1. If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?

Solution:

If a matrix is of order $\mathrm{m} \times \mathrm{n}$ elements, it has m n elements. So, if the matrix has 8 elements, we will find the ordered pairs m and n.
$\mathrm{m} n=8$
Then, ordered pairs m and n will be
$m \times n$ be $(8 \times 1),(1 \times 8),(4 \times 2),(2 \times 4)$
Now, if it has 5 elements
Possible orders are $(5 \times 1),(1 \times 5)$.
2.If $A=\left[a_{i j}\right]=\left[\begin{array}{ccc}2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2\end{array}\right]$ and $B=\left[b_{i j}\right]=\left[\begin{array}{cc}2 & -1 \\ -3 & 4 \\ 1 & 2\end{array}\right]$ then find
(i) $a_{22}+b_{21}$
(ii) $a_{11} b_{11}+a_{22} b_{22}$

Solution:

(i)

We know that
$A=\left[a_{i j}\right]=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
And $B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32}\end{array}\right] \ldots . .(i i)$
Also given that

$$
A=\left[a_{i j}\right]=\left[\begin{array}{ccc}
2 & 3 & -5 \\
1 & 4 & 9 \\
0 & 7 & -2
\end{array}\right] \text { and } B=\left[b_{i j}\right]=\left[\begin{array}{cc}
2 & -1 \\
-3 & 4 \\
1 & 2
\end{array}\right]
$$

Now, Comparing with equation (1) and (2)
$a_{22}=4$ and $b_{21}=-3$
$a_{22}+b_{21}=4+(-3)=1$
(ii)

We know that
$A=\left[a_{i j}\right]=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
And $B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32}\end{array}\right] \ldots . .(i i)$
Also given that

$$
A=\left[a_{i j}\right]=\left[\begin{array}{ccc}
2 & 3 & -5 \\
1 & 4 & 9 \\
0 & 7 & -2
\end{array}\right] \text { and } B=\left[b_{i j}\right]=\left[\begin{array}{cc}
2 & -1 \\
-3 & 4 \\
1 & 2
\end{array}\right]
$$

Now, Comparing with equation (1) and (2)
$a_{11}=2, a_{22}=4, b_{11}=2, b_{22}=4$
$a_{11} b_{11}+a_{22} b_{22}=2 \times 2+4 \times 4=4+16=20$
3. Let A be a matrix of order 3×4. If R_{1} denotes the first row of A and C_{2} denotes its second column, then determine the orders of matrices R_{1} and C_{2}.

Solution:

Given A be a matrix of order 3×4.
So, $A=\left[a_{i j}\right]_{3 \times 4}$
$R_{1}=$ first row of $A=\left[a_{11}, a_{12}, a_{13}, a_{14}\right]$
So, order of matrix $R_{1}=1 \times 4$
$\mathrm{C}_{2}=$ second column of
$A=\left[\begin{array}{l}a_{12} \\ a_{22} \\ a_{32}\end{array}\right]$
Therefore order of $\mathrm{C}_{2}=3 \times 1$
4. Construct a 2×3 matrix $A=\left[a_{j j}\right]$ whose elements $a_{j j}$ are given by:
(i) $a_{i j}=i \times j$
(ii) $a_{i j}=\mathbf{2 i}-\mathbf{j}$
(iii) $a_{i j}=i+j$
(iv) $a_{i j}=(i+j)^{2} / 2$

Solution:

(i) Given $a_{i j}=i \times j$

Let $A=\left[a_{i j}\right]_{2 \times 3}$
So, the elements in a 2×3 matrix are
$\left[a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}\right]$
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
$a_{11}=1 \times 1=1$
$a_{12}=1 \times 2=2$
$a_{13}=1 \times 3=3$
$a_{21}=2 \times 1=2$
$\mathrm{a}_{22}=2 \times 2=4$
$a_{23}=2 \times 3=6$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right]$
(ii) Given $a_{i j}=2 i-j$

Let $A=\left[a_{i j}\right]_{2 \times 3}$
So, the elements in a 2×3 matrix are
$a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}$
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
$a_{11}=2 \times 1-1=2-1=1$
$a_{12}=2 \times 1-2=2-2=0$
$a_{13}=2 \times 1-3=2-3=-1$
$a_{21}=2 \times 2-1=4-1=3$
$a_{22}=2 \times 2-2=4-2=2$
$a_{23}=2 \times 2-3=4-3=1$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 3 & 2 & 1\end{array}\right]$
(iii) Given $\mathrm{a}_{\mathrm{ij}}=\mathrm{i}+\mathrm{j}$

Let $A=\left[a_{i j}\right]_{2 \times 3}$
So, the elements in a 2×3 matrix are
$a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}$
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
$a_{11}=1+1=2$
$a_{12}=1+2=3$
$a_{13}=1+3=4$
$a_{21}=2+1=3$
$a_{22}=2+2=4$
$a_{23}=2+3=5$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$
(iv) Given $\mathrm{a}_{\mathrm{ij}}=(\mathrm{i}+\mathrm{j})^{2} / 2$

Let $A=\left[a_{i j}\right]_{2 \times 3}$
So, the elements in a 2×3 matrix are
$a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}$
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
Let $A=\left[a_{i j}\right]_{2 \times 3}$
So, the elements in a 2×3 matrix are

$$
a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}
$$

$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
$a_{11}=\frac{(1+1)^{2}}{2}=\frac{2^{2}}{2}=\frac{4}{2}=2$
$a_{12}=\frac{(1+2)^{2}}{2}=\frac{3^{2}}{2}=\frac{9}{2}=4.5$
$a_{13}=\frac{(1+3)^{2}}{2}=\frac{4^{2}}{2}=\frac{16}{2}=8$
$a_{21}=\frac{(2+1)^{2}}{2}=\frac{3^{2}}{2}=\frac{9}{2}=4.5$
$a_{22}=\frac{(2+2)^{2}}{2}=\frac{4^{2}}{2}=\frac{16}{2}=8$
$a_{23}=\frac{(2+3)^{2}}{2}=\frac{5^{2}}{2}=\frac{25}{2}=12.5$
Substituting these values in matrix A we get,

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
2 & 4.5 & 8 \\
4.5 & 8 & 12.5
\end{array}\right] \\
A & =\left[\begin{array}{lll}
2 & \frac{9}{2} & 8 \\
\frac{9}{2} & 8 & \frac{25}{2}
\end{array}\right]
\end{aligned}
$$

5. Construct a 2×2 matrix $A=\left[a_{i j}\right]$ whose elements $a_{i j}$ are given by:
(i) $(i+j)^{2} / 2$
(ii) $a_{i j}=(i-j)^{2} / 2$
(iii) $a_{i j}=(i-2 j)^{2} / 2$
(iv) $a_{i j}=(2 i+j)^{2} / 2$
(v) $a_{i j}=|2 i-3 j| / 2$
(vi) $a_{i j}=|-3 i+j| / 2$
(vii) $a_{i j}=e^{2 i x} \sin x j$

Solution:

(i) Given $(i+j)^{2} / 2$

Let $A=\left[a_{i j}\right]_{2 \times 2}$
So, the elements in a 2×2 matrix are
$a_{11}, a_{12}, a_{21}, a_{22}$
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
$\mathrm{a}_{11}=\frac{(1+1)^{2}}{2}=\frac{2^{2}}{2}=\frac{4}{2}=2$
$a_{12}=\frac{(1+2)^{2}}{2}=\frac{3^{2}}{2}=\frac{9}{2}=4.5$
$a_{21}=\frac{(2+1)^{2}}{2}=\frac{3^{2}}{2}=\frac{9}{2}=4.5$
$a_{22}=\frac{(2+2)^{2}}{2}=\frac{4^{2}}{2}=\frac{16}{2}=8$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{cc}2 & 4.5 \\ 4.25 & 8\end{array}\right]$
$A=\left[\begin{array}{ll}2 & \frac{9}{2} \\ \frac{9}{2} & 8\end{array}\right]$
(ii) Given $a_{i j}=(i-j)^{2} / 2$

Let $A=\left[a_{i j}\right]_{2 \times 2}$
So, the elements in a 2×2 matrix are
$a_{11}, a_{12}, a_{21}, a_{22}$
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
$a_{11}=\frac{(1-1)^{2}}{2}=\frac{0^{2}}{2}=0$
$a_{12}=\frac{(1-2)^{2}}{2}=\frac{1^{2}}{2}=\frac{1}{2}=0.5$
$a_{21}=\frac{(2-1)^{2}}{2}=\frac{1^{2}}{2}=\frac{1}{2}=0.5$
$a_{22}=\frac{(2-2)^{2}}{2}=\frac{0^{2}}{2}=0$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{cc}0 & 0.5 \\ 0.5 & 0\end{array}\right]$
$A=\left[\begin{array}{ll}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right]$
(iii) Given $\mathrm{a}_{\mathrm{ij}}=(\mathrm{i}-2 \mathrm{j})^{2} / 2$

Let $A=\left[a_{i j}\right]_{2 \times 2}$
So, the elements in a 2×2 matrix are
$a_{11}, a_{12}, a_{21}, a_{22}$
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
$\mathrm{a}_{11}=\frac{(1-2 \times 1)^{2}}{2}=\frac{1^{2}}{2}=0.5$
$\mathrm{a}_{12}=\frac{(1-2 \times 2)^{2}}{2}=\frac{3^{2}}{2}=\frac{9}{2}=4.5$
$\mathrm{a}_{21}=\frac{(2-2 \times 1)^{2}}{2}=\frac{0^{2}}{2}=0$
$\mathrm{a}_{22}=\frac{(2-2 \times 2)^{2}}{2}=\frac{2^{2}}{2}=\frac{4}{2}=2$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{cc}0.5 & 4.5 \\ 0 & 2\end{array}\right]$
$A=\left[\begin{array}{ll}\frac{1}{2} & \frac{9}{2} \\ 0 & 2\end{array}\right]$
(iv) Given $\mathrm{a}_{\mathrm{ij}}=(2 \mathrm{i}+\mathrm{j})^{2} / 2$

Let $A=\left[a_{i j}\right]_{2 \times 2}$
So, the elements in a 2×2 matrix are
$a_{11}, a_{12}, a_{21}, a_{22}$
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$

$a_{12}=\frac{(2 \times 1+2)^{2}}{2}=\frac{4^{2}}{2}=\frac{16}{2}=8$
$a_{21}=\frac{(2 \times 2+1)^{2}}{2}=\frac{5^{2}}{2}=\frac{25}{2}=12.5$
$a_{22}=\frac{(2 \times 2+2)^{2}}{2}=\frac{6^{2}}{2}=\frac{36}{2}=18$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{cc}4.5 & 8 \\ 12.5 & 18\end{array}\right]$
$A=\left[\begin{array}{cc}\frac{9}{2} & 8 \\ \frac{25}{2} & 18\end{array}\right]$
(v) Given $a_{i j}=|2 i-3 j| / 2$

Let $A=\left[a_{i j}\right]_{2 \times 2}$
So, the elements in a 2×2 matrix are
$a_{11}, a_{12}, a_{21}, a_{22}$
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
$a_{11}=\frac{|2 \times 1-3 \times 1|}{2}=\frac{1}{2}=0.5$
$\mathrm{a}_{12}=\frac{|2 \times 1-3 \times 2|}{2}=\frac{4}{2}=2$
$a_{21}=\frac{|2 \times 2-3 \times 1|}{2}=\frac{4-3}{2}=\frac{1}{2}=0.5$
$a_{22}=\frac{|2 \times 2-3 \times 2|}{2}=\frac{2}{2}=1$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{ll}0.5 & 2 \\ 0.5 & 1\end{array}\right]$
$A=\left[\begin{array}{ll}\frac{1}{2} & 2 \\ \frac{1}{2} & 1\end{array}\right]$
(vi) Given $a_{i j}=|-3 i+j| / 2$

Let $A=\left[a_{i j}\right]_{2 \times 2}$
So, the elements in a 2×2 matrix are
$a_{11}, a_{12}, a_{21}, a_{22}$
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
$\mathrm{a}_{11}=\frac{|-3 \times 1+1|}{2}=\frac{2}{2}=1$
$\mathrm{a}_{12}=\frac{|-3 \times 1+2|}{2}=\frac{1}{2}=0.5$
$\mathrm{a}_{21}=\frac{|-3 \times 2+1|}{2}=\frac{5}{2}=2.5$
$\mathrm{a}_{22}=\frac{|-3 \times 2+2|}{2}=\frac{4}{2}=2$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{cc}1 & 0.5 \\ 2.5 & 2\end{array}\right]$
$A=\left[\begin{array}{ll}1 & \frac{1}{2} \\ \frac{5}{2} & 2\end{array}\right]$
(vii) Given $\mathrm{a}_{\mathrm{ij}}=\mathrm{e}^{2 \mathrm{ix}} \sin \mathrm{xj}$

Let $A=\left[a_{i j}\right]_{2 \times 2}$
So, the elements in a 2×2 matrix are
$\mathrm{a}_{11}, \mathrm{a}_{12}, \mathrm{a}_{21}, \mathrm{a}_{22}$,
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
$a_{11}=e^{2 \times 1 \mathrm{x}} \sin \mathrm{x} \times 1=\mathrm{e}^{2 \mathrm{x}} \sin \mathrm{x}$
$\mathrm{a}_{12}=\mathrm{e}^{2 \times 1 \mathrm{x}} \sin \mathrm{x} \times 2=\mathrm{e}^{2 \mathrm{x}} \sin 2 \mathrm{x}$
$a_{21}=e^{2 \times 2 x} \sin x \times 1=e^{4 x} \sin x$
$\mathrm{a}_{22}=\mathrm{e}^{2 \times 2 \mathrm{x}} \sin \mathrm{x} \times 2=\mathrm{e}^{4 \mathrm{x}} \sin 2 \mathrm{x}$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{ll}e^{2 x} \sin x & e^{2 x} \sin 2 x \\ e^{4 x} \sin x & e^{4 x} \sin 2 x\end{array}\right]$
6. Construct a 3×4 matrix $A=\left[a_{i j}\right]$ whose elements $a_{i j}$ are given by:
(i) $\mathrm{a}_{\mathrm{ij}}=\mathrm{i}+\mathrm{j}$
(ii) $a_{i j}=i-j$
(iii) $\mathrm{a}_{\mathrm{ij}}=\mathbf{2 i}$
(iv) $a_{i j}=j$
(v) $a_{i j}=1 / 2|-3 i+j|$

Solution:

(i) Given $\mathrm{a}_{\mathrm{ij}}=\mathrm{i}+\mathrm{j}$

Let $A=\left[a_{i j}\right]_{2 \times 3}$
So, the elements in a 3×4 matrix are
$a_{11}, a_{12}, a_{13}, a_{14}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}$
$A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{14} \\ \vdots & \ddots & \vdots \\ a_{31} & \cdots & a_{34}\end{array}\right]$
$a_{11}=1+1=2$
$a_{12}=1+2=3$
$a_{13}=1+3=4$
$a_{14}=1+4=5$
$a_{21}=2+1=3$
$a_{22}=2+2=4$
$a_{23}=2+3=5$
$\mathrm{a}_{24}=2+4=6$
$a_{31}=3+1=4$
$a_{32}=3+2=5$
$\mathrm{a}_{33}=3+3=6$
$a_{34}=3+4=7$
Substituting these values in matrix A we get,
$\mathrm{A}=\left[\begin{array}{ccc}2 & \cdots & 5 \\ \vdots & \ddots & \vdots \\ 4 & \cdots & 7\end{array}\right]$
$A=\left[\begin{array}{llll}2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7\end{array}\right]$
(ii) Given $\mathrm{a}_{\mathrm{ij}}=\mathrm{i}-\mathrm{j}$

Let $A=\left[a_{i j}\right]_{2 \times 3}$

So, the elements in a 3×4 matrix are
$a_{11}, a_{12}, a_{13}, a_{14}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}$
$A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{14} \\ \vdots & \ddots & \vdots \\ a_{31} & \cdots & a_{34}\end{array}\right]$
$a_{11}=1-1=0$
$a_{12}=1-2=-1$
$a_{13}=1-3=-2$
$a_{14}=1-4=-3$
$a_{21}=2-1=1$
$a_{22}=2-2=0$
$a_{23}=2-3=-1$
$a_{24}=2-4=-2$
$a_{31}=3-1=2$
$a_{32}=3-2=1$
$a_{33}=3-3=0$
$a_{34}=3-4=-1$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{ccc}0 & \cdots & -3 \\ \vdots & \ddots & \vdots \\ 2 & \cdots & -1\end{array}\right]$
$A=\left[\begin{array}{cccc}0 & -1 & -2 & -3 \\ 1 & 0 & -1 & -2 \\ 2 & 1 & 0 & -1\end{array}\right]$
(iii) Given $a_{i j}=2 i$

Let $A=\left[a_{i j}\right]_{2 \times 3}$
So, the elements in a 3×4 matrix are

$$
a_{11}, a_{12}, a_{13}, a_{14}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}
$$

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ccc}
\mathrm{a}_{11} & \cdots & \mathrm{a}_{14} \\
\vdots & \ddots & \vdots \\
\mathrm{a}_{31} & \cdots & a_{34}
\end{array}\right] \\
& \mathrm{a}_{11}=2 \times 1=2 \\
& \mathrm{a}_{12}=2 \times 1=2 \\
& \mathrm{a}_{13}=2 \times 1=2 \\
& a_{14}=2 \times 1=2 \\
& a_{21}=2 \times 2=4
\end{aligned}
$$

$a_{22}=2 \times 2=4$
$a_{23}=2 \times 2=4$
$a_{24}=2 \times 2=4$
$a_{31}=2 \times 3=6$
$\mathrm{a}_{32}=2 \times 3=6$
$a_{33}=2 \times 3=6$
$a_{34}=2 \times 3=6$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{ccc}2 & \cdots & 2 \\ \vdots & \ddots & \vdots \\ 6 & \cdots & 6\end{array}\right]$
$A=\left[\begin{array}{llll}2 & 2 & 2 & 2 \\ 4 & 4 & 4 & 4 \\ 6 & 6 & 6 & 6\end{array}\right]$
(iv) Given $a_{i j}=j$

Let $A=\left[a_{i j}\right]_{2 \times 3}$
So, the elements in a 3×4 matrix are
$a_{11}, a_{12}, a_{13}, a_{14}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}$
$A=\left[\begin{array}{ccc}\mathrm{a}_{11} & \cdots & \mathrm{a}_{14} \\ \vdots & \ddots & \vdots \\ \mathrm{a}_{31} & \cdots & \mathrm{a}_{34}\end{array}\right]$
$a_{11}=1$
$a_{12}=2$
$a_{13}=3$
$a_{14}=4$
$a_{21}=1$
$a_{22}=2$
$a_{23}=3$
$a_{24}=4$
$a_{31}=1$
$a_{32}=2$
$a_{33}=3$
$a_{34}=4$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{ccc}1 & \cdots & 4 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 4\end{array}\right]$
$A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right]$
(vi) Given $a_{i j}=1 / 2|-3 i+j|$

