1. Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case:
(i) $A=\left[\begin{array}{cc}5 & 20 \\ 0 & -1\end{array}\right]$
(ii) $A=\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]$
(iii) $A=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2\end{array}\right]$
(iv) $A=\left[\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right]$
$(v) \boldsymbol{A}=\left[\begin{array}{lll}0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1\end{array}\right]$
(vi) $\boldsymbol{A}=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ f & f & c\end{array}\right]$
(vii) $A=\left[\begin{array}{cccc}2 & -1 & 0 & 1 \\ -3 & 0 & 1 & -2 \\ 1 & 1 & -1 & 1 \\ 2 & -1 & 5 & 0\end{array}\right]$

Solution:

(i) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.
Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{i+j} \times \mathrm{M}_{\mathrm{ij}}$
Given,
$A=\left[\begin{array}{cc}5 & 20 \\ 0 & -1\end{array}\right]$
From the given matrix we have,
$\mathrm{M}_{11}=-1$
$\mathrm{M}_{21}=20$
$C_{11}=(-1)^{1+1} \times M_{11}$
$=1 \times-1$
$=-1$
$C_{21}=(-1)^{2+1} \times M_{21}$
$=20 \times-1$
$=-20$
Now expanding along the first column we get
$|A|=a_{11} \times C_{11}+a_{21} \times C_{21}$
$=5 \times(-1)+0 \times(-20)$
$=-5$
(ii) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.
Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}}$
Given
$A=\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]$
From the above matrix we have
$M_{11}=3$
$M_{21}=4$
$C_{11}=(-1)^{1+1} \times M_{11}$
$=1 \times 3$
$=3$
$C_{21}=(-1)^{2+1} \times 4$
$=-1 \times 4$
$=-4$
Now expanding along the first column we get
$|A|=a_{11} \times C_{11}+a_{21} \times C_{21}$
$=-1 \times 3+2 \times(-4)$
$=-11$
(iii) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}}$
Given,
$A=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2\end{array}\right]$
From given matrix we have,
$\Rightarrow \mathrm{M}_{11}=\left[\begin{array}{cc}-1 & 2 \\ 5 & 2\end{array}\right]$
$\mathrm{M}_{11}=-1 \times 2-5 \times 2$
$M_{11}=-12$
$\Rightarrow \mathrm{M}_{21}=\left[\begin{array}{cc}-3 & 2 \\ 5 & 2\end{array}\right]$
$\mathrm{M}_{21}=-3 \times 2-5 \times 2$
$M_{21}=-16$
$\Rightarrow \mathrm{M}_{31}=\left[\begin{array}{ll}-3 & 2 \\ -1 & 2\end{array}\right]$
$M_{31}=-3 \times 2-(-1) \times 2$
$M_{31}=-4$
$\mathrm{C}_{11}=(-1)^{1+1} \times \mathrm{M}_{11}$
$=1 \times-12$
$=-12$
$C_{21}=(-1)^{2+1} \times M_{21}$
$=-1 \times-16$
$=16$
$C_{31}=(-1)^{3+1} \times M_{31}$
$=1 \times-4$
$=-4$
Now expanding along the first column we get
$|A|=a_{11} \times C_{11}+a_{21} \times C_{21}+a_{31} \times C_{31}$
$=1 \times(-12)+4 \times 16+3 \times(-4)$
$=-12+64-12$
$=40$
(iv) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.
Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{i+j} \times \mathrm{M}_{\mathrm{ij}}$
Given,

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & a & b c \\
1 & b & c a \\
1 & c & a b
\end{array}\right] \\
& \Rightarrow M_{11}=\left[\begin{array}{ll}
b & c a \\
c & a b
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{M}_{11}=\mathrm{b} \times \mathrm{ab}-\mathrm{c} \times \mathrm{ca}
$$

$$
\mathrm{M}_{11}=\mathrm{ab}^{2}-\mathrm{ac}^{2}
$$

$$
\Rightarrow \mathrm{M}_{21}=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{bc} \\
\mathrm{c} & \mathrm{ab}
\end{array}\right]
$$

$$
\mathrm{M}_{21}=\mathrm{a} \times \mathrm{ab}-\mathrm{c} \times \mathrm{bc}
$$

$$
M_{21}=a^{2} b-c^{2} b
$$

$$
\Rightarrow \mathrm{M}_{31}=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{bc} \\
\mathrm{~b} & \mathrm{ca}
\end{array}\right]
$$

