RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

Exercise 20.1

Page No: 20.7

Question 1: Find the curved surface area of a cone, if its slant height is 60 cm and the radius of its base is 21 cm .

Solution:
Slant height of cone $(\mathrm{I})=60 \mathrm{~cm}$
Radius of the base of the cone $(r)=21 \mathrm{~cm}$

Now,
Curved surface area of the right circular cone $=\pi r l=22 / 7 \times 21 \times 60=3960 \mathrm{~cm}^{2}$
Therefore the curved surface area of the right circular cone is $3960 \mathrm{~cm}^{2}$
Question 2: The radius of a cone is 5 cm and vertical height is 12 cm . Find the area of the curved surface.

Solution:

Radius of cone (r) $=5 \mathrm{~cm}$

Height of cone $(\mathrm{h})=12 \mathrm{~cm}$
Find Slant Height of cone (I):
We know, $L^{2}=r^{2}+h^{2}$
$1^{2}=5^{2}+12^{2}$
$1^{2}=25+144=169$

Orl $=13 \mathrm{~cm}$

Now,
C.S.A $=\pi r l=3.14 \times 5 \times 13=204.28$

Therefore, the curved surface area of the cone is $204.28 \mathrm{~cm}^{2}$

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

Question 3 : The radius of a cone is 7 cm and area of curved surface is $176 \mathrm{~cm}^{2}$. Find the slant height.

Solution:

Radius of cone(r) $=7 \mathrm{~cm}$
Curved surface area(C.S.A) $=176 \mathrm{~cm}^{2}$
We know, C.S.A. $=\pi r l$
$=>\pi r l=176$
=> $22 / 7 \times 7 \times 1=176$
or $\mathrm{I}=8$
Therefore, slant height of the cone is 8 cm .

Question 4: The height of a cone 21 cm . Find the area of the base if the slant height is $\mathbf{2 8} \mathbf{~ c m}$.

Solution:

Height of cone(h) $=21 \mathrm{~cm}$
Slant height of cone $(1)=28 \mathrm{~cm}$
We know that, $I^{2}=r^{2}+h^{2}$
$28^{2}=r^{2}+21^{2}$
$r^{2}=28^{2}-21^{2}$
or $r=7 \sqrt{ } 7 \mathrm{~cm}$

Now,
Area of the circular base $=\pi r^{2}$
$=22 / 7 \times(7 \mathrm{~V} 7)^{2}$
$=1078$

Therefore, area of the base is $1078 \mathrm{~cm}^{2}$.

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

Question 5: Find the total surface area of a right circular cone with radius 6 cm and height 8 cm .

Solution:

Radius of cone (r) $=6 \mathrm{~cm}$

Height of cone $(\mathrm{h})=8 \mathrm{~cm}$
Total Surface area of the cone (T.S.A)=?
Find slant height of cone:
We know, $I^{2}=r^{2}+h^{2}$
$=6^{2}+8^{2}$
$=36+64$
$=100$
or $\mathrm{I}=10 \mathrm{~cm}$
Now,
Total Surface area of the cone (T.S.A) = Curved surface area of cone + Area of circular base
$=\pi r l+\pi r^{2}$
$=(22 / 7 \times 6 \times 10)+(22 / 7 \times 6 \times 6)$
= 1320/7 + 792/7
$=301.71$
Therefore, area of the base is $301.71 \mathrm{~cm}^{2}$.

Question 6: Find the curved surface area of a cone with base radius 5.25 cm and slant height 10 cm .

Solution:

Base radius of the cone $(r)=5.25 \mathrm{~cm}$
Slant height of the cone $(\mathrm{I})=10 \mathrm{~cm}$
Curved surface area (C.S.A) $=\pi r l$
$=22 / 7 \times 5.25 \times 10$
$=165$

Therefore, curved surface area of the cone is $165 \mathrm{~cm}^{2}$.

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

Question 7: Find the total surface area of a cone, if its slant height is $\mathbf{2 1} \mathbf{~ m}$ and diameter of its base is 24 m.

