RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

Exercise 21.1

Question 1: Find the surface area of a sphere of radius:
(i) 10.5 cm (ii) 5.6 cm (iii) 14 cm

Solution:

Surface area of a sphere $=4 \pi r^{2}$
Where, r = radius of a sphere
(i) Radius $=10.5 \mathrm{~cm}$

Surface area $=4 \times 22 / 7 \times(10.5)^{2}$
$=1386$

Surface area is $1386 \mathrm{~cm}^{2}$
(ii) Radius $=5.6 \mathrm{~cm}$

Surface area $=4 \times 22 / 7 \times(5.6)^{2}$
$=394.24$
Surface area is $394.24 \mathrm{~cm}^{2}$
(iii) Radius $=14 \mathrm{~cm}$

Surface area $=4 \times 22 / 7 \times(14)^{2}$
$=2464$
Surface area is $2464 \mathrm{~cm}^{2}$
Question 2: Find the surface area of a sphere of diameter:
(i) 14 cm (ii) 21 cm (iii) 3.5 cm

Solution:

Surface area of a sphere $=4 \pi r^{2}$
Where, r = radius of a sphere

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

(i) Diameter $=14 \mathrm{~cm}$

So, Radius $=$ Diameter $/ 2=14 / 2 \mathrm{~cm}=7 \mathrm{~cm}$

Surface area $=4 \times 22 / 7 \times(7)^{2}$
$=616$

Surface area is $616 \mathrm{~cm}^{2}$
(ii) Diameter $=21 \mathrm{~cm}$

So, Radius $=$ Diameter $/ 2=21 / 2 \mathrm{~cm}=10.5 \mathrm{~cm}$
Surface area $=4 \times 22 / 7 \times(10.5)^{2}$
$=1386$
Surface area is $1386 \mathrm{~cm}^{2}$
(iii) Diameter $=3.5 \mathrm{~cm}$

So, Radius $=$ Diameter $/ 2=3.5 / 2 \mathrm{~cm}=1.75 \mathrm{~cm}$
Surface area $=4 \times 22 / 7 \times(1.75)^{2}$
$=38.5$
Surface area is $38.5 \mathrm{~cm}^{2}$

Question 3: Find the total surface area of a hemisphere and a solid hemisphere each of radius 10 cm . ($\pi=3.14$)

Solution:

Radius of a hemisphere $=$ Radius of a solid hemisphere $=10 \mathrm{~cm}$ (Given)
Surface area of the hemisphere $=2 \pi r^{2}$
$=2 \times 3.14 \times(10)^{2} \mathrm{~cm}^{2}$
$=628 \mathrm{~cm}^{2}$

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

And, surface area of solid hemisphere $=3 \pi r^{2}$
$=3 \times 3.14 \times(10)^{2} \mathrm{~cm}^{2}$
$=942 \mathrm{~cm}^{2}$
Question 4: The surface area of a sphere is $5544 \mathrm{~cm}^{2}$, find its diameter.

Solution:

Surface area of a sphere is $5544 \mathrm{~cm}^{2}$
Surface area of a sphere $=4 \pi r^{2}$
So, $4 \pi r^{2}=5544$
$4 \times 22 / 7 \times(r)^{2}=5544$
$r^{2}=(5544 \times 7) / 88$
$r^{2}=441$
or $r=21 \mathrm{~cm}$
Now, Diameter $=2$ (radius) $=2(21)=42 \mathrm{~cm}$
Question 5: A hemispherical bowl made of brass has inner diameter 10.5 cm . Find the cost of tin plating it on the inside at the rate of Rs. 4 per $100 \mathbf{~ c m}^{2}$.

Solution:

Inner diameter of hemispherical bowl $=10.5 \mathrm{~cm}$
So, radius $=$ Diameter $/ 2=10.5 / 2 \mathrm{~cm}=5.25 \mathrm{~cm}$
Now, Surface area of hemispherical bowl $=2 \pi r^{2}$
$=2 \times 3.14 \times(5.25)^{2}$
$=173.25$

So, Surface area of hemispherical bowl is $173.25 \mathrm{~cm}^{2}$

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

Find the cost:
Cost of tin plating $100 \mathrm{~cm}^{2}$ area= Rs. 4 (given)
Cost of tin plating $173.25 \mathrm{~cm}^{2}$ area $=$ Rs. $4 \times 173.25100=$ Rs. 6.93

Therefore, cost of tin plating the inner side of hemispherical bowl is Rs.6.93.
Question 6: The dome of a building is in the form of a hemisphere. Its radius is 63 dm . Find the cost of painting it at the rate of Rs. 2 per sq m .