Let $A=\left[a_{i j}\right]_{2 \times 3}$
So, the elements in a 3×4 matrix are
$a_{11}, a_{12}, a_{13}, a_{14}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}$
$A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{14} \\ \vdots & \ddots & \vdots \\ a_{31} & \cdots & a_{34}\end{array}\right]$
$a_{11}=\frac{1}{2}(-3 \times 1+1)=\frac{1}{2}(-3+1)=\frac{1}{2}(-2)=-1$
$a_{12}=\frac{1}{2}(-3 \times 1+2)=\frac{1}{2}(-3+2)=\frac{1}{2}(-1)=-\frac{1}{2}$
$a_{13}=\frac{1}{2}(-3 \times 1+3)=\frac{1}{2}(-3+3)=\frac{1}{2}(0)=0$
$a_{14}=\frac{1}{2}(-3 \times 1+4)=\frac{1}{2}(-3+4)=\frac{1}{2}(1)=\frac{1}{2}$
$a_{21}=\frac{1}{2}(-3 \times 2+1)=\frac{1}{2}(-6+1)=\frac{1}{2}(-5)=-\frac{5}{2}$
$\mathrm{a}_{22}=\frac{1}{2}(-3 \times 2+2)=\frac{1}{2}(-6+2)=\frac{1}{2}(-4)=-2$
$a_{23}=\frac{1}{2}(-3 \times 2+3)=\frac{1}{2}(-6+3)=\frac{1}{2}(-3)=-\frac{3}{2}$
$\mathrm{a}_{24}=\frac{1}{2}(-3 \times 2+4)=\frac{1}{2}(-6+4)=\frac{1}{2}(-2)=-1$
$\mathrm{a}_{31}=\frac{1}{2}(-3 \times 3+1)=\frac{1}{2}(-9+1)=\frac{1}{2}(-8)=-4$
$a_{32}=\frac{1}{2}(-3 \times 3+2)=\frac{1}{2}(-9+2)=\frac{1}{2}(-7)=-\frac{7}{2}$
$\mathrm{a}_{33}=\frac{1}{2}(-3 \times 3+3)=\frac{1}{2}(-9+3)=\frac{1}{2}(-6)=-3$
$a_{34}=\frac{1}{2}(-3 \times 3+4)=\frac{1}{2}(-9+4)=\frac{1}{2}(-5)=-\frac{5}{2}$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{ccc}-1 & \cdots & \frac{1}{2} \\ \vdots & \ddots & \vdots \\ -4 & \cdots & -\frac{5}{2}\end{array}\right]$
Multiplying by negative sign we get,
7. Construct a 4×3 matrix $A=\left[a_{i j}\right]$ whose elements $a_{i j}$ are given by:
(i) $a_{i j}=2 i+i / j$
(ii) $a_{i j}=(i-j) /(i+j)$
(iii) $a_{i j}=i$

Solution:

(i) Given $a_{i j}=2 i+i / j$

Let $A=\left[a_{i j}\right]_{4 \times 3}$
So, the elements in a 4×3 matrix are

$$
a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}, a_{41}, a_{42}, a_{43}
$$

$$
A=\left[\begin{array}{ccc}
\mathrm{a}_{11} & \cdots & \mathrm{a}_{13} \\
\vdots & \ddots & \vdots \\
\mathrm{a}_{41} & \cdots & a_{43}
\end{array}\right]
$$

$$
a_{11}=2 \times 1+\frac{1}{1}=2+1=3
$$

$$
\mathrm{a}_{12}=2 \times 1+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}
$$

$$
\mathrm{a}_{13}=2 \times 1+\frac{1}{3}=2+\frac{1}{3}=\frac{7}{3}
$$

$$
a_{21}=2 \times 2+\frac{2}{1}=4+2=6
$$

$$
a_{22}=2 \times 2+\frac{2}{2}=4+1=5
$$

$$
a_{23}=2 \times 2+\frac{2}{3}=4+\frac{2}{3}=\frac{14}{3}
$$

$$
a_{31}=2 \times 3+\frac{3}{1}=6+3=9
$$

$$
\mathrm{a}_{32}=2 \times 3+\frac{3}{2}=6+\frac{3}{2}=\frac{15}{2}
$$

$$
a_{33}=2 \times 3+\frac{3}{3}=6+1=7
$$

$$
a_{41}=2 \times 4+\frac{4}{1}=8+4=12
$$

$a_{42}=2 \times 4+\frac{4}{2}=8+2=10$
$a_{43}=2 \times 4+\frac{4}{3}=8+\frac{4}{3}=\frac{28}{3}$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{ccc}3 & \cdots & \frac{7}{3} \\ \vdots & \ddots & \vdots \\ 12 & \cdots & \frac{28}{3}\end{array}\right]$
$A=\left[\begin{array}{ccc}3 & \frac{5}{2} & \frac{7}{3} \\ 6 & 5 & \frac{14}{3} \\ 9 & \frac{15}{2} & 7 \\ 12 & 10 & \frac{28}{3}\end{array}\right]$
(ii) Given $a_{i j}=(i-j) /(i+j)$

Let $A=\left[a_{i j}\right]_{4 \times 3}$
So, the elements in a 4×3 matrix are
$a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}, a_{41}, a_{42}, a_{43}$
$A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{13} \\ \vdots & \ddots & \vdots \\ a_{41} & \cdots & a_{43}\end{array}\right]$
$a_{11}=\frac{1-1}{1+1}=\frac{0}{2}=0$
$a_{12}=\frac{1-2}{1+2}=\frac{-1}{3}$
$a_{13}=\frac{1-3}{1+3}=\frac{-2}{4}=-\frac{1}{2}$
$a_{21}=\frac{2-1}{2+1}=\frac{1}{3}$
$a_{22}=\frac{2-2}{2+2}=\frac{0}{4}=0$
$a_{23}=\frac{2-3}{2+3}=\frac{-1}{5}$
$a_{31}=\frac{3-1}{3+1}=\frac{2}{4}=\frac{1}{2}$
$\mathrm{a}_{32}=\frac{3-2}{3+2}=\frac{1}{5}$
$a_{33}=\frac{3-3}{3+3}=\frac{0}{6}=0$
$a_{41}=\frac{4-1}{4+1}=\frac{3}{5}$
$a_{42}=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}$
$a_{43}=\frac{4-3}{4+3}=\frac{1}{7}$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{ccc}0 & \cdots & -\frac{1}{2} \\ \vdots & \ddots & \vdots \\ \frac{3}{5} & \cdots & \frac{1}{7}\end{array}\right]$
$A=\left[\begin{array}{ccc}0 & \frac{-1}{3} & \frac{-1}{2} \\ \frac{1}{3} & 0 & \frac{-1}{5} \\ \frac{1}{2} & \frac{1}{5} & 0 \\ \frac{3}{5} & \frac{1}{3} & \frac{1}{7}\end{array}\right]$
(iii) Given $a_{i j}=i$

Let $A=\left[a_{i j}\right]_{4 \times 3}$
So, the elements in a 4×3 matrix are
$a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}, a_{41}, a_{42}, a_{43}$
$A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{13} \\ \vdots & \ddots & \vdots \\ a_{41} & \cdots & a_{43}\end{array}\right]$
$a_{11}=1$
$a_{12}=1$
$a_{13}=1$
$a_{21}=2$
$a_{22}=2$
$a_{23}=2$
$a_{31}=3$
$a_{32}=3$
$a_{33}=3$
$a_{41}=4$
$a_{42}=4$
$a_{43}=4$
Substituting these values in matrix A we get,
$A=\left[\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 4 & \cdots & 4\end{array}\right]$
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4\end{array}\right]$
8. Find x, y, a and b if

$$
\left[\begin{array}{ccc}
3 x+4 y & 2 & x-2 y \\
a+b & 2 a-b & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 2 & 4 \\
5 & -5 & -1
\end{array}\right]
$$

Solution:

Given
$\left[\begin{array}{ccc}3 x+4 y & 2 & x-2 y \\ a+b & 2 a-b & -1\end{array}\right]=\left[\begin{array}{ccc}2 & 2 & 4 \\ 5 & -5 & -1\end{array}\right]$
Given that two matrices are equal.
We know that if two matrices are equal then the elements of each matrices are also equal.
Therefore by equating them we get,
$3 x+4 y=2$ \qquad
$x-2 y=4$ \qquad
$a+b=5$
$2 a-b=-5$
Multiplying equation (2) by 2 and adding to equation (1), we get
$3 x+4 y+2 x-4 y=2+8$
$\Rightarrow 5 x=10$
$\Rightarrow x=2$
Now, substituting the value of x in equation (1)
$3 \times 2+4 y=2$
$\Rightarrow 6+4 y=2$
$\Rightarrow 4 y=2-6$
$\Rightarrow 4 y=-4$
$\Rightarrow y=-1$
Now by adding equation (3) and (4)
$a+b+2 a-b=5+(-5)$
$\Rightarrow 3 a=5-5=0$
$\Rightarrow \mathrm{a}=0$
Now, again by substituting the value of a in equation (3), we get
$0+b=5$
$\Rightarrow b=5$
$\therefore \mathrm{a}=0, \mathrm{~b}=5, \mathrm{x}=2$ and $\mathrm{y}=-1$

9. Find x, y, a and b if

$\left[\begin{array}{ccc}2 x-3 y & a-b & 3 \\ 1 & x+4 y & 3 a+4 b\end{array}\right]=\left[\begin{array}{ccc}1 & -2 & 3 \\ 1 & 6 & 29\end{array}\right]$

Solution:

$\left[\begin{array}{ccc}2 x-3 y & a-b & 3 \\ 1 & x+4 y & 3 a+4 b\end{array}\right]=\left[\begin{array}{ccc}1 & -2 & 3 \\ 1 & 6 & 29\end{array}\right]$
We know that if two matrices are equal then the elements of each matrices are also equal.
Given that two matrices are equal.
Therefore by equating them we get,
$2 x-3 y=1$
And $\mathrm{a}-\mathrm{b}=-2$
And $x+4 y=6$
$3 a+4 b=29$
Multiplying equation (3) by 2 and subtract equation (1) from equation (3)
$2 x+8 y-2 x+3 y=12-1$
$\Rightarrow 11 y=11$
$\Rightarrow y=1$
Now, substituting the value of y in equation (1)
$2 x-3 \times 1=1$
$\Rightarrow 2 \mathrm{x}-3=1$
$\Rightarrow 2 x=1+3$
$\Rightarrow 2 x=4$
$\Rightarrow x=2$
Multiplying equation (2) by 3 and subtract equation (2) from equation (4)
$\Rightarrow 3 \mathrm{a}+4 \mathrm{~b}-3 \mathrm{a}+3 \mathrm{~b}=29-(-6)$
$\Rightarrow 7 b=35$
$\Rightarrow b=5$
Now, substituting the value of b in equation (2)
a-5 = - 2
$\Rightarrow \mathrm{a}=-2+5$
$\Rightarrow \mathrm{a}=3$
$\therefore x=2, y=1, a=3$ and $b=5$
10. Find the values of a, b, c and d from the following equations:
$\left[\begin{array}{cc}2 a+b & a-2 b \\ 5 c-d & 4 c+3 d\end{array}\right]=\left[\begin{array}{cc}4 & -3 \\ 11 & 24\end{array}\right]$

Solution:

Given
$\left[\begin{array}{ll}2 a+b & a-2 b \\ 5 c-d & 4 c+3 d\end{array}\right]=\left[\begin{array}{cc}4 & -3 \\ 11 & 24\end{array}\right]$
We know that if two matrices are equal then the elements of each matrices are also equal.
Given that two matrices are equal.
Therefore by equating them we get,
$2 a+b=4$ \qquad
And $a-2 b=-3$
And $5 c-d=11$
$4 c+3 d=24$
Multiplying equation (1) by 2 and adding to equation (2)
$4 a+2 b+a-2 b=8-3$
$\Rightarrow 5 \mathrm{a}=5$
$\Rightarrow a=1$
Now, substituting the value of a in equation (1)
$2 \times 1+b=4$
$\Rightarrow 2+b=4$
$\Rightarrow b=4-2$
$\Rightarrow b=2$
Multiplying equation (3) by 3 and adding to equation (4)
$15 c-3 d+4 c+3 d=33+24$
$\Rightarrow 19 c=57$
$\Rightarrow c=3$
Now, substituting the value of c in equation (4)
$4 \times 3+3 d=24$
$\Rightarrow 12+3 d=24$
$\Rightarrow 3 d=24-12$
$\Rightarrow 3 d=12$
$\Rightarrow d=4$

$$
\therefore a=1, b=2, c=3 \text { and } d=4
$$

1. Compute the following sums:

(i) $\left[\begin{array}{cc}3 & -2 \\ 1 & 4\end{array}\right]+\left[\begin{array}{cc}-2 & 4 \\ 1 & 3\end{array}\right]$
(ii) $\left[\begin{array}{ccc}2 & 1 & 3 \\ 0 & 3 & 5 \\ -1 & 2 & 5\end{array}\right]+\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 6 & 1 \\ 0 & -3 & 1\end{array}\right]$

Solution:

(i) Given
$\left[\begin{array}{cc}3 & -2 \\ 1 & 4\end{array}\right]+\left[\begin{array}{cc}-2 & 4 \\ 1 & 3\end{array}\right]$
Corresponding elements of two matrices should be added
Therefore, we get

$$
=\left[\begin{array}{cc}
3-2 & -2+4 \\
1+1 & 4+3
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
1 & 2 \\
2 & 7
\end{array}\right]
$$

Therefore, $\left[\begin{array}{cc}3 & -2 \\ 1 & 4\end{array}\right]+\left[\begin{array}{cc}-2 & 4 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 2 & 7\end{array}\right]$
(ii) Given
$\left[\begin{array}{ccc}2 & 1 & 3 \\ 0 & 3 & 5 \\ -1 & 2 & 5\end{array}\right]+\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 6 & 1 \\ 0 & -3 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}2+1 & 1-2 & 3+3 \\ 0+2 & 3+6 & 5+1 \\ -1+0 & 2-3 & 5+1\end{array}\right]$
$=\left[\begin{array}{ccc}3 & -1 & 6 \\ 2 & 9 & 6 \\ -1 & -1 & 6\end{array}\right]$
Therefore,
$\left[\begin{array}{ccc}2 & 1 & 3 \\ 0 & 3 & 5 \\ -1 & 2 & 5\end{array}\right]+\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 6 & 1 \\ 0 & -3 & 1\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 6 \\ 2 & 9 & 6 \\ -1 & -1 & 6\end{array}\right]$
2. Let $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right] \quad B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$ and $C=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$.

Find each of the following:
(i) $2 A-3 B$
(ii) $B-4 C$
(iii) $3 \mathrm{~A}-\mathrm{C}$
(iv) $3 A-2 B+3 C$

Solution:

(i) Given

$$
A=\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right] B=\left[\begin{array}{cc}
1 & 3 \\
-2 & 5
\end{array}\right] \text { and } C=\left[\begin{array}{cc}
-2 & 5 \\
3 & 4
\end{array}\right] .
$$

First we have to compute 2 A

$$
2 A=2\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 8 \\
6 & 4
\end{array}\right]
$$

Now by computing 3 B we get,

$$
=3 B=3\left[\begin{array}{cc}
1 & 3 \\
-2 & 5
\end{array}\right]\left[\begin{array}{cc}
3 & 9 \\
-6 & 15
\end{array}\right]
$$

Now by we have to compute 2A-3B we get
$=2 A-3 B=\left[\begin{array}{ll}4 & 8 \\ 6 & 4\end{array}\right]-\left[\begin{array}{cc}3 & 9 \\ -6 & 15\end{array}\right]=\left[\begin{array}{ll}4-3 & 8-9 \\ 6+6 & 4-15\end{array}\right]$
$=\left[\begin{array}{cc}1 & -1 \\ 12 & -11\end{array}\right]$
Therefore
$2 \mathrm{~A}-3 \mathrm{~B}=\left[\begin{array}{cc}1 & -1 \\ 12 & -11\end{array}\right]$
(ii) Given $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right] \quad B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$ and $C=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$.