$M_{31}=a \times c a-b \times b c$
$M_{31}=a^{2} c-b^{2} c$
$\mathrm{C}_{11}=(-1)^{1+1} \times \mathrm{M}_{11}$
$=1 \times\left(a b^{2}-a c^{2}\right)$
$=a b^{2}-a c^{2}$
$\mathrm{C}_{21}=(-1)^{2+1} \times \mathrm{M}_{21}$
$=-1 \times\left(a^{2} b-c^{2} b\right)$
$=c^{2} b-a^{2} b$
$C_{31}=(-1)^{3+1} \times M_{31}$
$=1 \times\left(a^{2} c-b^{2} c\right)$
$=a^{2} c-b^{2} c$
Now expanding along the first column we get
$|A|=a_{11} \times C_{11}+a_{21} \times C_{21}+a_{31} \times C_{31}$
$=1 \times\left(a b^{2}-a c^{2}\right)+1 \times\left(c^{2} b-a^{2} b\right)+1 \times\left(a^{2} c-b^{2} c\right)$
$=a b^{2}-a c^{2}+c^{2} b-a^{2} b+a^{2} c-b^{2} c$
(v) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.
Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{i+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}}$
Given,

$$
A=\left[\begin{array}{lll}
0 & 2 & 6 \\
1 & 5 & 0 \\
3 & 7 & 1
\end{array}\right]
$$

From the above matrix we have,
$\Rightarrow \mathrm{M}_{11}=\left[\begin{array}{ll}5 & 0 \\ 7 & 1\end{array}\right]$
$M_{11}=5 \times 1-7 \times 0$
$M_{11}=5$
$\Rightarrow \mathrm{M}_{21}=\left[\begin{array}{ll}2 & 6 \\ 7 & 1\end{array}\right]$
$M_{21}=2 \times 1-7 \times 6$
$M_{21}=-40$
$\Rightarrow \mathrm{M}_{31}=\left[\begin{array}{ll}2 & 6 \\ 5 & 0\end{array}\right]$
$M_{31}=2 \times 0-5 \times 6$
$M_{31}=-30$
$\mathrm{C}_{11}=(-1)^{1+1} \times \mathrm{M}_{11}$
$=1 \times 5$
$=5$
$\mathrm{C}_{21}=(-1)^{2+1} \times \mathrm{M}_{21}$
$=-1 \times-40$
$=40$
$\mathrm{C}_{31}=(-1)^{3+1} \times \mathrm{M}_{31}$
$=1 \times-30$
$=-30$
Now expanding along the first column we get
$|A|=a_{11} \times C_{11}+a_{21} \times C_{21}+a_{31} \times C_{31}$
$=0 \times 5+1 \times 40+3 \times(-30)$
$=0+40-90$
$=50$
(vi) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.
Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}}$
Given,

$$
A=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right]
$$

From the given matrices we have,

$$
\begin{aligned}
& \Rightarrow M_{11}=\left[\begin{array}{ll}
b & f \\
f & c
\end{array}\right] \\
& M_{11}=b \times c-f \times f \\
& M_{11}=b c-f^{2} \\
& \Rightarrow M_{21}=\left[\begin{array}{ll}
h & g \\
f & c
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{M}_{21}=\mathrm{h} \times \mathrm{c}-\mathrm{f} \times \mathrm{g}
$$