Solution:

Radius of hemispherical dome $=63 \mathrm{dm}$ or 6.3 m
Inner surface area of dome $=2 \pi r^{2}$
$=2 \times 3.14 \times(6.3)^{2}$
$=249.48$

So, Inner surface area of dome is $249.48 \mathrm{~m}^{2}$
Now find the cost:
Cost of painting $1 \mathrm{~m}^{2}=$ Rs. 2 (given)
Therefore, cost of painting $249.48 \mathrm{~m}^{2}=$ Rs. $(249.48 \times 2)=$ Rs. 498.96 .

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

Exercise 21.2

Question 1: Find the volume of a sphere whose radius is:
(i) $\mathbf{2 c m}$ (ii) 3.5 cm (iii) 10.5 cm .

Solution:

Volume of a sphere $=4 / 3 \pi r^{3}$ Cubic Units
Where, $r=$ radius of a sphere
(i) Radius $=2 \mathrm{~cm}$

Volume $=4 / 3 \times 22 / 7 \times(2)^{3}$
$=33.52$
Volume $=33.52 \mathrm{~cm}^{3}$
(ii) Radius $=3.5 \mathrm{~cm}$

Therefore volume $=4 / 3 \times 22 / 7 \times(3.5)^{3}$
$=179.666$
Volume $=179.666 \mathrm{~cm}^{3}$
(iii) Radius $=10.5 \mathrm{~cm}$

Volume $=4 / 3 \times 22 / 7 \times(10.5)^{3}$
$=4851$

Volume $=4851 \mathrm{~cm}^{3}$
Question 2: Find the volume of a sphere whose diameter is:
(i) $\mathbf{1 4 \mathrm { cm }}$ (ii) 3.5 dm (iii) 2.1 m

Solution:

Volume of a sphere $=4 / 3 \pi r^{3}$ Cubic Units
Where, $r=$ radius of a sphere
(i) diameter $=14 \mathrm{~cm}$

So, radius $=$ diameter $/ 2=14 / 2=7 \mathrm{~cm}$

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

Volume $=4 / 3 \times 22 / 7 \times(7)^{3}$
$=1437.33$
Volume $=1437.33 \mathrm{~cm}^{3}$
(ii) diameter $=3.5 \mathrm{dm}$

So, radius $=$ diameter $/ 2=3.5 / 2=1.75 \mathrm{dm}$
Volume $=4 / 3 \times 22 / 7 \times(1.75)^{3}$
$=22.46$

Volume $=22.46 \mathrm{dm}^{3}$
(iii) diameter $=2.1 \mathrm{~m}$

So, radius $=$ diameter $/ 2=2.1 / 2=1.05 \mathrm{~m}$
Volume $=4 / 3 \times 22 / 7 \times(1.05)^{3}$
$=4.851$
Volume $=4.851 \mathrm{~m}^{3}$
Question 3: A hemispherical tank has the inner radius of $\mathbf{2 . 8} \mathbf{~ m}$. Find its capacity in liters.

Solution:

Radius of hemispherical tank $=2.8 \mathrm{~m}$
Capacity of hemispherical tank $=2 / 3 \pi r^{3}$
$=2 / 3 \times 22 / 7 \times(2.8)^{3} \mathrm{~m}^{3}$
$=45.997 \mathrm{~m}^{3}$
[Using $1 \mathrm{~m}^{3}=1000$ liters]
Therefore, capacity in litres $=45997$ litres

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

Question 4: A hemispherical bowl is made of steel 0.25 cm thick. The inside radius of the bowl is 5 cm . Find the volume of steel used in making the bowl.