Solution:

Diameter of the cone $(\mathrm{d})=24 \mathrm{~m}$
So, radius of the cone $(\mathrm{r})=$ diameter $/ 2=24 / 2 \mathrm{~m}=12 \mathrm{~m}$
Slant height of the cone(I) $=21 \mathrm{~m}$
T.S.A = Curved surface area of cone + Area of circular base
$=\pi r \mid+\pi r^{2}$
$=(22 / 7 \times 12 \times 21)+(22 / 7 \times 12 \times 12)$
$=1244.57$
Therefore, total surface area of the cone is $1244.57 \mathrm{~m}^{2}$.

Question 8: The area of the curved surface of a cone is $60 \pi \mathrm{~cm}^{2}$. If the slant height of the cone be 8 cm , find the radius of the base.

Solution:

Curved surface area(C.S.A) $=60 \pi \mathrm{~cm}^{2}$
Slant height of the cone $(\mathrm{I})=8 \mathrm{~cm}$
We know, Curved surface area(C.S.A)=rrl
$\Rightarrow \pi r l=60 \pi$
$\Rightarrow>x 8=60$
or $r=60 / 8=7.5$

Therefore, radius of the base of the cone is 7.5 cm .

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

Question 9: The curved surface area of a cone is $4070 \mathrm{~cm}^{2}$ and diameter is 70 cm . What is its slant height? (Use $\pi=22 / 7$)

Solution:

Diameter of the cone $(\mathrm{d})=70 \mathrm{~cm}$
So, radius of the cone $(r)=$ diameter $/ 2=70 / 2 \mathrm{~cm}=35 \mathrm{~cm}$
Curved surface area $=4070 \mathrm{~cm}^{2}$

Now,
We know, Curved surface area $=\pi r l$
So, $\pi r l=4070$
By substituting the values, we get
$22 / 7 \times 35 \times I=4070$
or I = 37
Therefore, slant height of cone is 37 cm .

Question 10: The radius and slant height of a cone are in the ratio 4:7. If its curved surface area is $\mathbf{7 9 2}$ cm^{2}, find its radius. (Use $\pi=22 / 7$)

Solution:

Curved surface area $=792 \mathrm{~cm}^{2}$
The radius and slant height of a cone are in the ratio 4:7 (Given)
Let $4 x$ be the radius and $7 x$ be the height of cone.

Now,
Curved surface area (C.S.A.) $=\pi r l$
So, $22 / 7 \mathrm{x}(4 \mathrm{x}) \mathrm{x}(7 \mathrm{x})=792$
or $x^{2}=9$
or $\mathrm{x}=3$
Therefore, Radius $=4 \mathrm{x}=4(3) \mathrm{cm}=12 \mathrm{~cm}$

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

Exercise 20.2

Question 1: Find the volume of the right circular cone with:
(i) Radius 6 cm , height 7 cm
(ii) Radius 3.5 cm , height 12 cm
(iii) Height is 21 cm and slant height 28 cm

Solution:

(i) Radius of cone(r) $=6 \mathrm{~cm}$

Height of cone(h)=7cm
We know, Volume of a right circular cone $=1 / 3 \pi r^{2} h$
By substituting the values, we get
$=1 / 3 \times 3.14 \times 6^{2} \times 7$
$=264$

Volume of a right circular cone is $264 \mathrm{~cm}^{3}$
(ii) Radius of cone $(\mathrm{r})=3.5 \mathrm{~cm}$

Height of cone $(\mathrm{h})=12 \mathrm{~cm}$
Volume of a right circular cone $=1 / 3 \pi r^{2} h$

By substituting the values, we get
$=1 / 3 \times 3.14 \times 3.5^{2} \times 12$
$=154$
Volume of a right circular cone is $154 \mathrm{~cm}^{3}$
(iii) Height of cone(h) $=21 \mathrm{~cm}$

Slant height of cone $(\mathrm{I})=28 \mathrm{~cm}$

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

Find the measure of r :
We know, $\mathrm{I}^{2}=\mathrm{r}^{2}+\mathrm{h}^{2}$
$28^{2}=r^{2}+21^{2}$
or $\mathrm{r}=7 \mathrm{~V} 7$
Now,
Volume of a right circular cone $=1 / 3 \pi r^{2} h$
By substituting the values, we get
$=1 / 3 \times 3.14 \times(7 \mathrm{~V} 7)^{2} \times 21$
=7546
Volume of a right circular cone is $7546 \mathrm{~cm}^{3}$
Question 2: Find the capacity in litres of a conical vessel with:
(i) radius 7 cm , slant height 25 cm
(ii) height 12 cm , slant height 13 cm .