First we have to compute 4C,

$$
4 \mathrm{C}=4\left[\begin{array}{cc}
-2 & 5 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
-8 & 20 \\
12 & 16
\end{array}\right]
$$

Now,

$$
\begin{aligned}
& B-4 C=\left[\begin{array}{cc}
1 & 3 \\
-2 & 5
\end{array}\right]-\left[\begin{array}{ll}
-8 & 20 \\
12 & 16
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+8 & 3-20 \\
-2-12 & 5-16
\end{array}\right]=\left[\begin{array}{cc}
9 & -17 \\
-14 & -11
\end{array}\right]
\end{aligned}
$$

Therefore we get,

$$
\mathrm{B}-4 \mathrm{C}=\left[\begin{array}{cc}
9 & -17 \\
-14 & -11
\end{array}\right]
$$

(iii) Given

$$
A=\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 3 \\
-2 & 5
\end{array}\right] \text { and } C=\left[\begin{array}{cc}
-2 & 5 \\
3 & 4
\end{array}\right]
$$

First we have to compute 3 A ,

$$
3 A=3\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
6 & 12 \\
9 & 6
\end{array}\right]
$$

Now,

$$
\begin{aligned}
& =3 A-C=\left[\begin{array}{cc}
6 & 12 \\
9 & 6
\end{array}\right]-\left[\begin{array}{cc}
-2 & 5 \\
3 & 4
\end{array}\right] \\
& =\left[\begin{array}{cc}
6+2 & 12-5 \\
9-3 & 6-4
\end{array}\right]=\left[\begin{array}{ll}
8 & 7 \\
6 & 2
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
3 A-C=\left[\begin{array}{ll}
8 & 7 \\
6 & 2
\end{array}\right]
$$

(iv) Given

$$
A=\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 3 \\
-2 & 5
\end{array}\right] \text { and } C=\left[\begin{array}{cc}
-2 & 5 \\
3 & 4
\end{array}\right]
$$

First we have to compute 3 A
$3 A=3\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]=\left[\begin{array}{cc}6 & 12 \\ 9 & 6\end{array}\right]$
Now we have to compute 2 B
$=2 B=2\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]=\left[\begin{array}{cc}2 & 6 \\ -4 & 10\end{array}\right]$
By computing 3 C we get,
$=3 C=3\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}-6 & 15 \\ 9 & 12\end{array}\right]$
$=3 A-2 B+3 C=\left[\begin{array}{cc}6 & 12 \\ 9 & 6\end{array}\right]\left[\begin{array}{cc}2 & 6 \\ -4 & 10\end{array}\right]+\left[\begin{array}{cc}-6 & 15 \\ 9 & 12\end{array}\right]$
$=\left[\begin{array}{ll}6-2-6 & 12-6+15 \\ 9+4+9 & 6-10+12\end{array}\right]=\left[\begin{array}{cc}-2 & 21 \\ 22 & 8\end{array}\right]$
Therefore,
$3 A-2 B+3 C=\left[\begin{array}{cc}-2 & 21 \\ 22 & 8\end{array}\right]$
3.If $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$, $B=\left[\begin{array}{ccc}-1 & 0 & 2 \\ 3 & 4 & 1\end{array}\right], C=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 2 & 1 & 0\end{array}\right]$, find
(i) A + B and B + C
(ii) $\mathbf{2 B}+3 A$ and $3 C-4 B$

Solution:

(i) Consider A + B,
$A+B$ is not possible because matrix A is an order of 2×2 and Matrix B is an order of $2 x$ 3 , so the Sum of the matrix is only possible when their order is same.
Now consider B + C

$$
\begin{aligned}
& \Rightarrow \mathrm{B}+\mathrm{C}=\left[\begin{array}{ccc}
-1 & 0 & 2 \\
3 & 4 & 1
\end{array}\right]+\left[\begin{array}{ccc}
-1 & 2 & 3 \\
2 & 1 & 0
\end{array}\right] \\
& \Rightarrow \mathrm{B}+\mathrm{C}=\left[\begin{array}{ccc}
-1-1 & 0+2 & 2+3 \\
3+2 & 4+1 & 1+0
\end{array}\right] \\
& \Rightarrow \mathrm{B}+\mathrm{C}=\left[\begin{array}{ccc}
-2 & 2 & 5 \\
5 & 5 & 1
\end{array}\right]
\end{aligned}
$$

(ii) Consider $2 B+3 A$
$2 B+3 A$ also does not exist because the order of matrix B and matrix A is different, so we cannot find the sum of these matrix.
Now consider 3C-4B,
$\Rightarrow 3 C-4 B=3\left[\begin{array}{ccc}-1 & 2 & 3 \\ 2 & 1 & 0\end{array}\right]-4\left[\begin{array}{ccc}-1 & 0 & 2 \\ 3 & 4 & 1\end{array}\right]$
$\Rightarrow 3 C-4 B=\left[\begin{array}{ccc}-3 & 6 & 9 \\ 6 & 3 & 0\end{array}\right]-\left[\begin{array}{ccc}-4 & 0 & 8 \\ 12 & 16 & 4\end{array}\right]$
$\Rightarrow 3 C-4 B=\left[\begin{array}{ccc}-3+4 & 6-0 & 9-8 \\ 6-12 & 3-16 & 0-4\end{array}\right]$
$\Rightarrow 3 C-4 B=\left[\begin{array}{ccc}1 & 6 & 1 \\ -6 & -13 & -4\end{array}\right]$
4.Let $A=\left[\begin{array}{ccc}-1 & 0 & 2 \\ 3 & 1 & 4\end{array}\right], B=\left[\begin{array}{ccc}0 & -2 & 5 \\ 1 & -3 & 1\end{array}\right]$ and $C=\left[\begin{array}{ccc}1 & -5 & 2 \\ 6 & 0 & -4\end{array}\right]$. Compute $2 A-$
$3 B+4 C$

Solution:

Given
$A=\left[\begin{array}{ccc}-1 & 0 & 2 \\ 3 & 1 & 4\end{array}\right], B=\left[\begin{array}{lll}0 & -2 & 5 \\ 1 & -3 & 1\end{array}\right]$ and $C=\left[\begin{array}{ccc}1 & -5 & 2 \\ 6 & 0 & -4\end{array}\right]$
Now we have to compute 2A-3B+4C

$$
\begin{aligned}
& 2 A-3 B+4 C=2\left[\begin{array}{ccc}
-1 & 0 & 2 \\
3 & 1 & 4
\end{array}\right]-3\left[\begin{array}{ccc}
0 & -2 & 5 \\
1 & -3 & 1
\end{array}\right]+4\left[\begin{array}{ccc}
1 & -5 & 2 \\
6 & 0 & -4
\end{array}\right] \\
& \Rightarrow 2 A-3 B+4 C=\left[\begin{array}{ccc}
-2 & 0 & 4 \\
6 & 2 & 8
\end{array}\right]-\left[\begin{array}{ccc}
0 & -6 & 15 \\
3 & -9 & 3
\end{array}\right]+\left[\begin{array}{ccc}
4 & -20 & 8 \\
24 & 0 & -16
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 2 A-3 B+4 C=\left[\begin{array}{ccc}
-2-0+4 & 0+6-20 & 4-15+8 \\
6-3+24 & 2+9+0 & 8-3-16
\end{array}\right] \\
& \Rightarrow 2 A-3 B+4 C=\left[\begin{array}{ccc}
2 & -14 & -3 \\
27 & 11 & -11
\end{array}\right]
\end{aligned}
$$

5. If $A=\operatorname{diag}(2-59), B=\operatorname{diag}(11-4)$ and $C=\operatorname{diag}(-634)$, find
(i) $\mathrm{A}-2 \mathrm{~B}$
(ii) $B+C-2 A$
(iii) $2 A+3 B-5 C$

Solution:

(i) Given $\mathrm{A}=\operatorname{diag}(2-59), \mathrm{B}=\operatorname{diag}\left(\begin{array}{ll}1 & 1\end{array}-4\right)$ and $\mathrm{C}=\operatorname{diag}\left(\begin{array}{ll}-6 & 3\end{array}\right)$

Here,

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 9
\end{array}\right] \\
& B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -4
\end{array}\right] \\
& A-2 B \\
& \Rightarrow A-2 B=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 9
\end{array}\right]-2\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& \Rightarrow A-2 B=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 9
\end{array}\right]-\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -8
\end{array}\right] \\
& \Rightarrow A-2 B=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -7 & 0 \\
0 & 0 & 17
\end{array}\right]=\operatorname{diag}(0-7 ~ 17)
\end{aligned}
$$

(ii) Given $A=\operatorname{diag}(2-59), B=\operatorname{diag}\left(\begin{array}{ll}1 & 1\end{array}-4\right)$ and $C=\operatorname{diag}\left(\begin{array}{ll}-6 & 3\end{array}\right)$

We have to find $B+C-2 A$

Here,
$A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 9\end{array}\right], B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -4\end{array}\right] \quad C=\left[\begin{array}{ccc}-6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$
Now we have to compute B+C-2A
$\Rightarrow B+C-2 A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -4\end{array}\right]+\left[\begin{array}{ccc}-6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]-2\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 9\end{array}\right]$
$\Rightarrow B+C-2 A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -4\end{array}\right]+\left[\begin{array}{ccc}-6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]-\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -10 & 0 \\ 0 & 0 & 18\end{array}\right]$
$\Rightarrow B+C-2 A=\left[\begin{array}{ccc}1-6-4 & 0+0-0 & 0+0-0 \\ 0+0-0 & 1+3+10 & 0+0-0 \\ 0+0-0 & 0+0-0 & -4+4-18\end{array}\right]$
$\Rightarrow B+C-2 A=\left[\begin{array}{ccc}-9 & 0 & 0 \\ 0 & 14 & 0 \\ 0 & 0 & -18\end{array}\right]=\operatorname{diag}(-914-18)$
(iii) Given $A=\operatorname{diag}(2-59), B=\operatorname{diag}(11-4)$ and $C=\operatorname{diag}\left(\begin{array}{lll}-6 & 3 & 4\end{array}\right)$

Now we have to find $2 A+3 B-5 C$
Here,
$A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 9\end{array}\right]$
$B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -4\end{array}\right]$
and $C=\left[\begin{array}{ccc}-6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$
Now consider $2 A+3 B-5 C$

$$
\Rightarrow 2 A+3 B-5 C=2\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 9
\end{array}\right]+3\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -4
\end{array}\right]-5\left[\begin{array}{lll}
-6 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

$\Rightarrow 2 A+3 B-5 C=\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -10 & 0 \\ 0 & 0 & 18\end{array}\right]+\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -12\end{array}\right]-\left[\begin{array}{ccc}-30 & 0 & 0 \\ 0 & 15 & 0 \\ 0 & 0 & 20\end{array}\right]$
$\Rightarrow 2 A+3 B-5 C=\left[\begin{array}{ccc}4+3+30 & 0+0-0 & 0+0-0 \\ 0+0-0 & -10+3-15 & 0+0-0 \\ 0+0-0 & 0+0-0 & 18-12-20\end{array}\right]$
$\Rightarrow 2 A+3 B-5 C=\left[\begin{array}{ccc}37 & 0 & 0 \\ 0 & -22 & 0 \\ 0 & 0 & \\ 0\end{array}\right]$
$=\operatorname{diag}(37-22-14)$

6. Given the matrices

$A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 3 & -1 & 0 \\ 0 & 2 & 4\end{array}\right], B=\left[\begin{array}{ccc}9 & 7 & -1 \\ 3 & 5 & 4 \\ 2 & 1 & 6\end{array}\right]$ and $C=\left[\begin{array}{ccc}2 & -4 & 3 \\ 1 & -1 & 0 \\ 9 & 4 & 5\end{array}\right]$
Verify that $(A+B)+C=A+(B+C)$

Solution:

Given
$A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 3 & -1 & 0 \\ 0 & 2 & 4\end{array}\right], B=\left[\begin{array}{ccc}9 & 7 & -1 \\ 3 & 5 & 4 \\ 2 & 1 & 6\end{array}\right]$ and $C=\left[\begin{array}{ccc}2 & -4 & 3 \\ 1 & -1 & 0 \\ 9 & 4 & 5\end{array}\right]$
Now we have to verify $(A+B)+C=A+(B+C)$
First consider LHS, (A + B) + C,

$$
\begin{aligned}
& =\left(\left[\begin{array}{ccc}
2 & 1 & 1 \\
3 & -1 & 0 \\
0 & 2 & 4
\end{array}\right]+\left[\begin{array}{ccc}
9 & 7 & -1 \\
3 & 5 & 4 \\
2 & 1 & 6
\end{array}\right]\right)+\left[\begin{array}{ccc}
2 & -4 & 3 \\
1 & -1 & 0 \\
9 & 4 & 5
\end{array}\right] \\
& =\left(\left[\begin{array}{ccc}
2+9 & 1+7 & 1-1 \\
3+3 & -1+5 & 0+4 \\
0+2 & 2+1 & 4+6
\end{array}\right]\right)+\left[\begin{array}{ccc}
2 & -4 & 3 \\
1 & -1 & 0 \\
9 & 4 & 5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
11 & 8 & 0 \\
6 & 4 & 4 \\
2 & 3 & 10
\end{array}\right]+\left[\begin{array}{ccc}
2 & -4 & 3 \\
1 & -1 & 0 \\
9 & 4 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
11+2 & 8-4 & 0+3 \\
6+1 & 4-1 & 4+0 \\
2+9 & 3+4 & 10+5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
13 & 4 & 3 \\
7 & 3 & 4 \\
11 & 7 & 15
\end{array}\right]
\end{aligned}
$$

Now consider RHS, that is $A+(B+C)$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
2 & 1 & 1 \\
3 & -1 & 0 \\
0 & 2 & 4
\end{array}\right]+\left(\left[\begin{array}{ccc}
9 & 7 & -1 \\
3 & 5 & 4 \\
2 & 1 & 6
\end{array}\right]+\left[\begin{array}{ccc}
2 & -4 & 3 \\
1 & -1 & 0 \\
9 & 4 & 5
\end{array}\right]\right) \\
& =\left[\begin{array}{ccc}
2 & 1 & 1 \\
3 & -1 & 0 \\
0 & 2 & 4
\end{array}\right]+\left(\left[\begin{array}{ccc}
9+2 & 7-4 & -1+3 \\
3+1 & 5-1 & 4+0 \\
2+9 & 1+4 & 6+5
\end{array}\right]\right)
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
2 & 1 & 1 \\
3 & -1 & 0 \\
0 & 2 & 4
\end{array}\right]+\left[\begin{array}{ccc}
11 & 3 & 2 \\
4 & 4 & 4 \\
11 & 5 & 11
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
2+11 & 1+3 & 1+2 \\
3+4 & -1+4 & 0+4 \\
0+11 & 2+5 & 4+11
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
13 & 4 & 3 \\
7 & 3 & 4 \\
11 & 7 & 15
\end{array}\right]
$$

Therefore LHS = RHS
Hence $(A+B)+C=A+(B+C)$

7. Find the matrices X and Y,

if $\mathbf{X}+\mathbf{Y}=\left[\begin{array}{ll}5 & 2 \\ 0 & 9\end{array}\right]$ and $\mathbf{X}-\mathbf{Y}=\left[\begin{array}{cc}3 & 6 \\ 0 & -1\end{array}\right]$

Solution:

Consider,
$(X+Y)+(X-Y)=\left[\begin{array}{ll}5 & 2 \\ 0 & 9\end{array}\right]+\left[\begin{array}{cc}3 & 6 \\ 0 & -1\end{array}\right]$
Now by simplifying we get,

$$
\Rightarrow 2 X=\left[\begin{array}{ll}
5+3 & 2+6 \\
0+0 & 9-1
\end{array}\right]
$$

$$
\Rightarrow 2 X=\left[\begin{array}{ll}
8 & 8 \\
0 & 8
\end{array}\right]
$$

$$
\Rightarrow X=\frac{1}{2}\left[\begin{array}{ll}
8 & 8 \\
0 & 8
\end{array}\right]
$$

Therefore,
$\Rightarrow X=\left[\begin{array}{ll}4 & 4 \\ 0 & 4\end{array}\right]$
Again consider,
$(X+Y)-(X-Y)=\left[\begin{array}{ll}5 & 2 \\ 0 & 9\end{array}\right]-\left[\begin{array}{cc}3 & 6 \\ 0 & -1\end{array}\right]$
$\Rightarrow X+Y-X+Y=\left[\begin{array}{cc}5-3 & 2-6 \\ 0-0 & 9+1\end{array}\right]$
Now by simplifying we get,
$\Rightarrow 2 Y=\left[\begin{array}{cc}2 & -4 \\ 0 & 10\end{array}\right]$
$\Rightarrow Y=\frac{1}{2}\left[\begin{array}{cc}2 & -4 \\ 0 & 10\end{array}\right]$
$\Rightarrow Y=\left[\begin{array}{cc}1 & -2 \\ 0 & 5\end{array}\right]$
Therefore,
$\mathrm{X}=\left[\begin{array}{ll}4 & 4 \\ 0 & 4\end{array}\right]$ and $Y=\left[\begin{array}{cc}1 & -2 \\ 0 & 5\end{array}\right]$
8.Find \mathbf{X}, ify $=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ and $\mathbf{2 X}+\mathbf{Y}=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$.

Solution:

Given

$$
2 X+Y=\left[\begin{array}{cc}
1 & 0 \\
-3 & 2
\end{array}\right]
$$

Now by transposing, we get

$$
\begin{aligned}
& \Rightarrow 2 X+\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-3 & 2
\end{array}\right] \\
& \Rightarrow 2 X=\left[\begin{array}{cc}
1 & 0 \\
-3 & 2
\end{array}\right]-\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right] \\
& \Rightarrow 2 X=\left[\begin{array}{cc}
1-3 & 0-2 \\
-3-1 & 2-4
\end{array}\right] \\
& \Rightarrow 2 X=\left[\begin{array}{cc}
-2 & -2 \\
-4 & -2
\end{array}\right] \\
& \Rightarrow X=\frac{1}{2}\left[\begin{array}{ll}
-2 & -2 \\
-4 & -2
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
\Rightarrow X=\left[\begin{array}{cc}
-1 & -1 \\
-2 & -1
\end{array}\right]
$$

9.Find matrices \mathbf{X} and \mathbf{Y}, if $\mathbf{2} \mathbf{X} \mathbf{-} \mathbf{Y}=\left[\begin{array}{ccc}6 & -6 & 0 \\ -4 & 2 & 1\end{array}\right]$ and $\mathbf{X}+\mathbf{2} \mathbf{Y}=\left[\begin{array}{ccc}3 & 2 & 5 \\ -2 & 1 & -7\end{array}\right]$.