$$
\mathrm{M}_{21}=\mathrm{hc}-\mathrm{fg}
$$

$$
\Rightarrow \mathrm{M}_{31}=\left[\begin{array}{ll}
\mathrm{h} & \mathrm{~g} \\
\mathrm{~b} & \mathrm{f}
\end{array}\right]
$$

$$
M_{31}=h \times f-b \times g
$$

$$
\mathrm{M}_{31}=\mathrm{hf}-\mathrm{bg}
$$

$$
\mathrm{C}_{11}=(-1)^{1+1} \times \mathrm{M}_{11}
$$

$$
=1 \times\left(b c-f^{2}\right)
$$

$$
=b c-f^{2}
$$

$$
C_{21}=(-1)^{2+1} \times M_{21}
$$

$$
=-1 \times(\mathrm{hc}-\mathrm{fg})
$$

$$
=\mathrm{fg}-\mathrm{hc}
$$

$C_{31}=(-1)^{3+1} \times M_{31}$
$=1 \times(h f-b g)$
$=h f-b g$
Now expanding along the first column we get
$|A|=a_{11} \times C_{11}+a_{21} \times C_{21}+a_{31} \times C_{31}$
$=a \times\left(b c-f^{2}\right)+h \times(f g-h c)+g \times(h f-b g)$
$=a b c-a f^{2}+h g f-h^{2} c+g h f-b g^{2}$
(vii) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.
Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}}$
Given,
$A=\left[\begin{array}{cccc}2 & -1 & 0 & 1 \\ -3 & 0 & 1 & -2 \\ 1 & 1 & -1 & 1 \\ 2 & -1 & 5 & 0\end{array}\right]$
From the given matrix we have,
$\Rightarrow \mathrm{M}_{11}=\left[\begin{array}{ccc}0 & 1 & -2 \\ 1 & -1 & 1 \\ -1 & 5 & 0\end{array}\right]$
$\mathrm{M}_{11}=0(-1 \times 0-5 \times 1)-1(1 \times 0-(-1) \times 1)+(-2)(1 \times 5-(-1) \times(-1))$
$M_{11}=-9$
$\Rightarrow \mathrm{M}_{21}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & -1 & 1 \\ -1 & 5 & 0\end{array}\right]$
$M_{21}=-1(-1 \times 0-5 \times 1)-0(1 \times 0-(-1) \times 1)+1(1 \times 5-(-1) \times(-1))$
$M_{21}=9$
$\Rightarrow M_{31}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 1 & -2 \\ -1 & 5 & 0\end{array}\right]$
$M_{31}=-1(1 \times 0-5 \times(-2))-0(0 \times 0-(-1) \times(-2))+1(0 \times 5-(-1) \times 1)$
$M_{31}=-9$
$\Rightarrow M_{41}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 1 & -2 \\ 1 & -1 & 1\end{array}\right]$
$M_{41}=-1(1 \times 1-(-1) \times(-2))-0(0 \times 1-1 \times(-2))+1(0 \times(-1)-1 \times 1)$
$M_{41}=0$
$\mathrm{C}_{11}=(-1)^{1+1} \times \mathrm{M}_{11}$
$=1 \times(-9)$
$=-9$
$C_{21}=(-1)^{2+1} \times M_{21}$
$=-1 \times 9$
$=-9$
$C_{31}=(-1)^{3+1} \times M_{31}$
$=1 \times-9$
$=-9$
$C_{41}=(-1)^{4+1} \times M_{41}$
$=-1 \times 0$
$=0$
Now expanding along the first column we get
$|A|=a_{11} \times C_{11}+a_{21} \times C_{21}+a_{31} \times C_{31}+a_{41} \times C_{41}$
$=2 \times(-9)+(-3) \times-9+1 \times(-9)+2 \times 0$
$=-18+27-9$
$=0$

2. Evaluate the following determinants:

(i) $\left|\begin{array}{cc}x & -7 \\ x & 5 x+1\end{array}\right|$
(ii) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
(iii) $\left|\begin{array}{ll}\cos 15^{0} & \sin 15^{0} \\ \sin 75^{0} & \cos 75^{0}\end{array}\right|$
(iv) $\left|\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right|$