Solution:

(i) Radius of the cone(r) $=7 \mathrm{~cm}$

Slant height of the cone $(I)=25 \mathrm{~cm}$
As we know that, $l^{2}=r^{2}+h^{2}$
$25^{2}=7^{2}+h^{2}$
or $\mathrm{h}=24$
Now, Volume of a right circular cone $=1 / 3 \pi r^{2} h$
By substituting the values, we get
$=1 / 3 \times 3.14 \times(7)^{2} \times 24$
$=1232$
Volume of a right circular cone is $1232 \mathrm{~cm}^{3}$ or 1.232 litres
[$1 \mathrm{~cm}^{3}=0.01$ liter]

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

(ii) Height of cone(h) $=12 \mathrm{~cm}$

Slant height of cone(I)=13 cm
As we know that, $l^{2}=r^{2}+h^{2}$
$13^{2}=r^{2}+12^{2}$
or $r=5$

Now, Volume of a right circular cone $=1 / 3 \pi r^{2} h$
By substituting the values, we get
$=1 / 3 \times 3.14 \times(5)^{2} \times 12$
$=314.28$
Volume of a right circular cone is $314.28 \mathrm{~cm}^{3}$ or 0.314 litres.
[$1 \mathrm{~cm}^{3}=0.01$ liters]
Question 3: Two cones have their heights in the ratio 1:3 and the radii of their bases in the ratio 3:1. Find the ratio of their volumes.

Solution:

Let the heights of the cones be h and 3 h and radii of their bases be 3 r and r respectively. Then, their volumes are

Volume of first cone (V1) $=1 / 3 \pi(3 r)^{2} h$
Volume of second cone (V2) $=1 / 3 \pi r^{2}(3 h)$
Now, V1/V2 = 3/1

Ratio of two volumes is 3:1.
Question 4: The radius and the height of a right circular cone are in the ratio 5:12. If its volume is 314 cubic meter, find the slant height and the radius. (Use $\pi=3.14$).

Solution:

Let us assume the ratio of radius and the height of a right circular cone to be x .

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

Then, radius be $5 x$ and height be $12 x$
We know, $I^{2}=r^{2}+h^{2}$
$=(5 x)^{2}+(12 x)^{2}$
$=25 x^{2}+144 x^{2}$
or $1=13 x$

Therefore, slant height is 13 m .
Now it is given that volume of cone $=314 \mathrm{~m}^{3}$
$=>1 / 3 \pi r^{2} h=314$
$=>1 / 3 \times 3.14 \mathrm{x}\left(25 \mathrm{x}^{2}\right) \times(12 \mathrm{x})=314$
$=>x^{3}=1$
or $\mathrm{x}=1$
So, radius $=5 \times 1=5 \mathrm{~m}$
Therefore,

Answer: Slant height $=13 \mathrm{~m}$
Radius $=5 \mathrm{~m}$

Question 5: The radius and height of a right circular cone are in the ratio 5 : $\mathbf{1 2}$ and its volume is $\mathbf{2 5 1 2}$ cubic cm . Find the slant height and radius of the cone. (Use $\pi=3.14$).

Solution:

Let the ratio of radius and height of a right circular cone be y.
Radius of cone $(r)=5 y$
Height of cone (h) $=12 \mathrm{y}$
Now we know, $I^{2}=r^{2}+h^{2}$
$=(5 y)^{2}+(12 y)^{2}$

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

$=25 y^{2}+144 y^{2}$
or $1=13 y$
Now, volume of the cone is given $2512 \mathrm{~cm}^{3}$
$=>1 / 3 \pi r^{2} h=2512$
$=>1 / 3 \times 3.14 \times(5 y)^{2} \times 12 y=2512$
$=>y^{3}=(2512 \times 3) /(3.14 \times 25 \times 12)=8$
or $y=2$
Therefore,
Radius of cone $=5 \mathrm{y}=5 \times 2=10 \mathrm{~cm}$
Slant height $(I)=13 y=13 \times 2=26 \mathrm{~cm}$
Question 6: The ratio of volumes of two cones is $4: 5$ and the ratio of the radii of their bases is $2: 3$. Find the ratio of their vertical heights.