Solution:

Given

$$
\begin{align*}
& (2 X-Y)=\left[\begin{array}{ccc}
6 & -6 & 0 \\
-4 & 2 & 1
\end{array}\right] \cdots(1) \tag{1}\\
& (X+2 Y)=\left[\begin{array}{ccc}
3 & 2 & 5 \\
-2 & 1 & -7
\end{array}\right] \cdots(2) \tag{2}
\end{align*}
$$

Now by multiplying equation (1) and (2) we get,

$$
2(2 X-Y)=2\left[\begin{array}{ccc}
6 & -6 & 0 \\
-4 & 2 & 1
\end{array}\right]
$$

$$
\Rightarrow 4 X-2 Y=\left[\begin{array}{ccc}
12 & -12 & 0 \tag{3}\\
-8 & 4 & 2
\end{array}\right] \ldots(3)
$$

Now by adding equation (2) and (3) we get,

$$
\begin{aligned}
& (4 X-2 Y)+(X+2 Y)=\left[\begin{array}{ccc}
12 & -12 & 0 \\
-8 & 4 & 2
\end{array}\right]+\left[\begin{array}{ccc}
3 & 2 & 5 \\
-2 & 1 & -7
\end{array}\right] \\
& \Rightarrow 5 X=\left[\begin{array}{ccc}
12+3 & -12+2 & 0+5 \\
-8-2 & 4+1 & 2-7
\end{array}\right] \\
& \Rightarrow 5 X=\left[\begin{array}{ccc}
15 & -10 & 5 \\
-10 & 5 & -5
\end{array}\right] \\
& \Rightarrow X=\frac{1}{5}\left[\begin{array}{ccc}
15 & -10 & 5 \\
-10 & 5 & -5
\end{array}\right] \\
& \Rightarrow X=\left[\begin{array}{ccc}
3 & -2 & 1 \\
-2 & 1 & -1
\end{array}\right]
\end{aligned}
$$

Now by substituting X in equation (2) we get,

$$
\begin{aligned}
& (X+2 Y)=\left[\begin{array}{ccc}
3 & 2 & 5 \\
-2 & 1 & -7
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
3 & -2 & 1 \\
-2 & 1 & -1
\end{array}\right]+2 Y=\left[\begin{array}{ccc}
3 & 2 & 5 \\
-2 & 1 & -7
\end{array}\right] \\
& \Rightarrow 2 Y=\left[\begin{array}{ccc}
3 & 2 & 5 \\
-2 & 1 & -7
\end{array}\right]-\left[\begin{array}{ccc}
3 & -2 & 1 \\
-2 & 1 & -1
\end{array}\right] \\
& \Rightarrow 2 Y=\left[\begin{array}{cc}
3-3 & 2+2 \\
-2+2 & 1-1 \\
-7+1
\end{array}\right] \\
& \Rightarrow Y=\left[\begin{array}{ccc}
0 & 2 & 2 \\
0 & 0 & -3
\end{array}\right]
\end{aligned}
$$

$$
\text { 10.|f } X-Y=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \text { and } X+Y=\left[\begin{array}{ccc}
3 & 5 & 1 \\
-1 & 1 & 4 \\
11 & 8 & 0
\end{array}\right] \text { find } X \text { and } Y \text {. }
$$

Solution:

Consider

$$
\begin{aligned}
& X-Y+X+Y=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
3 & 5 & 1 \\
-1 & 1 & 4 \\
11 & 8 & 0
\end{array}\right] \\
& \Rightarrow 2 X=\left[\begin{array}{lll}
1+3 & 1+5 & 1+1 \\
1-1 & 1+1 & 0+4 \\
1+11 & 0+8 & 0+0
\end{array}\right] \\
& \Rightarrow 2 X=\left[\begin{array}{lll}
4 & 6 & 2 \\
0 & 2 & 4 \\
12 & 8 & 0
\end{array}\right] \\
& \Rightarrow X=\frac{1}{2}\left[\begin{array}{lll}
4 & 6 & 2 \\
0 & 2 & 4 \\
12 & 8 & 0
\end{array}\right] \\
& \Rightarrow X=\left[\begin{array}{lll}
2 & 3 & 1 \\
0 & 1 & 2 \\
6 & 4 & 0
\end{array}\right]
\end{aligned}
$$

Now, again consider
$(X-Y)-(X+Y)=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]-\left[\begin{array}{rrr}3 & 5 & 1 \\ -1 & 1 & 4 \\ 11 & 8 & 0\end{array}\right]$
$\Rightarrow X-Y-X-Y=\left[\begin{array}{ccc}1-3 & 1-5 & 1-1 \\ 1+1 & 1-1 & 0-4 \\ 1-11 & 0-8 & 0-0\end{array}\right]$
$\Rightarrow-2 Y=\left[\begin{array}{ccc}-2 & -4 & 0 \\ 2 & 0 & -4 \\ -10 & -8 & 0\end{array}\right]$
$\Rightarrow Y=-\frac{1}{2}\left[\begin{array}{llc}-2 & -4 & 0 \\ 2 & 0 & -4 \\ -10 & -8 & 0\end{array}\right]$
$\Rightarrow \mathrm{Y}=\left[\begin{array}{lll}1 & 2 & 0 \\ -1 & 0 & 2 \\ 5 & 4 & 0\end{array}\right]$
Therefore,

$$
X=\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & 1 & 2 \\
6 & 4 & 0
\end{array}\right]
$$

And

$$
\mathrm{Y}=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 0 & 2 \\
5 & 4 & 0
\end{array}\right]
$$

1. Compute the indicated products:

(i) $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
(ii) $\left[\begin{array}{cc}1 & -2 \\ 2 & 3\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 3 \\ -3 & 2 & 1\end{array}\right]$
(iii) $\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{ccc}1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5\end{array}\right]$

Solution:

(i) Consider
$\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}a \times a \times+b+b & a \times(-b)+b \times a \\ (-b) \times a+a \times b & (-b) \times(-b)+a \times a\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}a^{2}+b^{2} & -a b+a b \\ -a b+a b & b^{2}+a^{2}\end{array}\right]$
On simplification we get,
$\Rightarrow\left[\begin{array}{cc}a^{2}+b^{2} & 0 \\ 0 & a^{2}+b^{2}\end{array}\right]$
(ii) Consider

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -2 \\
2 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
-3 & 2 & -1
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{rrc}
1 \times 1+(-2 \times(-3) & 1 \times 2+(-2) \times 2 & 1 \times 3+(-2) \times(-1)] \\
2 \times 1+3 \times(-3) & 2 \times 2+3 \times 2 & 2 \times 3+3 \times(-1)
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
1+6 & 2-4 & 3+2 \\
2-9 & 4+6 & 6-3
\end{array}\right]
\end{aligned}
$$

On simplification we get,
$\Rightarrow\left[\begin{array}{ccc}7 & -2 & 5 \\ -7 & 10 & 3\end{array}\right]$
(iii) Consider

$$
\begin{aligned}
& {\left[\begin{array}{lll}
2 & 3 & 4 \\
3 & 4 & 5 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{ccc}
1 & -3 & 5 \\
0 & 2 & 4 \\
3 & 0 & 5
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{lll}
2 \times 1+3 \times 0+4 \times 3 & 2 \times(-3)+3 \times 2+4 \times 0 & 2 \times 5+3 \times 4+4 \times 5 \\
3 \times 1+4 \times 0+5 \times 3 & 3 \times(-3)+4 \times 2+5 \times 0 & 3 \times 5+4 \times 4+5 \times 5 \\
4 \times 1+5 \times 0+6 \times 3 & 4 \times(-3)+5 \times 2+6 \times 0 & 4 \times 5+5 \times 4+6 \times 5
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
2+0+12 & -6+6+0 & 10+12+20 \\
3+0+15 & -9+8+0 & 15+16+25 \\
4+0+18 & -12+10+0 & 20+20+30
\end{array}\right]
\end{aligned}
$$

On simplification we get,

$$
\Rightarrow\left[\begin{array}{ccc}
14 & 0 & 42 \\
18 & -1 & 56 \\
22 & -2 & 70
\end{array}\right]
$$

2. Show that $A B \neq B A$ in each of the following cases:

(i) $A=\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$
(ii) $A=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$
(iii) $A=\left[\begin{array}{lll}1 & 3 & 0 \\ 1 & 1 & 0 \\ 4 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 5 & 1\end{array}\right]$

Solution:

(i) Consider,

$$
\begin{align*}
& A B=\left[\begin{array}{cc}
5 & -1 \\
6 & 7
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{cc}
10-3 & 5-4 \\
12+21 & 6+28
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{cc}
7 & 1 \\
33 & 34
\end{array}\right] . \ldots \ldots \tag{1}
\end{align*}
$$

Again consider,

$$
\begin{align*}
& B A=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
5 & -1 \\
6 & 7
\end{array}\right] \\
& \Rightarrow B A=\left[\begin{array}{cc}
10+6 & -2+7 \\
15+24 & -3+28
\end{array}\right] \\
& \Rightarrow B A=\left[\begin{array}{cc}
16 & 5 \\
39 & 25
\end{array}\right] . \ldots \ldots(2) \tag{2}
\end{align*}
$$

From equation (1) and (2), it is clear that $A B \neq B A$
(ii) Consider,

$$
\begin{align*}
A B & =\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{ccc}
-1+0+0 & -2+1+0 & -3+0+0 \\
0+0+1 & 0-1+1 & 0+0+0 \\
2+0+4 & 4+3+4 & 6+0+0
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{rrr}
-1 & -1 & -3 \\
1 & 0 & 0 \\
6 & 11 & 6
\end{array}\right] \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

Now again consider,

$$
\begin{align*}
& B A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
2 & 3 & 4
\end{array}\right] \\
& \Rightarrow B A=\left[\begin{array}{lll}
-1+0+6 & 1-2+9 & 0+2+12 \\
0+0+0 & 0-1+0 & 0+1+0 \\
-1+0+0 & 1-1+0 & 0+1+0
\end{array}\right] \\
& \Rightarrow B A=\left[\begin{array}{llr}
5 & 8 & 14 \\
0 & -1 & 1 \\
-1 & 0 & 1
\end{array}\right] \tag{2}
\end{align*}
$$

From equation (1) and (2), it is clear that $A B \neq B A$
(iii) Consider,

$$
\begin{align*}
& A B=\left[\begin{array}{lll}
1 & 3 & 0 \\
1 & 1 & 0 \\
4 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 5 & 1
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{ccc}
0+3+0 & 1+0+0 & 0+0+0 \\
0+1+0 & 1+0+0 & 0+0+0 \\
0+1+0 & 4+0+0 & 0+0+0
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 0 \\
1 & 4 & 0
\end{array}\right] \ldots \ldots . ~ \tag{1}
\end{align*}
$$

Now again consider,
$B A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 5 & 1\end{array}\right]\left[\begin{array}{lll}1 & 3 & 0 \\ 1 & 1 & 0 \\ 4 & 1 & 0\end{array}\right]$
$\Rightarrow B A=\left[\begin{array}{ccc}0+1+0 & 0+1+\mathbf{0} & 0+0+0 \\ 1+0+0 & 3+0+0 & 0+0+0 \\ 0+5+4 & 0+5+1 & 0+0+0\end{array}\right]$
$\Rightarrow B A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 3 & 0 \\ 9 & 6 & 0\end{array}\right]$.
From equation (1) and (2), it is clear that
$A B \neq B A$
3. Compute the products $A B$ and BA whichever exists in each of the following cases:
(i) $A=\left[\begin{array}{cc}1 & -2 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$
(ii) $A=\left[\begin{array}{cc}3 & 2 \\ -1 & 0 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & 5 & 6 \\ 0 & 1 & 2\end{array}\right]$
(iii) $A=\left[\begin{array}{llll}1 & -1 & 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{l}0 \\ 1 \\ 3 \\ 2\end{array}\right]$

$$
(i v)\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]+\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

Solution:

(i) Consider,

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
1 & -2 \\
2 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{ccc}
1-4 & 2-6 & 3-2 \\
2+6 & 4+9 & 6+3
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{ccc}
-3 & -4 & 1 \\
8 & 13 & 9
\end{array}\right]
\end{aligned}
$$

BA does not exist
Because the number of columns in B is greater than the rows in A
(ii) Consider,

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
3 & 2 \\
-1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{lll}
4 & 5 & 6 \\
0 & 1 & 2
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{ccc}
12+0 & 15+2 & 18+4 \\
-4+0 & -5+0 & -6+0 \\
-4+0 & -5+1 & -6+2
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow A B=\left[\begin{array}{ccc}
12 & 17 & 22 \\
-4 & -5 & -6 \\
-4 & -4 & -4
\end{array}\right]
$$

Again consider,

$$
\begin{aligned}
& B A=\left[\begin{array}{lll}
4 & 5 & 6 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 2 \\
-1 & 0 \\
-1 & 1
\end{array}\right] \\
& \Rightarrow B A=\left[\begin{array}{cc}
12-5-6 & 8+0+6 \\
0-1-2 & 0+0+2
\end{array}\right] \\
& \Rightarrow B A=\left[\begin{array}{cc}
1 & 14 \\
-3 & 2
\end{array}\right]
\end{aligned}
$$

(iii) Consider,

$$
A B=\left[\begin{array}{llll}
1 & -1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
3 \\
2
\end{array}\right]
$$

$$
A B=[0+(-1)+6+6]
$$

$$
A B=11
$$

Again consider,

$$
\begin{aligned}
& B A=\left[\begin{array}{l}
0 \\
1 \\
3 \\
2
\end{array}\right]\left[\begin{array}{llll}
1 & -1 & 2 & 3
\end{array}\right] \\
& \Rightarrow B A=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & -1 & 2 & 3 \\
3 & -3 & 6 & 9 \\
2 & -2 & 4 & 6
\end{array}\right]
\end{aligned}
$$

(iv) Consider,

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]+\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]} \\
& \Rightarrow[a c+b d]+\left[a^{2}+b^{2}+c^{2}+d^{2}\right] \\
& {\left[a^{2}+b^{2}+c^{2}+d^{2}+a c+b d\right]}
\end{aligned}
$$

4. Show that $A B \neq B A$ in each of the following cases:
(i) $A=\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & -1 & -1 \\ 3 & 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{lll}-2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4\end{array}\right]$
(ii) $A=\left[\begin{array}{ccc}10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2\end{array}\right]$

Solution:

(i) Consider,

$$
\begin{align*}
& A B=\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & -1 & -1 \\
3 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
-2 & 3 & -1 \\
-1 & 2 & -1 \\
-6 & 9 & -4
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{ccc}
-2-3+6 & 3+6-9 & -1-3+4 \\
-4+1+6 & 6-2-9 & -2+1+4 \\
-6-0+6 & 9+0-9 & -3-0+4
\end{array}\right] \\
& \Rightarrow A B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & -5 & 3 \\
0 & 0 & 1
\end{array}\right] . ~ \tag{1}
\end{align*} 1 .
$$

Again consider,

$$
\begin{align*}
& B A=\left[\begin{array}{ccc}
-2 & 3 & -1 \\
-1 & 2 & -1 \\
-6 & 9 & -4
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & -1 & -1 \\
3 & 0 & -1
\end{array}\right] \\
& \Rightarrow B A=\left[\begin{array}{ccc}
-2+6-3 & -6-3+0 & 2-3+1 \\
-1+4-3 & -3-2+0 & 1-2+1 \\
-6+18-12 & -18-9+0 & 6-9+4
\end{array}\right] \\
& \Rightarrow B A=\left[\begin{array}{ccc}
1 & -9 & 0 \\
0 & -5 & 0 \\
0 & -27 & 1
\end{array}\right] \tag{2}
\end{align*}
$$

From equation (1) and (2), it is clear that
$A B \neq B A$
(ii) Consider,

$$
A B=\left[\begin{array}{ccc}
10 & -4 & -1 \\
-11 & 5 & 0 \\
9 & -5 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 2 \\
1 & 3 & 2
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
10-12-1 & 20-16-3 & 10-8-2 \\
-11+15+0 & -22+20+0 & -11+10+0 \\
9-15+1 & 18-20+3 & 9-10+2
\end{array}\right]
$$

$$
A B=\left[\begin{array}{ccc}
-3 & 1 & 0 \tag{1}\\
4 & -2 & -1 \\
-5 & 1 & 1
\end{array}\right]
$$

Again consider,

$$
\begin{aligned}
& \mathrm{BA}=\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 2 \\
1 & 3 & 2
\end{array}\right]\left[\begin{array}{ccc}
10 & -4 & -1 \\
-11 & 5 & 0 \\
9 & -5 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
10-22+9 & -4+10-5 & -9+0+1 \\
30-44+10 & -12+20-10 & -3+0+2 \\
10-33+18 & -4+15-10 & -1+0+2
\end{array}\right]
\end{aligned}
$$

$$
B A=\left[\begin{array}{ccc}
-3 & 1 & 0 \tag{2}\\
4 & -2 & -1 \\
-5 & 1 & 1
\end{array}\right]
$$

From equation (1) and (2) it is clear that, $A B \neq B A$

5. Evaluate the following:

(i) $\left(\left[\begin{array}{cc}1 & 3 \\ -1 & -4\end{array}\right]+\left[\begin{array}{lr}3 & -2 \\ -1 & 1\end{array}\right]\right)\left[\begin{array}{ccc}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$
(ii) $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$
(iii) $\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 2 & 3\end{array}\right]\left(\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 0 & 1\end{array}\right]-\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 2\end{array}\right]\right)$

Solution:

(i) Given

$$
\left(\left[\begin{array}{cc}
1 & 3 \\
-1 & -4
\end{array}\right]+\left[\begin{array}{lr}
3 & -2 \\
-1 & 1
\end{array}\right]\right)\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]
$$

First we have to add first two matrix,

$$
\begin{aligned}
& \Rightarrow\left(\left[\begin{array}{cc}
1+3 & 3-2 \\
-1-1 & -4+1
\end{array}\right]\right)\left[\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
4 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
4+2 & 12+4 & 20+6 \\
-2-6 & -6-12 & -10-18
\end{array}\right]
\end{aligned}
$$

On simplifying, we get

$$
\Rightarrow \begin{array}{ccc}
{\left[\begin{array}{c}
6 \\
-8
\end{array}\right.} & \begin{array}{c}
16 \\
-18
\end{array} & \left.\begin{array}{c}
26 \\
-28
\end{array}\right]
\end{array}
$$

(ii) Given,

$$
\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]
$$

First we have to multiply first two given matrix,
$\Rightarrow\left[\begin{array}{lll}1+4+0 & 0+0+3 & 2+2+6\end{array}\right]\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$
$\Rightarrow\left[\begin{array}{lll}5 & 3 & 10\end{array}\right]\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$
$\Rightarrow[10+12+60]$
$=82$
(iii) Given
$\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 2 & 3\end{array}\right]\left(\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 0 & 1\end{array}\right]-\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & 2\end{array}\right]\right)$
First we have subtract the matrix which is inside the bracket,
$\Rightarrow\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{ccc}1-0 & 0-1 & 2-2 \\ 2-1 & 0-0 & 1-2\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}1-1 & -1+0 & 0+1 \\ 0+2 & 0+0 & 0-2 \\ 2+3 & -2+0 & 0-3\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}0 & -1 & 1 \\ 2 & 0 & -2 \\ 5 & -2 & -3\end{array}\right]$
6.If $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathbf{B}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $\mathbf{C}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, show that $\mathbf{A}^{2}=\mathbf{B}^{\mathbf{2}}=\mathbf{C}^{\mathbf{2}}=\mathbf{I}_{\mathbf{2}}$

Solution:

Given

$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $C=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
We know that,

$$
\begin{align*}
& A^{2}=A A \\
& \Rightarrow A^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{ll}
1+0 & 0+1 \\
0+0 & 0+1
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \ldots \ldots(1) \tag{1}
\end{align*}
$$

Again we know that,

$$
\begin{align*}
& B^{2}=B B \\
& \Rightarrow B^{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& \Rightarrow B^{2}=\left[\begin{array}{ll}
1+0 & 0-0 \\
0-0 & 0+1
\end{array}\right] \\
& \Rightarrow B^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \ldots(2) \tag{2}
\end{align*}
$$

Now, consider,

$$
\begin{aligned}
& C^{2}=C C \\
& \Rightarrow B^{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] \\
& \Rightarrow B^{2}=\left[\begin{array}{ll}
0+1 & 0+0 \\
0+0 & 1+0
\end{array}\right] \\
& \Rightarrow B^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right](3)
\end{aligned}
$$

We have,
$I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Now, from equation (1), (2), (3) and (4), it is clear that $A^{2}=B^{2}=C^{2}=I_{2}$
7.If $\mathbf{A}=\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right], \mathbf{B}=\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]$, find $\mathbf{3} \mathbf{A}^{\mathbf{2}}-\mathbf{2} \mathbf{B}+\mathbf{I}$

Solution:

Given
$A=\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]$
Consider,

$$
\begin{aligned}
& A^{2}=A A \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{ll}
4-3 & -2-2 \\
6+6 & -3+4
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cr}
1 & -4 \\
12 & 1
\end{array}\right]
\end{aligned}
$$

Now we have to find,

$$
\begin{aligned}
& 3 A^{2}-2 B+I \\
& \Rightarrow 3 A^{2}-2 B+I=3\left[\begin{array}{cc}
1 & -4 \\
12 & 1
\end{array}\right]-2\left[\begin{array}{cc}
0 & 4 \\
-1 & 7
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \Rightarrow 3 A^{2}-2 B+I=\left[\begin{array}{cc}
3 & -12 \\
36 & 3
\end{array}\right]-\left[\begin{array}{cc}
0 & 8 \\
-2 & 14
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$\Rightarrow 3 A^{2}-2 B+I=\left[\begin{array}{cc}3-0+1 & -12-8+0 \\ 36+2+0 & 3-14+1\end{array}\right]$
$\Rightarrow 3 A^{2}-2 B+I=\left[\begin{array}{cc}4 & -20 \\ 38 & -10\end{array}\right]$
8.If $\mathbf{A}=\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$, prove that $(\mathbf{A}-\mathbf{2 I})(\mathbf{A}-\mathbf{3 I})=\mathbf{0}$.