Solution:

(i) Given
$\left|\begin{array}{cc}x & -7 \\ x & 5 x+1\end{array}\right|$
$\Rightarrow|A|=x(5 x+1)-(-7) x$
$|A|=5 x^{2}+8 x$
(ii) Given
$\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
$\Rightarrow|A|=\cos \theta \times \cos \theta-(-\sin \theta) \times \sin \theta$
$|A|=\cos ^{2} \theta+\sin ^{2} \theta$
We know that $\cos ^{2} \theta+\sin ^{2} \theta=1$
$|A|=1$
(iii) Given
$\left|\begin{array}{cc}\cos 15^{0} & \sin 15^{\circ} \\ \sin 75^{\circ} & \cos 75^{\circ}\end{array}\right|$
$\Rightarrow|A|=\cos 15^{\circ} \times \cos 75^{\circ}+\sin 15^{\circ} \times \sin 75^{\circ}$
We know that $\cos (A-B)=\cos A \cos B+\sin A \sin B$
By substituting this we get, $|A|=\cos (75-15)^{\circ}$

$$
\begin{aligned}
& |A|=\cos 60^{\circ} \\
& |A|=0.5
\end{aligned}
$$

(iv) Given

$$
\begin{aligned}
& \left|\begin{array}{cc}
a+i b & c+i d \\
-c+i d & a-i b
\end{array}\right| \\
& \Rightarrow|A|=(a+i b)(a-i b)-(c+i d)(-c+i d) \\
& =(a+i b)(a-i b)+(c+i d)(c-i d) \\
& =a^{2}-i^{2} b^{2}+c^{2}-i^{2} d^{2}
\end{aligned}
$$

We know that $i^{2}=-1$
$=a^{2}-(-1) b^{2}+c^{2}-(-1) d^{2}$
$=a^{2}+b^{2}+c^{2}+d^{2}$

3. Evaluate:

$\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{array}\right|^{2}$

Solution:

Since $|A B|=|A||B|$
$|A|=\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{array}\right|$
$|\mathrm{A}|=2\left|\begin{array}{cc}17 & 5 \\ 20 & 12\end{array}\right|-3\left|\begin{array}{cc}13 & 5 \\ 15 & 12\end{array}\right|+7\left|\begin{array}{cc}13 & 17 \\ 15 & 20\end{array}\right|$
$=2(17 \times 12-5 \times 20)-3(13 \times 12-5 \times 15)+7(13 \times 20-15 \times 17)$
$=2(204-100)-3(156-75)+7(260-255)$
$=2 \times 104-3 \times 81+7 \times 5$
$=208-243+35$
= 0
Now $|A|^{2}=|A| \times|A|$
$|A|^{2}=0$

4. Show that

$\left|\begin{array}{cc}\sin 10^{0} & -\cos 10^{\circ} \\ \sin 80^{\circ} & \cos 80^{\circ}\end{array}\right|$

Solution:

Given
$\left|\begin{array}{cc}\sin 10^{0} & -\cos 10^{\circ} \\ \sin 80^{\circ} & \cos 80^{\circ}\end{array}\right|$

Let the given determinant as A
Using $\sin (A+B)=\sin A \times \cos B+\cos A \times \sin B$
$\Rightarrow|A|=\sin 10^{\circ} \times \cos 80^{\circ}+\cos 10^{\circ} x \sin 80^{\circ}$
$|A|=\sin (10+80)^{\circ}$
$|\mathrm{A}|=\sin 90^{\circ}$
$|A|=1$
Hence Proved
5. Evaluate $\left|\begin{array}{ccc}2 & 3 & -5 \\ 7 & 1 & -2 \\ -3 & 4 & 1\end{array}\right|$ by two methods.