Solution:

Inner radius of a hemispherical bowl $=5 \mathrm{~cm}$

Outer radius of a hemispherical bowl $=5 \mathrm{~cm}+0.25 \mathrm{~cm}=5.25 \mathrm{~cm}$
Volume of steel used = Outer volume - Inner volume
$=2 / 3 \times \pi \times\left((5.25)^{3}-(5)^{3}\right)$
$=2 / 3 \times 22 / 7 \times\left((5.25)^{3}-(5)^{3}\right)$
$=41.282$
Volume of steel used is $41.282 \mathrm{~cm}^{3}$

Question 5: How many bullets can be made out of a cube of lead, whose edge measures $\mathbf{2 2} \mathbf{~ c m}$, each bullet being $\mathbf{2 ~ c m}$ in diameter?

Solution:

Edge of a cube $=22 \mathrm{~cm}$
Diameter of bullet $=2 \mathrm{~cm}$
So, radius of bullet (r) $=1 \mathrm{~cm}$
Volume of the cube $=(\text { side })^{3}=(22)^{3} \mathrm{~cm}^{3}=10648 \mathrm{~cm}^{3}$

And,
Volume of each bullet which will be spherical in shape $=4 / 3 \pi r^{3}$

$$
\begin{aligned}
& =4 / 3 \times 22 / 7 \times(1)^{3} \mathrm{~cm}^{3} \\
& =4 / 3 \times 22 / 7 \mathrm{~cm}^{3} \\
& =88 / 21 \mathrm{~cm}^{3}
\end{aligned}
$$

Number of bullets $=($ Volume of cube $) /($ Volume of bullet $)$

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

= 10648/88/21
$=2541$
Therefore, 2541 bullets can be made.

Question 6: A shopkeeper has one laddoo of radius 5 cm . With the same material, how many laddoos of radius 2.5 cm can be made?

Solution:

Volume of laddoo having radius $5 \mathrm{~cm}(\mathrm{~V} 1)=4 / 3 \times 22 / 7 \times(5)^{3}$
$=11000 / 21 \mathrm{~cm}^{3}$
Also, Volume of laddoo having radius $2.5 \mathrm{~cm}(\mathrm{~V} 2)=4 / 3 \pi \mathrm{r}^{3}$
$=4 / 3 \times 22 / 7 \times(2.5)^{3} \mathrm{~cm}^{3}$
$=1375 / 21 \mathrm{~cm}^{3}$
Therefore,
Number of laddoos of radius 2.5 cm that can be made $=\mathrm{V} 1 / \mathrm{V} 2=11000 / 1375=8$
Question 7: A spherical ball of lead $\mathbf{3} \mathbf{~ c m}$ in diameter is melted and recast into three spherical balls. If the diameters of two balls be $3 / 2 \mathrm{~cm}$ and 2 cm , find the diameter of the third ball.

Solution:

Volume of lead ball with radius $3 / 2 \mathrm{~cm}=4 / 3 \pi r^{3}$
$=4 / 3 \times \pi \times(3 / 2)^{3}$
Let, Diameter of first ball (d1) $=3 / 2 \mathrm{~cm}$
Radius of first ball $(r 1)=3 / 4 \mathrm{~cm}$
Diameter of second ball (d2) $=2 \mathrm{~cm}$
Radius of second ball (r2) $=2 / 2 \mathrm{~cm}=1 \mathrm{~cm}$
Diameter of third ball (d3) $=\mathrm{d}$
Radius of third ball $(r 3)=d / 2 \mathrm{~cm}$

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

Now,

$$
\begin{aligned}
& \text { Volume of lead ball }=\frac{4}{3} \times \pi \times\left(\frac{3}{4}\right)^{3}+\frac{4}{3} \times \pi \times(1)^{3}+\frac{4}{3} \times \pi \times\left(\frac{d}{2}\right)^{3} \\
& \frac{4}{3} \times \pi \times\left(\frac{3}{2}\right)^{3}=\frac{4}{3} \times \pi \times\left(\frac{3}{4}\right)^{3}+\frac{4}{3} \times \pi \times(1)^{3}+\frac{4}{3} \times \pi \times\left(\frac{d}{2}\right)^{3} \\
& \frac{4}{3} \pi\left[\left(\frac{3}{2}\right)^{3}\right]=\frac{4}{3} \pi\left[\left(\frac{3}{4}\right)^{3}+(1)^{3}+\left(\frac{d}{2}\right)^{3}\right] \\
& \frac{27}{8}=\frac{27}{64}+1+\frac{d^{3}}{8} \\
& d^{3}=8\left[\frac{27}{8}-\frac{27}{64}-1\right] \\
& \frac{d^{3}}{8}=\frac{125}{64} \\
& \frac{d}{2}=\frac{5}{4} \\
& d=\frac{10}{4} \\
& d=2.5
\end{aligned}
$$

So, diameter of third ball is 2.5 cm .