Solution:

Given
$A=\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$
Consider,

$$
\begin{aligned}
& \Rightarrow(A-2 \mid)(A-3 \mid)=\left(\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right]-2\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\right)\left(\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right]-3\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& \Rightarrow(A-21)(A-3 \mid)=\left(\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right]-\left[\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right]\right)\left(\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right]-\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]\right) \\
& \Rightarrow(A-21)(A-3 \mid)=\left[\begin{array}{cc}
4-2 & 2-0 \\
-1-0 & 1-2
\end{array}\right]\left[\begin{array}{cc}
4-3 & 2-0 \\
-1-0 & 1-3
\end{array}\right] \\
& \Rightarrow(A-21)(A-3 \mid)=\left[\begin{array}{cc}
2 & 2 \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 2 \\
-1-2
\end{array}\right] \\
& \Rightarrow(A-21)(A-3 \mid)=\left[\begin{array}{cc}
2-2 & 4-4 \\
-1+1 & -2+2
\end{array}\right] \\
& \Rightarrow(A-21) A-31)=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \Rightarrow(A-21)(A-3 \mid)=0
\end{aligned}
$$

Hence the proof.
9.If $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, show that $\mathbf{A}^{\mathbf{2}}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $\mathbf{A}^{\mathbf{3}}=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$

Solution:

Given,

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Consider,

$$
\begin{aligned}
& A^{2}=A A \\
& A^{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ll}
1+0 & 1+1 \\
0+0 & 0+1
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Again consider,

$$
\begin{aligned}
& A^{3}=A^{2} A \\
& A^{3}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
& \Rightarrow A^{3}=\left[\begin{array}{ll}
1+0 & 1+2 \\
0+0 & 0+1
\end{array}\right] \\
& A^{3}=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Hence the proof.
10.If $\mathbf{A}=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$, show that $\mathbf{A}^{2}=\mathbf{0}$

Solution:

Given,
$A=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$
Consider,
$A^{2}=A \quad A$
$\Rightarrow A^{2}=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}a^{2} b^{2}-a^{2} b^{2} & a b^{3}-a b^{3} \\ -a^{3} b+a^{3} b & -a^{2} b^{2}+a^{2} b^{2}\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow A^{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \Rightarrow A^{2}=0
\end{aligned}
$$

Hence the proof.
11.If $\mathbf{A}=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$, find $\mathbf{A}^{\mathbf{2}}$

Solution:

Given,

$$
A=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right]
$$

Consider,

$$
\begin{aligned}
& A^{2}=A A \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right]\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
\cos ^{2}(2 \theta)-\sin ^{2}(2 \theta) & \cos (2 \theta) \sin 2 \theta+\cos (2 \theta) \sin 2 \theta \\
-\cos (2 \theta) \sin 2 \theta-\sin 2 \theta \cos 2 \theta & -\sin ^{2}(2 \theta)+\cos ^{2}(2 \theta)
\end{array}\right]
\end{aligned}
$$

We know that,
$\cos ^{2} \theta-\sin ^{2} \theta=\cos ^{2}(2 \theta)$.
$\Rightarrow A^{2}=\left[\begin{array}{cc}\cos (2 \times 2 \theta) & 2 \sin 2 \theta \cos 2 \theta \\ -2 \sin 2 \theta \cos (2 \theta) & \cos (2 \times 2 \theta)\end{array}\right]$
Again we have,
$\sin 2 \theta=2 \sin \theta \cos \theta$
$\Rightarrow A^{2}=\left[\begin{array}{cc}\cos 4 \theta & \sin (2 \times 2 \theta) \\ -\sin (2 \times 2 \theta) & \cos 4 \theta\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}\cos 4 \theta & \sin 4 \theta \\ -\sin 4 \theta & \cos 4 \theta\end{array}\right]$
12.If $\mathbf{A}=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]$ show that $\mathbf{A B}=\mathbf{B A}=\mathbf{0}_{\mathbf{3} \times \mathbf{3}}$

Solution:

Given,

$$
A=\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
-1 & 3 & 5 \\
1 & -3 & -5 \\
-1 & 3 & 5
\end{array}\right]
$$

Consider,

$$
\begin{aligned}
& A B=\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right]\left[\begin{array}{ccc}
-1 & 3 & 5 \\
1 & -3 & -5 \\
-1 & 3 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-2-3+5 & 6+9-15 & 5+15-20 \\
1+4-5 & -3-12+15 & -5-15+20 \\
-1-3+4 & 3+9-12 & 5+15-20
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
A B=0_{3 \times 3} \ldots \ldots(1)
$$

Again consider,

$$
\begin{aligned}
& \mathrm{BA}=\left[\begin{array}{ccc}
-1 & 3 & 5 \\
1 & -3 & -5 \\
-1 & 3 & 5
\end{array}\right]\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-2-3+5 & 3+12-15 & 5+15-20 \\
2+3-5 & -3-12+15 & -5-15+20 \\
-2-3+5 & 3+9-12 & 5+15-20
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
B A=0_{3 \times 3}
$$

From equation (1) and (2) $\mathrm{AB}=\mathrm{BA}=\mathrm{O}_{3 \times 3}$
13.If $A=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$ show that $A B=B A=0_{3 \times 3}$

Solution:

Given

$$
A=\left[\begin{array}{ccc}
0 & c & -b \\
-c & 0 & a \\
b & -a & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right]
$$

Consider,
$A B=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]\left[\begin{array}{ccc}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$
$\Rightarrow A B=\left[\begin{array}{ccc}0+a b c-a b c & 0+b^{2} c-b^{2} c & 0+b c^{2}-b c^{2} \\ -a^{2} c+0+a^{2} c & -a b c+0+a b c & -a c^{2}+0+a c^{2} \\ a^{2} b-a^{2} b+0 & a b^{2}-a b^{2}+0 & a b c-a b c+0\end{array}\right]$
$\Rightarrow A B=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\Rightarrow A B=O_{3 \times 3} \ldots$
Again consider,
$B A=\left[\begin{array}{lll}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$
$\Rightarrow B A=\left[\begin{array}{lll}0-a b c+a b c & a^{2} c+0-a^{2} c & -a^{2} b+a^{2} b+0 \\ 0-b^{2} c+b^{2} c & a b c+0-a b c & -a b^{2}+a b^{2}+0 \\ 0-b c^{2}+b c^{2} & a c^{2}+0-a c^{2} & -a b c+a b c+0\end{array}\right]$
$\Rightarrow B A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\Rightarrow B A=O_{3 \times 3} \ldots$
From equation (1) and (2) $\mathrm{AB}=\mathrm{BA}=0_{3 \times 3}$
14.If $A=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ show that $A B=A$ and $B A=B$.

Solution:

Given
$A=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$
Now consider,

$$
\begin{aligned}
& A B=\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right]\left[\begin{array}{ccc}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4+3-5 & -4-9+10 & -8-12+15 \\
-2-4+5 & 2+12-10 & 4+16-15 \\
2+3-4 & -2-9+18 & -4-12+12
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right]
\end{aligned}
$$

Therefore AB = A
Again consider, $B A$ we get,

$$
\mathrm{BA}=\left[\begin{array}{ccc}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right]
$$

$=\left[\begin{array}{ccc}4+2-4 & -6-8+12 & -10-10+16 \\ -2-3+4 & 3+12-12 & 5+15-16 \\ 2+2-3 & -3-8+9 & -5-10+12\end{array}\right]$
$=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$
Hence BA = B
Hence the proof.
15. Let $A=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & 5 & 5\end{array}\right]$ and $B=\left[\begin{array}{ccc}0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4\end{array}\right]$, compute $A^{2}-B^{2}$.

Solution:
Given,
$A=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & 5 & 5\end{array}\right]$ and $B=\left[\begin{array}{ccc}0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4\end{array}\right]$
Consider,
$A^{2}=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & 5 & 5\end{array}\right]\left[\begin{array}{ccc}-1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & 5 & 5\end{array}\right]$
$=\left[\begin{array}{ccc}1+3+5 & -1-3-5 & 1+3-5 \\ -3-9+15 & 3+9+15 & -3-9+15 \\ -5+15+25 & 5-15+25 & -5+15+25\end{array}\right]$
$A^{2}=\left[\begin{array}{ccc}-1 & 9 & -1 \\ 3 & 27 & 3 \\ 35 & 15 & 35\end{array}\right]$
Now again consider, B^{2}

$$
\begin{align*}
& B^{2}=\left[\begin{array}{ccc}
0 & 4 & 3 \\
1 & -3 & -3 \\
-1 & 4 & 4
\end{array}\right]\left[\begin{array}{ccc}
0 & 4 & 3 \\
1 & -3 & -3 \\
-1 & 4 & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0+4-3 & 0-12+12 & 0-12+12 \\
0-3+3 & 4+9-12 & 3+9-12 \\
0+4-4 & -4-12+16 & -3-12+16
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \ldots \ldots(2) \tag{2}
\end{align*}
$$

Now by subtracting equation (2) from equation (1) we get,

$$
\begin{aligned}
& A^{2}-B^{2}=\left[\begin{array}{ccc}
-1 & 9 & -1 \\
3 & 27 & 3 \\
35 & 15 & 35
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-2 & 9 & -1 \\
3 & 26 & 3 \\
35 & 15 & 34
\end{array}\right]
\end{aligned}
$$

16. For the following matrices verify the associativity of matrix multiplication i.e. (AB) $\mathrm{C}=\mathrm{A}(\mathrm{BC})$
(i) $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 0 & 1\end{array}\right], \quad B=\left[\begin{array}{cc}1 & 0 \\ -1 & 2 \\ 0 & 3\end{array}\right]$, and $C=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
(ii) $A=\left[\begin{array}{lll}4 & 2 & 3 \\ 1 & 1 & 2 \\ 3 & 0 & 1\end{array}\right], \quad B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$, and $C=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$

Solution:

(i) Given
$A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 0 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ -1 & 2 \\ 0 & 3\end{array}\right]$, and $C=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
Consider,

$$
\begin{align*}
& (\mathrm{AB}) \mathrm{C}=\left(\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 2 \\
0 & 3
\end{array}\right]\right)\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-2+0 & 0+4+0 \\
-1+0+0 & 0+0+3
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{ll}
-1 & 4 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
-1-4 \\
-1-3
\end{array}\right] \\
& (\mathrm{AB}) \mathrm{C}=\left[\begin{array}{l}
-5 \\
-4
\end{array}\right] \ldots . .(1) \tag{1}
\end{align*}
$$

Now consider RHS,

$$
\left.\begin{array}{l}
\mathrm{A}(\mathrm{BC})=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right]\left(\left[\begin{array}{cc}
1 & 0 \\
-1 & 2 \\
0 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right) \\
=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1+0 \\
-1-2 \\
0-3
\end{array}\right] \\
=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-3 \\
-3
\end{array}\right] \\
=\left[\begin{array}{c}
1-6+0 \\
-1
\end{array}+0-3\right.
\end{array}\right] \quad \begin{aligned}
& \mathrm{A}(\mathrm{BC})=\left[\begin{array}{c}
-5 \\
-4
\end{array}\right] \ldots . . .(2)
\end{aligned}
$$

From equation (1) and (2), it is clear that (AB) $C=A(B C)$
(ii) Given,

$$
A=\left[\begin{array}{lll}
4 & 2 & 3 \\
1 & 1 & 2 \\
3 & 0 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 2 \\
2 & -1 & 1
\end{array}\right] \text {, and } C=\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Consider the LHS,

$$
\begin{aligned}
& (\mathrm{AB}) \mathrm{C}=\left[\begin{array}{lll}
4 & 2 & 3 \\
1 & 1 & 2 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 2 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
4+0+6 & -4+2-3 & 4+4+3 \\
1+0+4 & -1+1-2 & 1+2+2 \\
3+0+2 & -3+0-1 & 3+0+1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
10 & -5 & 11 \\
5 & -2 & 5 \\
5 & -4 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
10-15+0 & 20+0+0 & -10+5+11 \\
5-6+0 & 10+0+0 & -5-2+5 \\
5-12+0 & 10+0+0 & -5-4+4
\end{array}\right]
\end{aligned}
$$

$$
(A B) C=\left[\begin{array}{lll}
-5 & 20 & -4 \tag{1}\\
-1 & 10 & -2 \\
-7 & 10 & -5
\end{array}\right]
$$

Now consider RHS,

$$
\begin{aligned}
& \mathrm{A}(\mathrm{BC})=\left[\begin{array}{lll}
4 & 2 & 3 \\
1 & 1 & 2 \\
3 & 0 & 1
\end{array}\right]\left(\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 2 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]\right) \\
& =\left[\begin{array}{lll}
4 & 2 & 3 \\
1 & 1 & 2 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1-3+0 & 2+0+0 & -1-1+1 \\
0+3+0 & 0+0+0 & 0+1+2 \\
2-3+0 & 4+0+0 & -2-1+1
\end{array}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\left[\begin{array}{lll}
4 & 2 & 3 \\
1 & 1 & 2 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
-2 & 2 & 1 \\
3 & 0 & 3 \\
-1 & 4 & -2
\end{array}\right] \\
& =\left[\begin{array}{lll}
-8 & +6-3 & 8+0+12 \\
-2+3-2 & 2+0+8 & -1+3-6 \\
-6+0-1 & 6+0+4 & -3+0-2
\end{array}\right] \\
& A(B C)=\left[\begin{array}{lll}
-5 & 20 & -4 \\
-1 & 10 & -2 \\
-7 & 10 & -5
\end{array}\right] \tag{2}
\end{align*}
$$

From equation (1) and (2), it is clear that (AB) $C=A(B C)$
17. For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. $A(B+C)=A B+A C$.
(i) $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 2 & 1\end{array}\right]$, and $C=\left[\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right]$
(ii) $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1 \\ -1 & 2\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$, and $C=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$

Solution:

(i) Given

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right], B=\left[\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right] \text {, and } C=\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]
$$

Consider LHS,

$$
\begin{aligned}
& A(B+C)=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left(\left[\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
-1+0 & 0+1 \\
2+1 & 1-1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
3 & 0
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{cc}
-1-3 & 1+0 \\
0+6 & 0+0
\end{array}\right]
$$

$$
A(B+C)=\left[\begin{array}{cc}
-4 & 1 \tag{1}\\
6 & 0
\end{array}\right]
$$

Now consider RHS,

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{AC}=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1-2 & 0-1 \\
0+4 & 0+2
\end{array}\right]+\left[\begin{array}{cc}
0+-1 & 1+1 \\
0+2 & 0-2
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3 & -1 \\
4 & 2
\end{array}\right]+\left[\begin{array}{cc}
-1 & 2 \\
2 & -2
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3-1 & -1+2 \\
4+2 & 2-2
\end{array}\right]
\end{aligned}
$$

$$
A B+A C=\left[\begin{array}{cc}
-4 & 1 \tag{2}\\
6 & 0
\end{array}\right]
$$

From equation (1) and (2), it is clear that $A(B+C)=A B+A C$
(ii) Given,
$A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1 \\ -1 & 2\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$, and $C=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$
Consider the LHS

$$
\begin{aligned}
& A(B+C)=\left[\begin{array}{cc}
2 & -1 \\
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & -1 \\
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ccc}
0+1 & 1-1 \\
1+0 & 1+1
\end{array}\right]
\end{aligned}
$$

$=\left[\begin{array}{cc}2 & -1 \\ 1 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$
$=\left[\begin{array}{cc}2-1 & 0+2 \\ 1+1 & 0+2 \\ -1+2 & 0+4\end{array}\right]$
$A(B+C)=\left[\begin{array}{cc}1 & -2 \\ 2 & 2 \\ 1 & 4\end{array}\right]$
Now consider RHS,

$$
\begin{aligned}
& \mathrm{AB}+\mathrm{AC}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & 1
\end{array}\right]+\left[\begin{array}{cc}
2 & -1 \\
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
0+1 & 2-1 \\
0+1 & 1+1 \\
0+2 & -1+2
\end{array}\right]+\left[\begin{array}{cc}
2+0 & -2-1 \\
1+0 & -1+1 \\
-1+0 & 1+2
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & 1 \\
1 & 2 \\
2 & 1
\end{array}\right]+\left[\begin{array}{cc}
2 & -3 \\
1 & 0 \\
-1 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1+2 & 1-3 \\
1+1 & 2+0 \\
2-1 & 1+3
\end{array}\right]
\end{aligned}
$$

$$
A B+A C=\left[\begin{array}{cc}
1 & -2 \\
2 & 2 \\
1 & 4
\end{array}\right] \ldots \ldots(2)
$$

$$
\text { 18.I } f A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & -1 & 0 \\
-2 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 5 & -4 \\
-2 & 1 & 3 \\
-1 & 0 & 2
\end{array}\right] \text {, and } C=\left[\begin{array}{ccc}
1 & 5 & 2 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

verify that $A(B-C)=A B-A C$.

