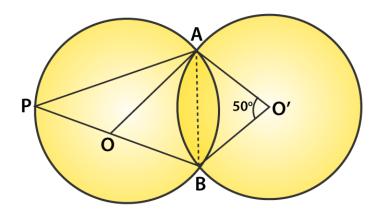


RD Sharma Solutions for Class 9 Maths Chapter 16 Circles

Exercise VSAQs


Page No: 16.89

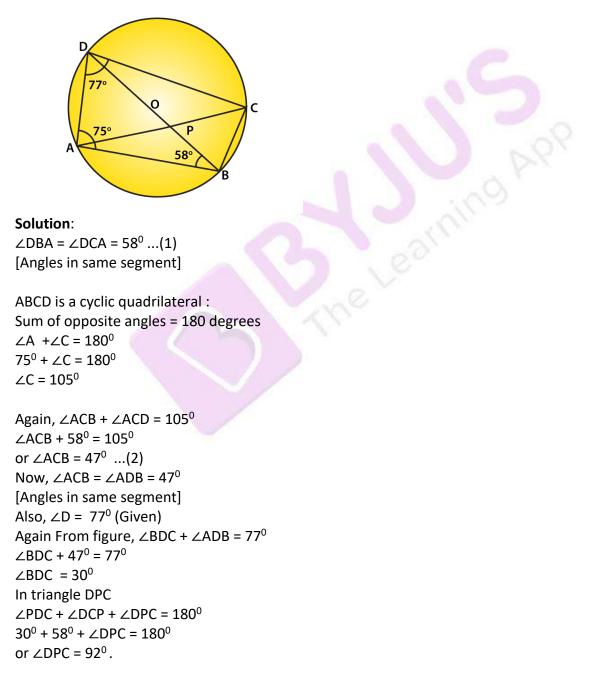
Question 1: In figure, two circles intersect at A and B. The centre of the smaller circle is O and it lies on the circumference of the larger circle. If $\angle APB = 70^\circ$, find $\angle ACB$.

 $\angle ACB = 40^{\circ}$

Question 2: In figure, two congruent circles with centres O and O' intersect at A and B. If $\angle AO'B = 50^{\circ}$, then find $\angle APB$.

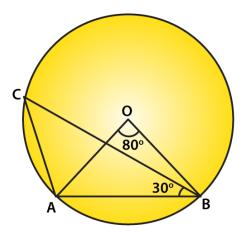
Solution:

https://byjus.com


RD Sharma Solutions for Class 9 Maths Chapter 16 Circles

As we are given that, both the triangle are congruent which means their corresponding angles are equal.

Therefore, $\angle AOB = AO'B = 50^{\circ}$


Now, by degree measure theorem, we have $\angle APB = \angle AOB/2 = 25^{\circ}$

Question 3: In figure, ABCD is a cyclic quadrilateral in which ∠BAD=75°, ∠ABD=58° and ∠ADC=77°, AC and BD intersect at P. Then, find ∠DPC.

Question 4: In figure, if $\angle AOB = 80^{\circ}$ and $\angle ABC=30^{\circ}$, then find $\angle CAO$.

Solution:

Given: $\angle AOB = 80^{\circ}$ and $\angle ABC = 30^{\circ}$ To find: $\angle CAO$

Join OC.

Central angle subtended by arc AC = \angle COA then \angle COA = 2 x \angle ABC = 2 x 30^o = 60^o ...(1)

In triangle OCA, OC = OA[same radii] $\angle OCA = \angle CAO \dots (2)$ [Angle opposite to equal sides]

In triangle COA,

 $\angle OCA + \angle CAO + \angle COA = 180^{\circ}$

From (1) and (2), we get

 $2\angle CAO + 60^{\circ} = 180^{\circ}$

 $\angle CAO = 60^{\circ}$