times \mathrm{DE}=2 \mathrm{~V} 5 \times 4 \sqrt{ } 5=40$
Area of rectangle is $40 \mathrm{~cm}^{2}$.
Question 7: In figure, $A B C D$ is a trapezium in which $A B|\mid D C$. Prove that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$

Solution:

$A B C D$ is a trapezium in which $A B|\mid D C$ (Given)
To Prove: $\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$
Proof:
From figure, we can observe that $\triangle A D C$ and $\triangle B D C$ are sharing common base i.e. $D C$ and between same parallels $A B$ and $D C$.

Then, $\operatorname{ar}(\triangle A D C)=\operatorname{ar}(\triangle B D C)$
$\triangle A D C$ is the combination of triangles, $\triangle A O D$ and $\triangle D O C$. Similarly, $\triangle B D C$ is the combination of $\triangle B O C$ and $\triangle \mathrm{DOC}$ triangles.

Equation (1) $=>\operatorname{ar}(\triangle \mathrm{AOD})+\operatorname{ar}(\triangle \mathrm{DOC})=\operatorname{ar}(\triangle \mathrm{BOC})+\operatorname{ar}(\triangle \mathrm{DOC})$
or $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$
Hence Proved.
Question 8: In figure, $A B C D, A B F E$ and CDEF are parallelograms. Prove that $\operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle B C F)$.

Solution:

Here, $A B C D$, CDEF and $A B F E$ are parallelograms:
Which implies:
$A D=B C$
$D E=C F$ and
$A E=B F$

Again, from triangles ADE and BCF:
$A D=B C, D E=C F$ and $A E=B F$
By SSS criterion of congruence, we have
$\triangle \mathrm{ADE} \cong \triangle \mathrm{BCF}$
Since both the triangles are congruent, then $\operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle B C F)$.
Hence Proved,
Question 9: Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that: $\operatorname{ar}(\triangle A P B) x \operatorname{ar}(\triangle C P D)=\operatorname{ar}(\triangle A P D) x \operatorname{ar}(\triangle B P C)$.

Solution:

Consider: $B Q$ and $D R$ are two perpendiculars on $A C$.

To prove: $\operatorname{ar}(\triangle \mathrm{APB}) \times \operatorname{ar}(\triangle \mathrm{CPD})=\operatorname{ar}(\triangle \mathrm{APD}) \times \operatorname{ar}(\triangle \mathrm{BPC})$.

RD Sharma Solutions for Class 9 Maths Chapter 15 Area of Parallelogram and Triangles

Now,
L.H.S. $=\operatorname{ar}(\triangle \mathrm{APB}) \times \operatorname{ar}(\Delta \mathrm{CDP})$
$=(1 / 2 \times A P \times B Q) \times(1 / 2 \times P C \times D R)$
$=(1 / 2 \times P C \times B Q) \times(1 / 2 \times A P \times D R)$
$=\operatorname{ar}(\triangle \mathrm{APD}) \times \operatorname{ar}(\triangle \mathrm{BPC})$
= R.H.S.

Hence proved.
Question 10: In figure, $A B C$ and $A B D$ are two triangles on the base $A B$. If line segment $C D$ is bisected by $A B$ at 0 , show that $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A B D)$.

Solution:

Draw two perpendiculars CP and DQ on AB .
Now,
$\operatorname{ar}(\triangle \mathrm{ABC})=1 / 2 \times A B \times C P$
$\operatorname{ar}(\triangle A B D)=1 / 2 \times A B \times D Q$
To prove the result, $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A B D)$, we have to show that $C P=D Q$.
In right angled triangles, $\triangle C P O$ and $\triangle D Q O$
$\angle C P O=\angle D Q O=90^{\circ}$
$C O=O D$ (Given)
$\angle \mathrm{COP}=\angle \mathrm{DOQ}$ (Vertically opposite angles)

By AAS condition: $\triangle C P O \cong \triangle D Q O$
So, CP = DQ
(By CPCT)
From equations (1), (2) and (3), we have

$$
\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ABD})
$$

Hence proved.

RD Sharma Solutions for Class 9 Maths Chapter 15 Area of Parallelogram and Triangles

Exercise VSAQs

Question 1: If $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$, then find $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle B D E)$.