Solution:

Given,
$A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1\end{array}\right], B=\left[\begin{array}{ccc}0 & 5 & -4 \\ -2 & 1 & 3 \\ -1 & 0 & 2\end{array}\right]$
$C=\left[\begin{array}{ccc}1 & 5 & 2 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$
Consider the LHS,

$$
A(B-C)=\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & -1 & 0 \\
-2 & 1 & 1
\end{array}\right]\left(\left[\begin{array}{ccc}
0 & 5 & -4 \\
-2 & 1 & 3 \\
-1 & 0 & 2
\end{array}\right]-\left[\begin{array}{ccc}
1 & 5 & 2 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\right)
$$

$$
=\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & -1 & 0 \\
-2 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
-1 & 0 & 6 \\
-1 & 0 & 3 \\
-1 & 1 & 1
\end{array}\right]
$$

$$
A(B-C)=\left[\begin{array}{ccc}
1 & -2 & -8 \\
-2 & 0 & -21 \\
0 & 1 & 16
\end{array}\right]
$$

Now consider RHS

$$
\begin{aligned}
& A B-A C=\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & -1 & 0 \\
-2 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 5 & -4 \\
-2 & 1 & 3 \\
-1 & 0 & 2
\end{array}\right]-\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & -1 & 0 \\
-2 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 5 & 2 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & 5 & -8 \\
2 & 14 & -15 \\
-3 & -9 & 13
\end{array}\right]-\left[\begin{array}{ccc}
1 & 7 & 0 \\
4 & 14 & 6 \\
-3 & -10 & -3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & -2 & -8 \\
-2 & 0 & -21 \\
0 & 1 & 16
\end{array}\right]
\end{aligned}
$$

From the above equations LHS $=$ RHS
Therefore, $A(B-C)=A B-A C$.
19. Compute the elements a_{43} and a_{22} of the matrix:
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & 3 & 2 \\ 4 & 0 & 4\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -3 & 2 \\ 4 & 3\end{array}\right]\left[\begin{array}{ccccc}0 & 1 & -1 & 2 & -2 \\ 3 & -3 & 4 & -4 & 0\end{array}\right]$

Solution:

Given
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & 3 & 2 \\ 4 & 0 & 4\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -3 & 2 \\ 4 & 3\end{array}\right]\left[\begin{array}{ccccc}0 & 1 & -1 & 2 & -2 \\ 3 & -3 & 4 & -4 & 0\end{array}\right]$
$A=\left[\begin{array}{cc}-3 & 2 \\ 12 & 4 \\ -1 & 12 \\ 24 & 8\end{array}\right]\left[\begin{array}{ccccc}0 & 1 & -1 & 2 & -2 \\ 3 & -3 & 4 & -4 & 0\end{array}\right]$

$$
A=\left[\begin{array}{ccccc}
6 & -9 & 11 & -14 & 6 \\
12 & 0 & 4 & 8 & -24 \\
36 & -37 & 49 & -50 & 2 \\
24 & 0 & 8 & 16 & -48
\end{array}\right]
$$

From the above matrix, $\mathrm{a}_{43}=8$ and $\mathrm{a}_{22}=0$
20.If $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{array}\right]$ and I is the identity matrix of order 3 , that $A^{3}=$
$p I+q A+r A^{2}$
Solution:
Given
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{array}\right]$

Consider,

$$
\mathrm{A}^{2}=\mathrm{A} \cdot \mathrm{~A}
$$

$$
=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
\mathrm{p} & \mathrm{q} & \mathrm{r}
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
\mathrm{p} & \mathrm{q} & \mathrm{r}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
0+0+0 & 0+0+0 & 0+1+0 \\
0+0+\mathrm{p} & 0+0+\mathrm{q} & 0+0+\mathrm{r} \\
0+0+\mathrm{pr} & \mathrm{p}+0+\mathrm{qr} & 0+\mathrm{q}+\mathrm{r}^{2}
\end{array}\right]
$$

Again consider,

$$
\mathrm{A}^{3}=\mathrm{A}^{2} \cdot \mathrm{~A}
$$

$$
=\left[\begin{array}{ccc}
0+0+0 & 0+0+0 & 0+1+0 \\
0+0+p & 0+0+q & 0+0+r \\
0+0+p r & p+0+q r & 0+q+r^{2}
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
\mathrm{p} & \mathrm{q} & \mathrm{r}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
0+0+p & 0+0+q & 0+0+r \\
0+0+\mathrm{pr} & \mathrm{p}+0+\mathrm{qr} & 0+\mathrm{q}+\mathrm{r}^{2} \\
0+0+\mathrm{pq}+\mathrm{pr}^{2} & \mathrm{pr}+0+\mathrm{q}^{2}+\mathrm{qr}^{2} & 0+\mathrm{p}+\mathrm{qr}+\mathrm{qr}+\mathrm{r}^{2}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\mathrm{p} & \mathrm{q} & \mathrm{r} \\
\mathrm{pr} & \mathrm{p}+\mathrm{qr} & \mathrm{q}+\mathrm{r}^{2} \\
\mathrm{pq}+\mathrm{pr}^{2} & \mathrm{pr}+\mathrm{q}^{2}+\mathrm{qr}^{2} & \mathrm{p}+2 \mathrm{qr}+\mathrm{r}^{2}
\end{array}\right]
$$

Now, consider the RHS

$$
\begin{aligned}
& \mathrm{pI}+\mathrm{qA}+r \mathrm{~A}^{2} \\
& =\mathrm{p}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\mathrm{q}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
\mathrm{p} & \mathrm{q} & \mathrm{r}
\end{array}\right]+\mathrm{r}\left[\begin{array}{ccc}
0 & 0 & 1 \\
\mathrm{p} & \mathrm{q} & \mathrm{r} \\
\mathrm{pr} & \mathrm{p}+\mathrm{qr} & \mathrm{q}+\mathrm{r}^{2}
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
\mathrm{p} & \mathrm{q} & \mathrm{r} \\
\mathrm{pr} & \mathrm{p}+\mathrm{qr} & \mathrm{q}+\mathrm{r}^{2} \\
\mathrm{pq}+\mathrm{pr}^{2} & \mathrm{pr}+\mathrm{q}^{2}+\mathrm{qr}^{2} & \mathrm{p}+2 \mathrm{qr}+\mathrm{r}^{2}
\end{array}\right]
$$

Therefore, $\mathrm{A}^{3}=\mathrm{pI}+q \mathrm{~A}+r \mathrm{~A}^{2}$
Hence the proof.
21. If ω is a complex cube root of unity, show that

$$
\left(\left[\begin{array}{ccc}
1 & \omega & \omega^{2} \\
\omega & \omega^{2} & 1 \\
\omega^{2} & 1 & \omega
\end{array}\right]+\left[\begin{array}{ccc}
\omega & \omega^{2} & 1 \\
\omega^{2} & 1 & \omega \\
\omega & \omega^{2} & 1
\end{array}\right]\right)\left[\begin{array}{c}
1 \\
\omega \\
\omega^{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Solution:

Given
$\left(\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right]+\left[\begin{array}{ccc}\omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega \\ \omega & \omega^{2} & 1\end{array}\right]\right)\left[\begin{array}{c}1 \\ \omega \\ \omega^{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
It is also given that ω is a complex cube root of unity, Consider the LHS,
$=\left[\begin{array}{ccc}1+\omega & \omega+\omega^{2} & \omega^{2}+1 \\ \omega+\omega^{2} & \omega^{2}+1 & 1+\omega \\ \omega^{2}+\omega & 1+\omega^{2} & \omega+1\end{array}\right]\left[\begin{array}{c}1 \\ \omega \\ \omega^{2}\end{array}\right]$
We know that $1+\omega+\omega^{2}=0$ and $\omega^{3}=1$
$=\left[\begin{array}{ccc}-\omega^{2} & -1 & -\omega \\ -1 & -\omega & -\omega^{2} \\ -1 & -\omega & -\omega^{2}\end{array}\right]\left[\begin{array}{c}1 \\ \omega \\ \omega^{2}\end{array}\right]$
Now by simplifying we get,
$=\left[\begin{array}{ccc}-\omega^{2} & -\omega & -\omega^{3} \\ -1 & -\omega^{2} & -\omega^{4} \\ -1 & -\omega^{2} & -\omega^{4}\end{array}\right]$
Again by substituting $1+\omega+\omega^{2}=0$ and $\omega^{3}=1$ in above matrix we get,
$\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

Therefore LHS = RHS
Hence the proof.
22.If $A=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$, show that $A^{2}=A$

Solution:

Given,

$$
A=\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right]
$$

Consider A ${ }^{2}$

$$
\mathrm{A}^{2}=\mathrm{A} \cdot \mathrm{~A}
$$

$$
=\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right]\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
4+3-5 & -6-12+15 & -10-15+20 \\
-2-4+5 & 3+16-15 & 5+20-20 \\
2+3-4 & -3-12+12 & -5-15+16
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right]=\mathrm{A}
$$

Therefore $\mathrm{A}^{2}=\mathrm{A}$
23.If $A=\left[\begin{array}{ccc}4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3\end{array}\right]$, show that $A^{2}=I_{3}$

Solution:

Given
$A=\left[\begin{array}{ccc}4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3\end{array}\right]$
Consider A ${ }^{2}$,
$\mathrm{A}^{2}=\mathrm{A} . \mathrm{A}$
$=\left[\begin{array}{ccc}4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3\end{array}\right]\left[\begin{array}{ccc}4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3\end{array}\right]$
$=\left[\begin{array}{ccc}16-3-12 & -4+0+4 & 16+4+12 \\ 12+0-12 & -3+0+4 & -12+0+12 \\ 12-3-9 & -3+0+3 & -12+4+9\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}$
Hence $A^{2}=I_{3}$
24. (i) If $\left[\begin{array}{lll}1 & 1 & x\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=0$, find x.
(ii) If $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{ll}-4 & 6 \\ -9 & x\end{array}\right]$, find x.

Solution:

(i) Given
$\left[\begin{array}{lll}1 & 1 & x\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{lll}1+2 x+0 & x+0+2 & 2+1+0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=0$
$\Rightarrow\left[\begin{array}{lll}2 x+4 & x+2 & 2 x+4\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=0$
$=[2 x+1+2+x+3]=0$
$=[3 x+6]=0$
$=3 x=-6$
$x=-6 / 3$
$x=-2$
(ii) Given,
$\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{ll}-4 & 6 \\ -9 & x\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}2-6 & -6+12 \\ 5-14 & -15+28\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & x\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}-4 & 6 \\ -9 & 13\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & x\end{array}\right]$
On comparing the above matrix we get, $x=13$
25. If $\left[\begin{array}{lll}x & 4 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 2 & -4\end{array}\right]\left[\begin{array}{c}x \\ 4 \\ -1\end{array}\right]=0$, find x.

Solution:

Given

$$
\left[\begin{array}{lll}
x & 4 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 2 \\
1 & 0 & 2 \\
0 & 2 & -4
\end{array}\right]\left[\begin{array}{c}
x \\
4 \\
-1
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{lll}
2 x+4+0 & x+0+2 & 2 x+8-4
\end{array}\right]\left[\begin{array}{c}
x \\
4 \\
-1
\end{array}\right]=0
$$

$$
\Rightarrow\left[\begin{array}{lll}
2 x+4 & x+2 & 2 x+4
\end{array}\right]\left[\begin{array}{c}
x \\
4 \\
-1
\end{array}\right]=0
$$

$$
\Rightarrow[(2 x+4) x+4(x+2)-1(2 x+4)]=0
$$

$$
\Rightarrow 2 x^{2}+4 x+4 x+8-2 x-4=0
$$

$$
\Rightarrow 2 x^{2}+6 x+4=0
$$

$$
\Rightarrow 2 x^{2}+2 x+4 x+4=0
$$

$$
\Rightarrow 2 x(x+1)+4(x+1)=0
$$

$$
\Rightarrow(x+1)(2 x+4)=0
$$

$$
\Rightarrow x=-1 \text { or } x=-2
$$

Hence, $x=-1$ or $x=-2$
26. If $\left[\begin{array}{lll}1 & -1 & x\end{array}\right]\left[\begin{array}{ccc}0 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=0$, find x.

Solution:

Given
$\left[\begin{array}{ccc}1 & -1 & x\end{array}\right]\left[\begin{array}{ccc}0 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=0$
By multiplying we get,

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{llll}
0-2+\mathrm{x} & \mathrm{x} & (-1)-3+\mathrm{x}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=0 \\
& \Rightarrow\left[\begin{array}{lll}
\mathrm{x}-2 & \mathrm{x} & \mathrm{x}-4
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=0 \\
& {[(\mathrm{x}-2) \times 0+\mathrm{x} \times 1+(\mathrm{x}-4) \times 1]=0} \\
& \Rightarrow \mathrm{x}+\mathrm{x}-4=0 \\
& \Rightarrow 2 \mathrm{x}=4 \Rightarrow \mathrm{x}=2
\end{aligned}
$$

27. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then prove that $A^{2}-A+2 I=0$.

Solution:

Given
$A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Now we have to prove $A^{2}-A+2 I=0$

Now, we will find the matrix for A^{2}, we get

$$
\begin{align*}
& A^{2}=A \times A=\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{ll}
3 \times 3+(-2 \times 4) & 3 \times(-2)+(-2 \times-2) \\
4 \times 3+(-2 \times 4) & 4 \times(-2)+(-2 \times-2)
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
9-8 & -6+4 \\
12-8 & -8+4
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right] \ldots \ldots \ldots . \text { (i) } \tag{i}
\end{align*}
$$

Now, we will find the matrix for 21 , we get

$$
\begin{align*}
& 2 \mathrm{I}=2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \Rightarrow 2 \mathrm{I}=\left[\begin{array}{ll}
2 \times 1 & 2 \times 0 \\
2 \times 0 & 2 \times 1
\end{array}\right] \\
& \Rightarrow 2 \mathrm{I}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \ldots \ldots \ldots \tag{ii}
\end{align*}
$$

$A^{2}-A+2 I$
Substitute corresponding values from eqn (i) and eqn (ii), we get
$\Rightarrow=\left[\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]-\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]+\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
$\Rightarrow=\left[\begin{array}{ll}1-3+2 & -2-(-2)+0 \\ 4-4+0 & -4-(-2)+2\end{array}\right]$
$\Rightarrow=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
Therefore, $A^{2}-A+2 I=0$

Hence proved
28. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then prove that $A^{2}=5 A+\lambda I$.

Solution:

Given

$$
A=\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right] \text { and } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Now, we have to find A^{2},
$A^{2}=A \times A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}3 \times 3+(1 \times-1) & 3 \times 1+1 \times 2 \\ (-1 \times 3)+2 \times(-1) & (-1 \times 1)+2 \times 2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}9-1 & 3+2 \\ -3-2 & -1+4\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$.
Now, we will find the matrix for 5A, we get
$5 \mathrm{~A}=5\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$\Rightarrow 5 \mathrm{~A}=\left[\begin{array}{cc}5 \times 3 & 5 \times 1 \\ 5 \times(-1) & 5 \times 2\end{array}\right]$
$\Rightarrow 5 \mathrm{~A}=\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]$
So,
$A^{2}=5 A+\lambda I$
Substitute corresponding values from eqn (i) and eqn (ii), we get
$\Rightarrow\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]=\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]+\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]=\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]+\left[\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right]$

$$
\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right]=\left[\begin{array}{cc}
15+\lambda & 5+0 \\
-5+0 & 10+\lambda
\end{array}\right]
$$

And to satisfy the above condition of equality, the corresponding entries of the matrices should be equal, Hence,
$8=15+\lambda \Rightarrow \lambda=-7$
$3=10+\lambda \Rightarrow \lambda=-7$
29. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ show that $A^{2}-5 A+7 I_{2}=0$.

Solution:

Given
$A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
I_{2} is an identity matrix of size 2 , so

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

To show that

$$
A^{2}-5 A+7 I_{2}=0
$$

Now, we will find the matrix for A^{2}, we get
$A^{2}=A \times A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}3 \times 3+(1 \times-1) & 3 \times 1+1 \times 2 \\ (-1 \times 3)+2 \times(-1) & (-1 \times 1)+2 \times 2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}9-1 & 3+2 \\ -3-2 & -1+4\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$.

Now, we will find the matrix for 5 A , we get
$5 \mathrm{~A}=5\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$\Rightarrow 5 \mathrm{~A}=\left[\begin{array}{cc}5 \times 3 & 5 \times 1 \\ 5 \times(-1) & 5 \times 2\end{array}\right]$
$\Rightarrow 5 \mathrm{~A}=\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]$
Now,
$7 \mathrm{I}_{2}=7\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$.
So,

$$
A^{2}-5 A+7 I_{2}
$$

Substitute corresponding values from eqn (i), (ii) and (iii), we get

$$
\begin{aligned}
& \Rightarrow=\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right]-\left[\begin{array}{cc}
15 & 5 \\
-5 & 10
\end{array}\right]+\left[\begin{array}{cc}
7 & 0 \\
0 & 7
\end{array}\right] \\
& \Rightarrow=\left[\begin{array}{cc}
8-15+7 & 5-5+0 \\
-5-(-5)+0 & 3-10+7
\end{array}\right] \\
& \Rightarrow=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0
\end{aligned}
$$

Hence the proof.
30. If $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 0\end{array}\right]$ show that $A^{2}-2 A+3 I_{2}=0$.

Solution:

Given

$$
A=\left[\begin{array}{cc}
2 & 3 \\
-1 & 0
\end{array}\right]
$$

I_{2} is an identity matrix of size 2 , so
$I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Now we have to show,

$$
A^{2}-2 A+3 I_{2}=0
$$

Now, we will find the matrix for A^{2}, we get
$A^{2}=A \times A=\left[\begin{array}{cc}2 & 3 \\ -1 & 0\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ -1 & 0\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}2 \times 2+(3 \times-1) & 2 \times 3+3 \times 0 \\ (-1 \times 2)+0 \times(-1) & (-1 \times 3)+0 \times 0\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}4-3 & 6+0 \\ -2+0 & -3+0\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}1 & 6 \\ -2 & -3\end{array}\right]$.
Now, we will find the matrix for $2 A$, we get
$2 \mathrm{~A}=2\left[\begin{array}{cc}2 & 3 \\ -1 & 0\end{array}\right]$
$\Rightarrow 2 \mathrm{~A}=\left[\begin{array}{cc}2 \times 2 & 2 \times 3 \\ 2 \times(-1) & 2 \times 0\end{array}\right]$
$\Rightarrow 2 \mathrm{~A}=\left[\begin{array}{cc}4 & 6 \\ -2 & 0\end{array}\right]$
Now,
$3 \mathrm{I}_{2}=3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$.
So,
$\mathrm{A}^{2}-2 \mathrm{~A}+3 \mathrm{I}_{2}$
Substitute corresponding values from eqn (i), (ii) and (iii), we get
$\Rightarrow=\left[\begin{array}{cc}1 & 6 \\ -2 & -3\end{array}\right]-\left[\begin{array}{cc}4 & 6 \\ -2 & 0\end{array}\right]+\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
$\Rightarrow=\left[\begin{array}{cc}1-4+3 & 6-6+0 \\ -2-(-2)+0 & -3-0+3\end{array}\right]$
$\Rightarrow=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
Hence the proof.
31. Show that the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satiesfies the equation $A^{3}-4 A^{2}+A=0$.