Question 8: A sphere of radius 5 cm is immersed in water filled in a cylinder, the level of water rises $5 / 3 \mathrm{~cm}$. Find the radius of the cylinder.

Solution:

Radius of sphere $=5 \mathrm{~cm}$ (Given)
Let ' r ' be the radius of cylinder.
We know, Volume of sphere $=4 / 3 \pi r^{3}$

By putting values, we get
$=4 / 3 \times \pi \times(5)^{3}$
Height (h) of water rises is $5 / 3 \mathrm{~cm}$ (Given)
Volume of water rises in cylinder $=\pi r^{2} h$
Therefore, Volume of water rises in cylinder = Volume of sphere
So, $\pi r^{2} h=4 / 3 \pi r^{3}$
$\pi r^{2} \times 5 / 3=4 / 3 \times \pi \times(5)^{3}$

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

or $r^{2}=100$
or $r=10$
Therefore, radius of the cylinder is 10 cm .

Question 9: If the radius of a sphere is doubled, what is the ratio of the volume of the first sphere to that of the second sphere?

Solution:

Let r be the radius of the first sphere then $2 r$ be the radius of the second sphere.

Now,
$\frac{\text { Volume of first sphere }}{\text { Volume of second sphere }}=\frac{\frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi(2 r)^{3}}=\frac{1}{8}$

Ratio of volume of the first sphere to the second sphere is $1: 8$.
Question 10: A cone and a hemisphere have equal bases and equal volumes. Find the ratio of their heights.

Solution:

Volume of the cone $=$ Volume of the hemisphere (Given)
$1 / 3 \pi r^{2} h=2 / 3 \pi r^{3}$
(Using respective formulas)
$r^{2} h=2 r^{3}$
or $h=2 r$
Since, cone and a hemisphere have equal bases which implies they have the same radius.
$h / r=2$

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

or $h: r=2: 1$
Therefore, Ratio of their heights is $2: 1$
Question 11: A vessel in the form of a hemispherical bowl is full of water. Its contents are emptied in a right circular cylinder. The internal radii of the bowl and the cylinder are 3.5 cm and 7 cm respectively. Find the height to which the water will rise in the cylinder.

Solution:

Volume of water in the hemispherical bowl = Volume of water in the cylinder
Inner radius of the bowl $\left(r_{1}\right)=3.5 \mathrm{~cm}$
Inner radius of cylinder $\left(r_{2}\right)=7 \mathrm{~cm}$
Volume of water in the hemispherical bowl = Volume of water in the cylinder
$2 / 3 \pi r_{1}{ }^{3}=\pi r_{2}{ }^{2} h$
[Using respective formulas]
Where h be the height to which water rises in the cylinder.
$2 / 3 \pi(3.5)^{3}=\pi(7)^{2} h$
or $\mathrm{h}=7 / 12$
Therefore, $7 / 12 \mathrm{~cm}$ be the height to which water rises in the cylinder.
Question 12: A cylinder whose height is two thirds of its diameter, has the same volume as a sphere of radius 4 cm . Calculate the radius of the base of the cylinder.

Solution:

Radius of a sphere (R) $=4 \mathrm{~cm}$ (Given)
Height of the cylinder $=2 / 3$ diameter \quad (given)
We know, Diameter $=2$ (Radius)
Let h be the height and r be the base radius of a cylinder, then
$h=2 / 3 \times(2 r)=4 r / 3$

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

Volume of the cylinder = Volume of the sphere
$\pi r^{2} h=4 / 3 \pi R^{3}$
$\pi \times r^{2} \times(4 r / 3)=4 / 3 \pi(4)^{3}$
$(r)^{3}=(4)^{3}$
or $r=4$
Therefore, radius of the base of the cylinder is 4 cm .