Solution:

Let the ratio of the radius be x and ratio of the volume be y.

Then, Radius of 1st cone $\left(r_{1}\right)=2 x$
Radius of 2 nd cone $\left(\mathrm{r}_{2}\right)=3 \mathrm{x}$
Volume of 1st cone $\left(\mathrm{V}_{1}\right)=4 \mathrm{y}$
Volume of $2 n d$ cone $\left(V_{2}\right)=5 y$
We know formula for volume of a cone $=1 / 3 \pi r^{2} h$
Let h_{1} and h_{2} be the heights of respective cones.
$\frac{V_{1}}{V_{2}}=\frac{4}{5}=\frac{\frac{1}{3} \pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}}=\frac{4}{5}=\frac{4 h_{1}}{9 h_{2}}=\frac{4}{5}=\frac{h_{1}}{h_{2}}=\frac{9}{5}$
Therefore, heights are in the ratio of $9: 5$. and Volume of A Right Circular Cone

Question 7: A cylinder and a cone have equal radii of their bases and equal heights. Show that their volumes are in the ratio 3:1.

Solution:
We are given, a cylinder and a cone are having equal radii of their bases and heights.
Let, radius of the cone = radius of the cylinder $=r$ and
Height of the cone $=$ height of the cylinder $=h$

Now,

$$
\frac{\text { volume of cylinder }}{\text { volume of the cone }}=\frac{\pi r^{2} h}{\frac{1}{3} \pi r^{2} h}=\frac{3}{1}
$$

Therefore, ratio of their volumes is 3:1.

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

Exercise VSAQs

Question 1: The height of a cone is 15 cm . If its volume is $500 \pi \mathrm{~cm}^{3}$, then find the radius of its base.

Solution:

Height of a cone $=15 \mathrm{~cm}$
Volume of cone $=500 \pi \mathrm{~cm}^{3}$
We know, Volume of cone $=1 / 3 \pi r^{2} h$
So, $500 \pi=1 / 3 \pi r^{2} \times 15$
$r^{2}=100$
or $r=10$
Radius of base is 10 cm .
Question 2: If the volume of a right circular cone of height 9 cm is $48 \pi \mathrm{~cm}^{3}$, find the diameter of its base.
Solution:
Height of a cone $=9 \mathrm{~cm}$
Volume of cone $=48 \pi \mathrm{~cm}^{3}$

We know, Volume of cone $=1 / 3 \pi r^{2} h$
So, $48 \pi=1 / 3 \pi r^{2} \times 9$
$r^{2}=16$
or $r=4$

Radius of base $r=4 \mathrm{~cm}$
Therefore, Diameter $=2$ Radius $=2 \times 4 \mathrm{~cm}=8 \mathrm{~cm}$.
Question 3: If the height and slant height of a cone are 21 cm and 28 cm respectively. Find its volume.
Solution:
Height of cone (h) $=21 \mathrm{~cm}$
Slant height of cone $(\mathrm{I})=28 \mathrm{~cm}$

RD Sharma Solutions for Class 9 Maths Chapter 20 Surface Area and Volume of A Right Circular Cone

Find radius of cone:
We know, $I^{2}=r^{2}+h^{2}$
$28^{2}=r^{2}+21^{2}$
or $r=7 \mathrm{~V} 7 \mathrm{~cm}$

Now,
We know, Volume of cone $=1 / 3 \pi r^{2} h$
$=1 / 3 \times \pi \times(7 \sqrt{ } 7)^{2} \times 21$
$=2401 \pi$

Therefore, Volume of cone is $2401 \pi \mathrm{~cm}^{3}$.
Question 4: The height of a conical vessel is 3.5 cm . If its capacity is 3.3 litres of milk. Find the diameter of its base.

Solution:

Height of a conical vessel $=3.5 \mathrm{~cm}$ and
Capacity of conical vessel is 3.3 litres or $3300 \mathrm{~cm}^{3}$
Now,
We know, Volume of cone $=1 / 3 \pi r^{2} h$
$3300=1 / 3 \times 22 / 7 \times r^{2} \times 3.5$
or $r 2=900$
or $r=30$
So, radius of cone is 30 cm

Hence, diameter of its base $=2$ Radius $=2 \times 30 \mathrm{~cm}=60 \mathrm{~cm}$