Solution:

Given

$A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
To show that $A^{3}-4 A^{2}+A=0$
Now, we will find the matrix for A^{2}, we get
$A^{2}=(A \times A)=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}2 \times 2+(3 \times 1) & 2 \times 3+3 \times 2 \\ 1 \times 2+2 \times 1 & 1 \times 3+2 \times 2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}4+3 & 6+6 \\ 2+2 & 3+4\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}7 & 12 \\ 4 & 7\end{array}\right]$.
Now, we will find the matrix for A^{3}, we get
$A^{3}=A^{2} \times A=\left[\begin{array}{cc}7 & 12 \\ 4 & 7\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
$\Rightarrow A^{3}=\left[\begin{array}{cc}7 \times 2+12 \times 1 & 7 \times 3+12 \times 2 \\ 4 \times 2+7 \times 1 & 4 \times 3+7 \times 2\end{array}\right]$
$\Rightarrow A^{3}=\left[\begin{array}{cc}14+12 & 21+24 \\ 8+7 & 12+14\end{array}\right]$
$\Rightarrow A^{3}=\left[\begin{array}{ll}26 & 45 \\ 15 & 26\end{array}\right]$
So,
$A^{3}-4 A^{2}+A$
Substitute corresponding values from eqn (i) and (ii), we get
$\Rightarrow=\left[\begin{array}{ll}26 & 45 \\ 15 & 26\end{array}\right]-4\left[\begin{array}{cc}7 & 12 \\ 4 & 7\end{array}\right]+\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
$\Rightarrow=\left[\begin{array}{ll}26 & 45 \\ 15 & 26\end{array}\right]-\left[\begin{array}{cc}4 \times 7 & 4 \times 12 \\ 4 \times 4 & 4 \times 7\end{array}\right]+\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
$\Rightarrow=\left[\begin{array}{ll}26 & 45 \\ 15 & 26\end{array}\right]-\left[\begin{array}{ll}28 & 48 \\ 16 & 28\end{array}\right]+\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
$\Rightarrow=\left[\begin{array}{ll}26-28+2 & 45-48+3 \\ 15-16+1 & 26-28+2\end{array}\right]$
$\Rightarrow=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
Therefore,
$A^{3}-4 A^{2}+A=0$
Hence matrix A satisfies the given equation.
32. Show that the matrix $A=\left[\begin{array}{cc}5 & 3 \\ 12 & 7\end{array}\right]$ satiesfies the equation $A^{2}-12 A-I=0$.

Solution:

Given
$A=\left[\begin{array}{cc}5 & 3 \\ 12 & 7\end{array}\right]$
I is an identity matrix so $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
To show that $A^{2}-12 A-I=0$
Now, we will find the matrix for A^{2}, we get

$$
\begin{align*}
& A^{2}=A \times A=\left[\begin{array}{cc}
5 & 3 \\
12 & 7
\end{array}\right]\left[\begin{array}{cc}
5 & 3 \\
12 & 7
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
5 \times 5+3 \times 12 & 5 \times 3+3 \times 7 \\
12 \times 5+7 \times 12 & 12 \times 3+7 \times 7
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
25+36 & 15+21 \\
60+84 & 36+49
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
61 & 36 \\
144 & 85
\end{array}\right] \ldots \ldots .(\mathrm{i}) \tag{i}
\end{align*}
$$

Now, we will find the matrix for 12A, we get
$12 \mathrm{~A}=12\left[\begin{array}{cc}5 & 3 \\ 12 & 7\end{array}\right]$
$\Rightarrow 12 \mathrm{~A}=\left[\begin{array}{cc}12 \times 5 & 12 \times 3 \\ 12 \times 12 & 12 \times 7\end{array}\right]$
$\Rightarrow 12 A=\left[\begin{array}{cc}60 & 36 \\ 144 & 84\end{array}\right] \ldots \ldots \ldots \ldots$...
So,
$A^{2}-12 A-I$
Substitute corresponding values from eqn (i) and (ii), we get
$\Rightarrow=\left[\begin{array}{cc}61 & 36 \\ 144 & 85\end{array}\right]-\left[\begin{array}{cc}60 & 36 \\ 144 & 84\end{array}\right]-\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow=\left[\begin{array}{cc}61-60-1 & 36-36-0 \\ 144-144-0 & 85-84-1\end{array}\right]$
$\Rightarrow=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
Therefore,
$\mathrm{A}^{2}-12 \mathrm{~A}-\mathrm{I}=0$
Hence matrix A is the root of the given equation.
33. If $A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$ find $A^{2}-5 A-14 I$.

Solution:

Given

$$
A=\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]
$$

I is identity matrix so

$$
14 \mathrm{I}=14\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
14 & 0 \\
0 & 14
\end{array}\right]
$$

To find $A^{2}-5 A-14 I$

Now, we will find the matrix for A^{2}, we get

$$
\begin{align*}
& A^{2}=A \times A=\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
3 \times 3+(-5 \times-4) & 3 \times(-5)+(-5 \times 2) \\
(-4 \times 3)+(2 \times-4) & (-4 \times-5)+2 \times 2
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
9+20 & -15-10 \\
-12-8 & 20+4
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
29 & -25 \\
-20 & 24
\end{array}\right] \ldots \ldots \ldots \text { (i) } \tag{i}
\end{align*}
$$

Now, we will find the matrix for 5 A , we get
$5 \mathrm{~A}=5\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$
$\Rightarrow 5 \mathrm{~A}=\left[\begin{array}{cc}5 \times 3 & 5 \times(-5) \\ 5 \times(-4) & 5 \times 2\end{array}\right]$
$\Rightarrow 5 \mathrm{~A}=\left[\begin{array}{cc}15 & -25 \\ -20 & 10\end{array}\right]$
So,
$A^{2}-5 A-14 I$
Substitute corresponding values from eqn (i) and (ii), we get
$\Rightarrow=\left[\begin{array}{cc}29 & -25 \\ -20 & 24\end{array}\right]-\left[\begin{array}{cc}15 & -25 \\ -20 & 10\end{array}\right]-\left[\begin{array}{cc}14 & 0 \\ 0 & 14\end{array}\right]$
$\Rightarrow=\left[\begin{array}{cc}29-15-14 & -25+25-0 \\ -20+20-0 & 24-10-14\end{array}\right]$
$\Rightarrow=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
34. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ show that $A^{2}-5 A+7 I=0$. Use this to find A^{4}.

Solution:

Given
$A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
I is identity matrix so

$$
7 \mathrm{I}=7\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]
$$

To show that $A^{2}-5 A+7 I=0$
Now, we will find the matrix for A^{2}, we get

$$
\begin{align*}
& A^{2}=A \times A=\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
3 \times 3+(1 \times-1) & 3 \times 1+1 \times 2 \\
(-1 \times 3)+(2 \times-1) & (-1 \times 1)+2 \times 2
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
9-1 & 3+2 \\
-3-2 & -1+4
\end{array}\right] \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right] \ldots \ldots . \text { (i) } \tag{i}
\end{align*}
$$

Now, we will find the matrix for 5 A , we get
$5 A=5\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$\Rightarrow 5 \mathrm{~A}=\left[\begin{array}{cc}5 \times 3 & 5 \times 1 \\ 5 \times(-1) & 5 \times 2\end{array}\right]$
$\Rightarrow 5 \mathrm{~A}=\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right] \ldots \ldots \ldots \ldots$.
So,
$A^{2}-5 A+7 I$
Substitute corresponding values from eqn (i) and (ii), we get
$\Rightarrow=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]-\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]-\left[\begin{array}{cc}7 & 0 \\ 0 & 7\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow=\left[\begin{array}{cc}
8-15-7 & 5-5-0 \\
-5+5-0 & 3-10-7
\end{array}\right] \\
& \Rightarrow=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0
\end{aligned}
$$

Therefore
$A^{2}-5 A+7 I=0$

Hence proved

We will find A^{4}
$A^{2}-5 A+7 I=0$
Multiply both sides by A^{2}, we get

$$
\begin{aligned}
& A^{2}\left(A^{2}-5 A+7 I\right)=A^{2}(0) \\
& \Rightarrow A^{4}-5 A^{2} \cdot A+7 I \cdot A^{2} \\
& \Rightarrow A^{4}=5 A^{2} \cdot A-7 I \cdot A^{2} \\
& \Rightarrow A^{4}=5 A^{2} A-7 A^{2}
\end{aligned}
$$

As multiplying by the identity matrix, I don't change anything. Now will substitute the corresponding values we get

$$
\begin{aligned}
& \Rightarrow A^{4}=5\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right]\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]-7\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right] \\
& \Rightarrow A^{4}=5\left[\begin{array}{cc}
24-5 & 8+10 \\
-15-3 & -5+6
\end{array}\right]-7\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right] \\
& \Rightarrow A^{4}=5\left[\begin{array}{cc}
19 & 18 \\
-18 & 1
\end{array}\right]-7\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right] \\
& \Rightarrow A^{4}=\left[\begin{array}{cc}
5 \times 19 & 5 \times 18 \\
5 \times(-18) & 5 \times 1
\end{array}\right]-\left[\begin{array}{cc}
7 \times 8 & 7 \times 5 \\
7 \times(-5) & 7 \times 3
\end{array}\right] \\
& \Rightarrow A^{4}=\left[\begin{array}{cc}
95 & 90 \\
-90 & 5
\end{array}\right]-\left[\begin{array}{cc}
56 & 35 \\
-35 & 21
\end{array}\right] \\
& \Rightarrow A^{4}=\left[\begin{array}{cc}
95-56 & 90-35 \\
-90+35 & 5-21
\end{array}\right]
\end{aligned}
$$

$\Rightarrow A^{4}=\left[\begin{array}{cc}39 & 55 \\ -55 & -16\end{array}\right]$
35. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ find k such that $A^{2}=k A-2 I_{2}$.

Solution:

Given
$A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$
I_{2} is an identity matrix of size 2 , so

$$
2 \mathrm{I}_{2}=2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

Also given,

$$
\mathrm{A}^{2}=\mathrm{kA}-2 \mathrm{I}_{2}
$$

Now, we will find the matrix for A^{2}, we get
$A^{2}=A \times A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}3 \times 3+(-2 \times 4) & 3 \times(-2)+(-2 \times-2) \\ (4 \times 3)+(-2 \times 4) & (4 \times-2)+(-2 \times-2)\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}9-8 & -6+4 \\ 12-8 & -8+4\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]$
Now, we will find the matrix for kA, we get
$k A=k\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$
$\Rightarrow \mathrm{kA}=\left[\begin{array}{ll}\mathrm{k} \times 3 & \mathrm{k} \times(-2) \\ \mathrm{k} \times 4 & \mathrm{k} \times(-2)\end{array}\right]$

So,

$$
A^{2}=k A-2 I_{2}
$$

Substitute corresponding values from eqn (i) and (ii), we get
$\Rightarrow\left[\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]=\left[\begin{array}{cc}3 \mathrm{k} & -2 \mathrm{k} \\ 4 \mathrm{k} & -2 \mathrm{k}\end{array}\right]-\left[\begin{array}{cc}2 & 0 \\ 0 & 2\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]=\left[\begin{array}{cc}3 \mathrm{k}-2 & -2 \mathrm{k}-0 \\ 4 \mathrm{k}-0 & -2 \mathrm{k}-2\end{array}\right]$
And to satisfy the above condition of equality, the corresponding entries of the matrices should be equal

Hence, $3 \mathrm{k}-2=1 \Rightarrow \mathrm{k}=1$
Therefore, the value of k is 1
36. If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ find k such that $A^{2}-8 A+k I=0$.

Solution:

Given
$A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$
I is identity matrix, so
$\mathrm{kI}=\mathrm{k}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}\mathrm{k} & 0 \\ 0 & \mathrm{k}\end{array}\right]$
Also given, $A^{2}-8 \mathrm{~A}+\mathrm{kI}=0$
Now, we have to find A^{2}, we get
$A^{2}=A \times A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}1 \times 1+0 & 0+0 \\ (-1 \times 1)+7 \times(-1) & 0+7 \times 7\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}1 & 0 \\ -8 & 49\end{array}\right]$.
Now, we will find the matrix for 8 A , we get
$8 \mathrm{~A}=8\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$
$\Rightarrow 8 A=\left[\begin{array}{cc}8 \times 1 & 8 \times 0 \\ 8 \times(-1) & 8 \times 7\end{array}\right]$
$\Rightarrow 8 A=\left[\begin{array}{cc}8 & 0 \\ -8 & 56\end{array}\right]$
So,
$A^{2}-8 A+k I=0$
Substitute corresponding values from eqn (i) and (ii), we get
$\Rightarrow\left[\begin{array}{cc}1 & 0 \\ -8 & 49\end{array}\right]-\left[\begin{array}{cc}8 & 0 \\ -8 & 56\end{array}\right]+\left[\begin{array}{cc}\mathrm{k} & 0 \\ 0 & \mathrm{k}\end{array}\right]=0$
$\Rightarrow\left[\begin{array}{cc}1-8+\mathrm{k} & 0-0+0 \\ -8+8+0 & 49-56+\mathrm{k}\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
And to satisfy the above condition of equality, the corresponding entries of the matrices should be equal
Hence,

$$
1-8+k=0 \Rightarrow k=7
$$

Therefore, the value of k is 7
37. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $f(x)=x^{2}-2 x-3$ show that $f(A)=0$

Solution:

Given

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

To show that $f(A)=0$
Substitute $x=A$ in $f(x)$, we get
$f(A)=A^{2}-2 A-3 I \ldots \ldots$ (i)
1 is identity matrix, so
$3 \mathrm{I}=3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
Now, we will find the matrix for A^{2}, we get
$A^{2}=A \times A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}1 \times 1+2 \times 2 & 1 \times 2+2 \times 1 \\ 2 \times 1+1 \times 2 & 2 \times 2+1 \times 1\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}1+4 & 2+2 \\ 2+2 & 4+1\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]$
Now, we will find the matrix for 2 A , we get
$2 \mathrm{~A}=2\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
$\Rightarrow 2 \mathrm{~A}=\left[\begin{array}{ll}2 \times 1 & 2 \times 2 \\ 2 \times 2 & 2 \times 1\end{array}\right]$
$\Rightarrow 2 A=\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right] \ldots \ldots \ldots .$.
Substitute corresponding values from eqn (ii) and (iii) in eqn (i), we get
$f(A)=A^{2}-2 A-3 I$
$\Rightarrow f(A)=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]-\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]-\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
$\Rightarrow f(A)=\left[\begin{array}{ll}5-2-3 & 4-4-0 \\ 4-4-0 & 5-2-3\end{array}\right]$
$\Rightarrow \mathrm{f}(\mathrm{A})=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
So,
$\Rightarrow f(A)=0$
Hence Proved
38. If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then find λ, μ so that $A^{2}=\lambda A+\mu I$

Solution:

Given

$$
A=\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right] \text { and } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

So
$\mu \mathrm{I}=\mu\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}\mu & 0 \\ 0 & \mu\end{array}\right]$
Now, we will find the matrix for A^{2}, we get
$A^{2}=A \times A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}2 \times 2+3 \times 1 & 2 \times 3+3 \times 2 \\ 1 \times 2+2 \times 1 & 1 \times 3+2 \times 2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}7 & 12 \\ 4 & 7\end{array}\right]$.
Now, we will find the matrix for λA, we get
$\lambda A=\lambda\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
$\Rightarrow \lambda A=\left[\begin{array}{ll}\lambda \times 2 & \lambda \times 3 \\ \lambda \times 1 & \lambda \times 2\end{array}\right]$
$\Rightarrow \lambda A=\left[\begin{array}{cc}2 \lambda & 3 \lambda \\ \lambda & 2 \lambda\end{array}\right]$
But given, $A^{2}=\lambda A+\mu I$
Substitute corresponding values from equation (i) and (ii), we get

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{cc}
7 & 12 \\
4 & 7
\end{array}\right]=\left[\begin{array}{cc}
2 \lambda & 3 \lambda \\
\lambda & 2 \lambda
\end{array}\right]+\left[\begin{array}{cc}
\mu & 0 \\
0 & \mu
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
7 & 12 \\
4 & 7
\end{array}\right]=\left[\begin{array}{cc}
2 \lambda+\mu & 3 \lambda+0 \\
\lambda+0 & 2 \lambda+\mu
\end{array}\right]
\end{aligned}
$$

And to satisfy the above condition of equality, the corresponding entries of the matrices should be equal
Hence, $\lambda+0=4 \Rightarrow \lambda=4$
And also, $2 \lambda+\mu=7$
Substituting the obtained value of λ in the above equation, we get
$2(4)+\mu=7 \Rightarrow 8+\mu=7 \Rightarrow \mu=-1$
Therefore, the value of λ and μ are 4 and -1 respectively

39. Find the value of x for which the matrix product

$$
\left[\begin{array}{ccc}
2 & 0 & 7 \\
0 & 1 & 0 \\
1 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
-x & 14 x & 7 x \\
0 & 1 & 0 \\
x & -4 x & -2 x
\end{array}\right] \text { equal to an identity matrix. }
$$

Solution:

We know,
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
is identity matrix of size 3 .
So according to the given criteria
$\left[\begin{array}{ccc}2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1\end{array}\right]\left[\begin{array}{ccc}-\mathrm{x} & 14 \mathrm{x} & 7 \mathrm{x} \\ 0 & 1 & 0 \\ \mathrm{x} & -4 \mathrm{x} & -2 \mathrm{x}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Now we will multiply the two matrices on LHS using the formula $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+$ $a_{i n} b_{n j}$, we get
$\left[\begin{array}{ccc}2 \times(-\mathrm{x})+0+7 \times \mathrm{x} & 2 \times 14 \mathrm{x}+0+7 \times(-4 \mathrm{x}) & 2 \times 7 \mathrm{x}+0+7 \times(-2 \mathrm{x}) \\ 0+0+0 & 0+1 \times 1+0 & 0+0+0 \\ 1 \times(-\mathrm{x})+0+1 \times \mathrm{x} & 1 \times 14 \mathrm{x}+(-2 \times 1)+(1 \times-4 \mathrm{x}) & 1 \times 7 \mathrm{x}+0+1 \times(-2 \mathrm{x})\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}5 \mathrm{x} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 10 \mathrm{x}-2 & 5 \mathrm{X}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
And to satisfy the above condition of equality, the corresponding entries of the matrices should be equal
So we get

$$
5 x=1 \Rightarrow x=\frac{1}{5}
$$

So the value of x is ${ }^{\frac{1}{5}}$

1. Let $A=\left[\begin{array}{cc}2 & -3 \\ -7 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ 2 & -4\end{array}\right]$ verify that
(i) $(2 A)^{\top}=2 A^{\top}$
(ii) $(A+B)^{\top}=A^{\top}+B^{\top}$
(iii) $(A-B)^{\top}=A^{\top}-B^{\top}$
(iv) $(A B)^{\top}=B^{\top} A^{\top}$

Solution:
(i) Given

$$
A=\left[\begin{array}{cc}
2 & -3 \\
-7 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
1 & 0 \\
2 & -4
\end{array}\right]
$$

Consider,

$$
(2 A)^{T}=2 A^{T}
$$

Put the value of A

$$
\begin{aligned}
& \Rightarrow\left(2\left[\begin{array}{cc}
2 & -3 \\
-7 & 5
\end{array}\right]\right)^{\mathrm{T}}=2\left[\begin{array}{cc}
2 & -3 \\
-7 & 5
\end{array}\right]^{\mathrm{T}} \\
& \Rightarrow\left[\begin{array}{cc}
4 & -6 \\
-14 & 10
\end{array}\right]^{\mathrm{T}}=2\left[\begin{array}{cc}
2 & -7 \\
-3 & 5
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
4 & -14 \\
-6 & 10
\end{array}\right]=\left[\begin{array}{cc}
4 & -14 \\
-6 & 10
\end{array}\right] \\
& \text { L.H.S }=\text { R.H.S }
\end{aligned}
$$