Question 13: A vessel in the form of a hemispherical bowl is full of water. The contents are emptied into a cylinder. The internal radii of the bowl and cylinder are respectively 6 cm and 4 cm . Find the height of water in the cylinder.

Solution:

Radius of a bowl (R) $=6 \mathrm{~cm}$ (Given)
Radius of a cylinder (r) $=4 \mathrm{~cm}$ (given)
Let h be the height of a cylinder.
Now,
Volume of water in hemispherical bowl = Volume of cylinder
$2 / 3 \pi R^{3}=\pi r^{2} h$
$2 / 3 \pi(6)^{3}=\pi(4)^{2} h$
or $\mathrm{h}=9$

Therefore, height of water in the cylinder 9 cm .
Question 14: A cylindrical tub of radius 16 cm contains water to a depth of $\mathbf{3 0} \mathrm{cm}$. A spherical iron ball is dropped into the tub and thus level of water is raised by 9 cm . What is the radius of the ball?

Solution:

Let r be the radius of the iron ball.

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

Radius of the cylinder $(\mathrm{R})=16 \mathrm{~cm}$ (Given)
A spherical iron ball is dropped into the cylinder and thus the level of water is raised by 9 cm . So, height $(\mathrm{h})=9 \mathrm{~cm}$

From statement,

Volume of iron ball = Volume of water raised in the hub
$4 / 3 \pi r^{3}=\pi R^{2} h$
$4 / 3 r^{3}=(16)^{2} \times 9$
or $r^{3}=1728$
or $r=12$
Therefore, radius of the ball $=12 \mathrm{~cm}$.

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

Exercise VSAQs

Question 1: Find the surface area of a sphere of radius 14 cm .

Solution:

Radius of a sphere $(r)=14 \mathrm{~cm}$
Surface area of a sphere $=4 \pi r^{2}$
$=4 \times(22 / 7) \times 14^{2} \mathrm{~cm}^{2}$
$=2464 \mathrm{~cm}^{2}$
Question 2: Find the total surface area of a hemisphere of radius 10 cm .

Solution:

Radius of a hemisphere $(r)=10 \mathrm{~cm}$
Total surface area of a hemisphere $=3 \pi r^{2}$
$=3 \times(22 / 7) \times 10^{2} \mathrm{~cm}^{2}$
$=942 \mathrm{~cm}^{2}$
Question 3: Find the radius of a sphere whose surface area is $154 \mathbf{c m}^{2}$.
Solution:
Surface area of a sphere $=154 \mathrm{~cm}^{2}$
We know, Surface area of a sphere $=4 \pi r^{2}$
So, $4 \pi r^{2}=154$
$4 \times 22 / 7 \times r^{2}=154$
$r^{2}=49 / 4$
or $r=7 / 2=3.5$

Radius of a sphere is 3.5 cm .

RD Sharma Solutions for Class 9 Maths Chapter 21 Surface Area and Volume of A Sphere

Question 4: The hollow sphere, in which the circus motor cyclist performs his stunts, has a diameter of 7 m . Find the area available to the motorcyclist for riding.

Solution:

Diameter of hollow sphere $=7 \mathrm{~m}$
So, radius of hollow sphere $=7 / 2 \mathrm{~m}=3.5 \mathrm{~cm}$

Now,
Area available to the motorcyclist for riding = Surface area of a sphere $=4 \pi r^{2}$
$=4 \times(22 / 7) \times 3.5^{2} \mathrm{~m}^{2}$
$=154 \mathrm{~m}^{2}$
Question 5: Find the volume of a sphere whose surface area is $154 \mathbf{c m}^{2}$.

Solution:

Surface area of a sphere $=154 \mathrm{~cm}^{2}$
We know, Surface area of a sphere $=4 \pi r^{2}$
So, $4 \pi r^{2}=154$
$4 \times 22 / 7 \times r^{2}=154$
or $r^{2}=49 / 4$
or $r=7 / 2=3.5$
Radius (r) $=3.5 \mathrm{~cm}$
Now,
Volume of sphere $=4 / 3 \pi r^{3}$
$=(4 / 3) \pi \times 3.5^{3}$
$=179.66$
Therefore, Volume of sphere is $179.66 \mathrm{~cm}^{3}$.