Solution:

Given: $A B C$ and $B D E$ are two equilateral triangles.
We know, area of an equilateral triangle $=\sqrt{ } 3 / 4(\text { side })^{2}$
Let "a" be the side measure of given triangle.
Find $\operatorname{ar}(\triangle A B C)$:
$\operatorname{ar}(\triangle \mathrm{ABC})=\sqrt{ } 3 / 4(\mathrm{a})^{2}$
Find $\operatorname{ar}(\triangle B D E)$:
$\operatorname{ar}(\triangle \mathrm{BDE})=\mathrm{V} 3 / 4(\mathrm{a} / 2)^{2}$
(D is the mid-point of $B C$)
Now,
$\operatorname{ar}(\triangle \mathrm{ABC}): \operatorname{ar}(\triangle \mathrm{BDE})$
or $\sqrt{2} 3 / 4(a)^{2}: \sqrt{ } 3 / 4(a / 2)^{2}$
or $1: 1 / 4$
or 4:1
This implies, $\operatorname{ar}(\triangle \mathrm{ABC}): \operatorname{ar}(\triangle \mathrm{BDE})=4: 1$

Question 2: In figure, $A B C D$ is a rectangle in which $C D=6 \mathrm{~cm}, A D=8 \mathrm{~cm}$. Find the area of parallelogram CDEF.

Solution:

$A B C D$ is a rectangle, where $C D=6 \mathrm{~cm}$ and $A D=8 \mathrm{~cm}$ (Given)
From figure: Parallelogram CDEF and rectangle ABCD on the same base and between the same parallels, which means both have equal areas.

Area of parallelogram CDEF $=$ Area of rectangle $A B C D$
Area of rectangle $\mathrm{ABCD}=\mathrm{CD} \times \mathrm{AD}=6 \times 8 \mathrm{~cm}^{2}=48 \mathrm{~cm}^{2}$
Equation (1) => Area of parallelogram CDEF $=48 \mathrm{~cm}^{2}$.
Question 3: In figure, find the area of \triangle GEF.

Solution:

From figure:
Parallelogram CDEF and rectangle ABCD on the same base and between the same parallels, which means both have equal areas.
Area of CDEF $=$ Area of $A B C D=8 \times 6 \mathrm{~cm}^{2}=48 \mathrm{~cm}^{2}$

RD Sharma Solutions for Class 9 Maths Chapter 15 Area of Parallelogram and Triangles

Again,
Parallelogram CDEF and triangle EFG are on the same base and between the same parallels, then Area of a triangle $=1 / 2($ Area of parallelogram $)$

In this case,
Area of a triangle EFG $=1 / 2($ Area of parallelogram CDEF $)=1 / 2\left(48 \mathrm{~cm}^{2}\right)=24 \mathrm{~cm}^{2}$.

Question 4: In figure, $A B C D$ is a rectangle with sides $A B=10 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$. Find the area of $\Delta E F G$.

Solution:

From figure:
Parallelogram ABEF and rectangle ABCD on the same base and between the same parallels, which means both have equal areas.
Area of $A B E F=$ Area of $A B C D=10 \times 5 \mathrm{~cm}^{2}=50 \mathrm{~cm}^{2}$

Again,
Parallelogram ABEF and triangle EFG are on the same base and between the same parallels, then Area of a triangle $=1 / 2($ Area of parallelogram $)$

In this case,
Area of a triangle EFG $=1 / 2($ Area of parallelogram $A B E F)=1 / 2\left(50 \mathrm{~cm}^{2}\right)=25 \mathrm{~cm}^{2}$.
Question 5: PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm . A is any point on $P Q$. If $P S=5 \mathrm{~cm}$, then find $\operatorname{ar}(\triangle R A S)$.

Solution:

$P Q R S$ is a rectangle with $P S=5 \mathrm{~cm}$ and $P R=13 \mathrm{~cm}$ (Given) Parallelogram and Triangles

In $\triangle P S R$:
Using Pythagoras theorem,

$$
S R^{2}=P R^{2}-P S^{2}=(13)^{2}-(5)^{2}=169-25=114
$$

or $\mathrm{SR}=12$

Now,
Area of $\triangle R A S=1 / 2 \times S R \times P S$

$$
\begin{aligned}
& =1 / 2 \times 12 \times 5 \\
& =30
\end{aligned}
$$

Therefore, Area of $\triangle R A S$ is $30 \mathrm{~cm}^{2}$.