(ii) Given

$$
A=\left[\begin{array}{cc}
2 & -3 \\
-7 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
1 & 0 \\
2 & -4
\end{array}\right]
$$

Consider,

$$
\begin{aligned}
& (A+B)^{\mathrm{T}}=A^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}} \\
& \Rightarrow\left(\left[\begin{array}{cc}
2 & -3 \\
-7 & 5
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
2 & -4
\end{array}\right]\right)^{\mathrm{T}}=\left[\begin{array}{cc}
2 & -3 \\
-7 & 5
\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{cc}
1 & 0 \\
2 & -4
\end{array}\right]^{\mathrm{T}} \\
& \Rightarrow\left[\begin{array}{cc}
2+1 & -3+0 \\
-7+2 & 5-4
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}
2 & -7 \\
-3 & 5
\end{array}\right]+\left[\begin{array}{cc}
1 & 2 \\
0 & -4
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
3 & -3 \\
-5 & 1
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}
3 & -5 \\
-3 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
3 & -5 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & -5 \\
-3 & 1
\end{array}\right]
\end{aligned}
$$

L.H.S = R.H.S

Hence proved.
(iii) Given
$A=\left[\begin{array}{cc}2 & -3 \\ -7 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ 2 & -4\end{array}\right]$
Consider,
$(A-B)^{T}=A^{T}-B^{T}$
$\Rightarrow\left(\left[\begin{array}{cc}2 & -3 \\ -7 & 5\end{array}\right]-\left[\begin{array}{cc}1 & 0 \\ 2 & -4\end{array}\right]\right)^{\mathrm{T}}=\left[\begin{array}{cc}2 & -3 \\ -7 & 5\end{array}\right]^{\mathrm{T}}-\left[\begin{array}{cc}1 & 0 \\ 2 & -4\end{array}\right]^{\mathrm{T}}$
$\Rightarrow\left[\begin{array}{cc}2-1 & -3-0 \\ -7-2 & 5+4\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}2 & -7 \\ -3 & 5\end{array}\right]-\left[\begin{array}{cc}1 & 2 \\ 0 & -4\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & -3 \\ -9 & 9\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}1 & -9 \\ -3 & 9\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & -9 \\ -3 & 9\end{array}\right]=\left[\begin{array}{cc}1 & -9 \\ -3 & 9\end{array}\right]$
L.H.S = R.H.S
(iv) Given
$A=\left[\begin{array}{cc}2 & -3 \\ -7 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ 2 & -4\end{array}\right]$
$(A B)^{T}=B^{T} A^{T}$
$\Rightarrow\left(\left[\begin{array}{cc}2 & -3 \\ -7 & 5\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 2 & -4\end{array}\right]\right)^{\mathrm{T}}=\left[\begin{array}{cc}1 & 0 \\ 2 & -4\end{array}\right]^{\mathrm{T}}\left[\begin{array}{cc}2 & -3 \\ -7 & 5\end{array}\right]^{\mathrm{T}}$
$\left[\begin{array}{cc}2-6 & 0+12 \\ -7+10 & 0-20\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}1 & 2 \\ 0 & -4\end{array}\right]\left[\begin{array}{cc}2 & -7 \\ -3 & 5\end{array}\right]$
$\left[\begin{array}{cc}-4 & 12 \\ 3 & -20\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}2-6 & -7+10 \\ 0+12 & 0-20\end{array}\right]$
$\left[\begin{array}{cc}-4 & 3 \\ 12 & -20\end{array}\right]=\left[\begin{array}{cc}-4 & 3 \\ 12 & -20\end{array}\right]$
So,
$(A B)^{T}=B^{T} A^{T}$
2. $A=\left[\begin{array}{l}3 \\ 5 \\ 2\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 4\end{array}\right]$ verify that $(A B)^{T}=B^{T} A^{T}$

Solution:

Given
$A=\left[\begin{array}{l}3 \\ 5 \\ 2\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 4\end{array}\right]$
$(A B)^{T}=B^{T} A^{T}$
$\Rightarrow\left(\left[\begin{array}{l}3 \\ 5 \\ 2\end{array}\right]\left[\begin{array}{lll}1 & 0 & 4\end{array}\right]\right)^{\mathrm{T}}=\left[\begin{array}{lll}1 & 0 & 4\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}3 \\ 5 \\ 2\end{array}\right]^{\mathrm{T}}$
$\Rightarrow\left[\begin{array}{ccc}3 & 0 & 12 \\ 5 & 0 & 20 \\ 2 & 0 & 8\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right]\left[\begin{array}{lll}3 & 5 & 2\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}3 & 5 & 2 \\ 0 & 0 & 0 \\ 12 & 20 & 8\end{array}\right]=\left[\begin{array}{ccc}3 & 5 & 2 \\ 0 & 0 & 0 \\ 12 & 20 & 8\end{array}\right]$
L.H.S = R.H.S

So, $(A B)^{T}=B^{T} A^{T}$
3. Let $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]$ find A^{T}, B^{T} and verify that
(i) $A+B)^{\top}=A^{\top}+B^{\top}$
(ii) $(A B)^{\top}=B^{\top} A^{\top}$
(iii) $(2 A)^{\top}=2 A^{\top}$

Solution:

(i) Given

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & 3 \\
1 & 2 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3 \\
0 & 1 & 1
\end{array}\right]
$$

Consider,

$$
\begin{aligned}
& (A+B)^{\mathrm{T}}=A^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}} \\
& \left(\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & 3 \\
1 & 2 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3 \\
0 & 1 & 1
\end{array}\right]\right)^{\mathrm{T}}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & 3 \\
1 & 2 & 1
\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3 \\
0 & 1 & 1
\end{array}\right]^{\mathrm{T}} \\
& \left(\left[\begin{array}{ccc}
1+1 & -1+2 & 0+3 \\
2+2 & 1+1 & 3+3 \\
1+0 & 2+1 & 1+1
\end{array}\right]\right)^{\mathrm{T}}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-1 & 1 & 2 \\
0 & 3 & 1
\end{array}\right]+\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 1 & 1 \\
3 & 3 & 1
\end{array}\right]
\end{aligned}
$$

$\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 2 & 6 \\ 1 & 3 & 2\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}1+1 & 2+2 & 1+0 \\ -1+2 & 1+1 & 2+1 \\ 0+3 & 3+3 & 1+1\end{array}\right]$
$\left[\begin{array}{lll}2 & 4 & 1 \\ 1 & 2 & 3 \\ 3 & 6 & 2\end{array}\right]=\left[\begin{array}{lll}2 & 4 & 1 \\ 1 & 2 & 3 \\ 3 & 6 & 2\end{array}\right]$
L.H.S $=$ R.H.S

So, $(A+B)^{T}=A^{T}+B^{T}$
(ii) Given
$A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]$
Consider,
$(A B)^{T}=B^{T} A^{T}$
$\left(\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]\right)^{\mathrm{T}}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]^{\mathrm{T}}\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{array}\right]^{\mathrm{T}}$
$\left[\begin{array}{lll}1-2+0 & 2-1+0 & 3-3+0 \\ 2+2+0 & 4+1+3 & 6+3+3 \\ 1+4+0 & 2+2+1 & 3+6+1\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 1 & 1 \\ 3 & 3 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 3 & 1\end{array}\right]$
$\left[\begin{array}{ccc}-1 & 1 & 0 \\ 4 & 8 & 12 \\ 5 & 5 & 10\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}1-2+0 & 2+2+0 & 1+4+0 \\ 2-1+0 & 4+1+3 & 2+2+1 \\ 3-3+0 & 6+3+3 & 3+6+1\end{array}\right]$
$\left[\begin{array}{ccc}-1 & 4 & 5 \\ 1 & 8 & 5 \\ 0 & 12 & 10\end{array}\right]=\left[\begin{array}{ccc}-1 & 4 & 5 \\ 1 & 8 & 5 \\ 0 & 12 & 10\end{array}\right]$
L.H.S = R.H.S

So, $(A B)^{T}=B^{T} A^{T}$
(iii) Given
$A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]$
Consider,
$(2 A)^{T}=2 A^{T}$
$\Rightarrow\left(2\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{array}\right]\right)^{T}=2\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{array}\right]^{T}$
$\Rightarrow\left[\begin{array}{ccc}2 & -2 & 0 \\ 4 & 2 & 6 \\ 2 & 4 & 2\end{array}\right]^{\mathrm{T}}=2\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 3 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}2 & 4 & 2 \\ -2 & 2 & 4 \\ 0 & 6 & 2\end{array}\right]=\left[\begin{array}{ccc}2 & 4 & 2 \\ -2 & 2 & 4 \\ 0 & 6 & 2\end{array}\right]$
L.H.S = R.H.S

So,
$(2 \mathrm{~A})^{\mathrm{T}}=2 \mathrm{~A}^{\mathrm{T}}$
4. If $A=\left[\begin{array}{c}-2 \\ 4 \\ 5\end{array}\right], B=\left[\begin{array}{lll}1 & 3 & -6\end{array}\right]$, verify that $(A B)^{T}=B^{T} A^{T}$

Solution:

Given
$A=\left[\begin{array}{c}-2 \\ 4 \\ 5\end{array}\right], B=\left[\begin{array}{lll}1 & 3 & -6\end{array}\right]$
Consider,
$(A B)^{T}=B^{T} A^{T}$
$\Rightarrow\left(\left[\begin{array}{c}-2 \\ 4 \\ 5\end{array}\right]\left[\begin{array}{lll}1 & 3 & -6\end{array}\right]\right)^{\mathrm{T}}=\left[\begin{array}{lll}1 & 3 & -6\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}-2 \\ 4 \\ 5\end{array}\right]^{\mathrm{T}}$
$\Rightarrow\left[\begin{array}{ccc}-2 & -6 & -12 \\ 4 & 12 & -24 \\ 5 & 15 & -30\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{c}1 \\ 3 \\ -6\end{array}\right]\left[\begin{array}{lll}-2 & 4 & 5\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}-2 & 4 & 5 \\ -6 & 12 & 15 \\ -12 & -24 & -30\end{array}\right]=\left[\begin{array}{ccc}-2 & 4 & 5 \\ -6 & 12 & 15 \\ -12 & -24 & -30\end{array}\right]$
L.H.S = R.H.S

So,
$(A B)^{T}=B^{T} A^{T}$
5. If $A=\left[\begin{array}{ccc}2 & 4 & -1 \\ -1 & 0 & 2\end{array}\right],\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 2 & 1\end{array}\right]$, find $(A B)^{T}$

Solution:
Given

$$
A=\left[\begin{array}{ccc}
2 & 4 & -1 \\
-1 & 0 & 2
\end{array}\right],\left[\begin{array}{cc}
3 & 4 \\
-1 & 2 \\
2 & 1
\end{array}\right]
$$

Now we have to find $(A B)^{\top}$

$$
\begin{aligned}
& \Rightarrow\left(\left[\begin{array}{ccc}
2 & 4 & -1 \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 4 \\
-1 & 2 \\
2 & 1
\end{array}\right]\right)^{\mathrm{T}} \\
& \Rightarrow\left[\begin{array}{cc}
6-4-2 & 8+8-1 \\
-3-0+4 & -4+0+2
\end{array}\right]^{\mathrm{T}} \\
& \Rightarrow\left[\begin{array}{cc}
0 & 15 \\
1 & -2
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
0 & 1 \\
15 & -2
\end{array}\right]
\end{aligned}
$$

So,

$$
(A B)^{T}=\left[\begin{array}{cc}
0 & 1 \\
15 & -2
\end{array}\right]
$$

1. If $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$, prove that $A-A^{T}$ is a skew - symmetric matrix.

Solution:

Given
$A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$
Consider,
$\left(A-A^{T}\right)=\left(\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]-\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]^{T}\right)$
$=\left(\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]-\left[\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right]\right)$
$=\left[\begin{array}{ll}2-2 & 3-4 \\ 4-3 & 5-5\end{array}\right]$
$\left(A-A^{T}\right)=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \ldots$ (i)
$-\left(A-A^{T}\right)^{T}=-\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] T$
$=-\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
$-\left(A-A^{T}\right)=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]_{\ldots \text {... (ii) }}$
From (i) and (ii) we can see that
A skew-symmetric matrix is a square matrix whose transpose equal to its negative, that is,
$X=-X^{\top}$
So, $A-A^{\top}$ is a skew-symmetric.
2. If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, show that $A-A^{T}$ is a skew - symmetric matrix.

Solution:

Given
$A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$

Consider,

$$
\begin{align*}
& \left(A-A^{T}\right)=\left[\begin{array}{cc}
0 & -5 \\
5 & 0
\end{array}\right] \tag{i}\\
& -\left(A-A^{T}\right)^{T}=-\left[\begin{array}{cc}
0 & -5 \\
5 & 0
\end{array}\right] T \\
& =-\left[\begin{array}{cc}
0 & 5 \\
-5 & 0
\end{array}\right] \\
& -\left(A-A^{T}\right)=\left[\begin{array}{cc}
0 & -5 \\
5 & 0
\end{array}\right] \tag{ii}
\end{align*}
$$

From (i) and (ii) we can see that
A skew-symmetric matrix is a square matrix whose transpose equals its negative, that is, $X=-X^{\top}$
So, $A-A^{\top}$ is a skew-symmetric matrix.
3. If the matrix $A=\left[\begin{array}{ccc}5 & 2 & x \\ y & z & -3 \\ 4 & t & -7\end{array}\right]$, is a symmetric matrix matrix find x, y, z and t

Solution:

Given,
$A=\left[\begin{array}{ccc}5 & 2 & x \\ y & z & -3 \\ 4 & t & -7\end{array}\right]_{\text {is a symmetric matrix. }}$
We know that $A=\left[a_{i j}\right]_{m \times n}$ is a symmetric matrix if $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}}$
So,
$\mathrm{x}=\mathrm{a}_{13}=\mathrm{a}_{31}=4$
$\mathrm{y}=\mathrm{a}_{21}=\mathrm{a}_{12}=2$
$\mathrm{z}=\mathrm{a}_{22}=\mathrm{a}_{22}=\mathrm{z}$
$\mathrm{t}=\mathrm{a}_{32}=\mathrm{a}_{23}=-3$
Hence, $x=4, y=2, t=-3$ and z can have any value.
$A=\left[\begin{array}{ccc}3 & 2 & 7 \\ 1 & 4 & 3 \\ -2 & 5 & 8\end{array}\right]$. Find matrices X and Y such that $X+Y=A$, where X is a symmetric and y is a skew-symmetric matrix.

Solution:

Given,

$$
A=\left[\begin{array}{ccc}
3 & 2 & 7 \\
1 & 4 & 3 \\
-2 & 5 & 8
\end{array}\right]_{\text {Then }} A^{T}=\left[\begin{array}{ccc}
3 & 1 & -2 \\
2 & 4 & 5 \\
7 & 3 & 8
\end{array}\right]
$$

$$
X=\frac{1}{2}\left(A+A^{T}\right)
$$

$$
=\frac{1}{2}\left(\left[\begin{array}{ccc}
3 & 2 & 7 \\
1 & 4 & 3 \\
-2 & 5 & 8
\end{array}\right]+\left[\begin{array}{ccc}
3 & 1 & -2 \\
2 & 4 & 5 \\
7 & 3 & 8
\end{array}\right]\right)
$$

$$
=\frac{1}{2}\left[\begin{array}{ccc}
3+3 & 2+1 & 7-2 \\
1+2 & 4+4 & 3+5 \\
-2+7 & 5+3 & 8+8
\end{array}\right]
$$

$$
=\frac{1}{2}\left[\begin{array}{ccc}
6 & 3 & 5 \\
3 & 8 & 8 \\
5 & 8 & 16
\end{array}\right]
$$

$$
X=\left[\begin{array}{ccc}
3 & \frac{3}{2} & \frac{5}{2} \\
\frac{3}{2} & 4 & 4 \\
\frac{5}{2} & 4 & 8
\end{array}\right]
$$

Now,

$$
\begin{aligned}
& \mathrm{Y}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right) \\
& =\frac{1}{2}\left(\left[\begin{array}{ccc}
3 & 2 & 7 \\
1 & 4 & 3 \\
-2 & 5 & 8
\end{array}\right]-\left[\begin{array}{ccc}
3 & 1 & -2 \\
2 & 4 & 5 \\
7 & 3 & 8
\end{array}\right]\right) \\
& \\
& =\frac{1}{2}\left[\begin{array}{ccc}
3-3 & 2-1 & 7+2 \\
1-2 & 4-4 & 3-5 \\
-2-7 & 5-3 & 8-8
\end{array}\right] \\
& \\
& =\frac{1}{2}\left[\begin{array}{ccc}
0 & 1 & 9 \\
-1 & 0 & -2 \\
-9 & 2 & 0
\end{array}\right] \\
& \mathrm{Y}
\end{aligned}
$$

Now,
$X^{T}=\left[\begin{array}{ccc}3 & \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} & 4 & 4 \\ \frac{5}{2} & 4 & 8\end{array}\right]^{T}=\left[\begin{array}{ccc}3 & \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} & 4 & 4 \\ \frac{5}{2} & 4 & 8\end{array}\right]=X$
$\Rightarrow \mathrm{X}$ is a symmetric matrix.
Now,
$-Y^{T}=-\left[\begin{array}{ccc}0 & \frac{1}{2} & \frac{9}{2} \\ -\frac{1}{2} & 0 & -1 \\ -\frac{9}{2} & 1 & 0\end{array}\right]^{\mathrm{T}}=-\left[\begin{array}{ccc}0 & -\frac{1}{2} & -\frac{9}{2} \\ \frac{1}{2} & 0 & 1 \\ \frac{9}{2} & -1 & 0\end{array}\right]$
$-Y^{T}=\left[\begin{array}{ccc}0 & \frac{1}{2} & \frac{9}{2} \\ -\frac{1}{2} & 0 & -1 \\ -\frac{9}{2} & 1 & 0\end{array}\right]$
$-Y^{\top}=Y$
Y is a skew symmetric matrix.
And,
$X+Y=\left[\begin{array}{lll}3 & \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} & 4 & 4 \\ \frac{5}{2} & 4 & 8\end{array}\right]+\left[\begin{array}{ccc}0 & \frac{1}{2} & \frac{9}{2} \\ -\frac{1}{2} & 0 & -1 \\ -\frac{9}{2} & 1 & 0\end{array}\right]$
$=\left[\begin{array}{lll}3+0 & \frac{3}{2}+\frac{1}{2} & \frac{5}{2}+\frac{9}{2} \\ \frac{3}{2}-\frac{1}{2} & 4+0 & 4-1 \\ \frac{5}{2}-\frac{9}{2} & 4+1 & 8+0\end{array}\right]$
$=\left[\begin{array}{ccc}3 & 2 & 7 \\ 1 & 4 & 3 \\ -2 & 5 & 8\end{array}\right]=\mathrm{A}$