Solution:

Given,

$$
|A|=\left|\begin{array}{ccc}
2 & 3 & -5 \\
7 & 1 & -2 \\
-3 & 4 & 1
\end{array}\right|
$$

Expanding along the first row

$$
|A|=2\left|\begin{array}{cc}
1 & -2 \\
4 & 1
\end{array}\right|-3\left|\begin{array}{cc}
7 & -2 \\
-3 & 1
\end{array}\right|-5\left|\begin{array}{cc}
7 & 1 \\
-3 & 4
\end{array}\right|
$$

$$
=2(1 \times 1-4 \times(-2))-3(7 \times 1-(-2) \times(-3))-5(7 \times 4-1 \times(-3))
$$

$$
=2(1+8)-3(7-6)-5(28+3)
$$

$$
=2 \times 9-3 \times 1-5 \times 31
$$

$$
=18-3-155
$$

$$
=-140
$$

Now by expanding along the second column
$|A|=2\left|\begin{array}{cc}1 & -2 \\ 4 & 1\end{array}\right|-7\left|\begin{array}{cc}3 & -5 \\ 4 & 1\end{array}\right|-3\left|\begin{array}{cc}3 & -5 \\ 1 & -2\end{array}\right|$
$=2(1 \times 1-4 \times(-2))-7(3 \times 1-4 \times(-5))-3(3 \times(-2)-1 \times(-5))$
$=2(1+8)-7(3+20)-3(-6+5)$
$=2 \times 9-7 \times 23-3 \times(-1)$
$=18-161+3$
$=-140$
6. Evaluate $: \Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$

Solution:

Given
$\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$
Expanding along the first row
$|A|=0\left|\begin{array}{cc}0 & \sin \beta \\ -\sin \beta & 0\end{array}\right|-\sin \alpha\left|\begin{array}{cc}-\sin \alpha & \sin \beta \\ \cos \alpha & 0\end{array}\right|-\cos \alpha\left|\begin{array}{cc}-\sin \alpha & 0 \\ \cos \alpha & -\sin \beta\end{array}\right|$
$\Rightarrow|A|=0(0-\sin \beta(-\sin \beta))-\sin \alpha(-\sin \alpha \times 0-\sin \beta \cos \alpha)-\cos \alpha((-\sin \alpha)(-\sin \beta)-0 \times$ $\cos \alpha)$
$|A|=0+\sin \alpha \sin \beta \cos \alpha-\cos \alpha \sin \alpha \sin \beta$
$|A|=0$

1. Evaluate the following determinant:

(i) $\left|\begin{array}{ccc}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{array}\right|$
(ii) $\left|\begin{array}{lll}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{array}\right|$
(iii) $\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|$
(iv) $\left|\begin{array}{ccc}1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2\end{array}\right|$
(v) $\left|\begin{array}{ccc}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{array}\right|$
(vi) $\left|\begin{array}{ccc}6 & 3 & -2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$
(vii) $\left|\begin{array}{cccc}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{array}\right|$
(viii) $\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$

Solution:

(i) Given
$\left|\begin{array}{ccc}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{array}\right|$

Let, $\Delta=\left|\begin{array}{ccc}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{array}\right|=2\left|\begin{array}{ccc}1 & 3 & 5 \\ 1 & 3 & 5 \\ 31 & 11 & 38\end{array}\right|$
Now by applying, $R_{2} \rightarrow R_{2}-R_{1}$, we get,
$\Rightarrow \Delta=2\left|\begin{array}{ccc}1 & 3 & 5 \\ 0 & 0 & 0 \\ 31 & 11 & 38\end{array}\right|=0$
So, $\Delta=0$
(ii) Given
$\left|\begin{array}{lll}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{array}\right|$

Let, $\Delta=\left|\begin{array}{lll}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{array}\right|$
By applying column operation $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-4 \mathrm{C}_{3}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}4 & 19 & 21 \\ -3 & 13 & 14 \\ -3 & 24 & 26\end{array}\right|$
Again by applying row operation, $R_{1} \rightarrow R_{1}+R_{2}$ and $R_{3} \rightarrow R_{3}-R_{2}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 32 & 35 \\ -3 & 13 & 14 \\ 0 & 11 & 12\end{array}\right|$
Now, applying $R_{2} \rightarrow R_{2}+3 R_{1}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 32 & 35 \\ 0 & 109 & 119 \\ 0 & 11 & 12\end{array}\right|$
$=1[(109)(12)-(119)(11)]$
$=1308-1309$
= -1
So, $\Delta=-1$
(iii) Given,
$\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right|$
$=a\left(b c-f^{2}\right)-h(h c-f g)+g(h f-b g)$
$=a b c-a f^{2}-c h^{2}+f g h+f g h-b g^{2}$
$=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}$
So, $\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}$
(iv) Given
$=\left|\begin{array}{ccc}1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}1 & - \\ 4 & -1 & 2 \\ 3 & 5 & 2\end{array}\right|$
By taking 2 as common we get,
$\Rightarrow \Delta=2\left|\begin{array}{ccc}1 & -3 & 1 \\ 4 & -1 & 1 \\ 3 & 5 & 1\end{array}\right|$
Now by applying, row operation $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get
$\Rightarrow \Delta=2\left|\begin{array}{ccc}1 & -3 & 1 \\ 3 & 2 & 0 \\ 2 & 8 & 0\end{array}\right|$
$=2[1(24-4)]=40$
So, $\Delta=40$
(v) Given
$\left|\begin{array}{ccc}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{array}\right|$

Let, $\Delta=\left|\begin{array}{ccc}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{array}\right|$
By applying column operation $C_{3} \rightarrow C_{3}-C_{2}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 4 & 5 \\ 4 & 9 & 7 \\ 9 & 16 & 9\end{array}\right|$
Again by applying column operation $C_{2} \rightarrow C_{2}+C_{1}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 5 & 5 \\ 4 & 13 & 7 \\ 9 & 25 & 9\end{array}\right|$
Now by applying $C_{2} \rightarrow C_{2}-5 C_{1}$ and $C_{3} \rightarrow C_{3}-5 C_{1}$ we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 0 & 0 \\ 4 & -7 & -13 \\ 9 & -20 & -36\end{array}\right|$
$=1[(-7)(-36)-(-20)(-13)]$
$=252-260$
$=-8$
So, $\Delta=-8$
(vi) Given,
$\left|\begin{array}{ccc}6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$
Applying row operations, $R_{1} \rightarrow R_{1}-3 R_{2}$ and $R_{3} \rightarrow R_{3}+5 R_{2}$ we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}0 & 0 & -4 \\ 2 & -1 & 2 \\ 0 & 0 & 12\end{array}\right|=0$
So, $\Delta=0$
(vii) Given
$\left|\begin{array}{cccc}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{array}\right|$

Let, $\Delta=\left|\begin{array}{cccc}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{cccc}1 & 3 & 3^{2} & 3^{3} \\ 3 & 3^{2} & 3^{3} & 1 \\ 3^{2} & 3^{3} & 1 & 3 \\ 3^{3} & 1 & 3 & 3^{2}\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}+C_{4}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{cccc}1+3+3^{2}+3^{3} & 3 & 3^{2} & 3^{3} \\ 1+3+3^{2}+3^{3} & 3^{2} & 3^{3} & 1 \\ 1+3+3^{2}+3^{3} & 3^{3} & 1 & 3 \\ 1+3+3^{2}+3^{3} & 1 & 3 & 3^{2}\end{array}\right|$
$\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right)\left|\begin{array}{cccc}1 & 3 & 3^{2} & 3^{3} \\ 1 & 3^{2} & 3^{3} & 1 \\ 1 & 3^{3} & 1 & 3 \\ 1 & 1 & 3 & 3^{2}\end{array}\right|$
Now, applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}, R_{4} \rightarrow R_{4}-R_{1}$, we get
$\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right)\left|\begin{array}{cccc}1 & 3 & 3^{2} & 3^{3} \\ 0 & 3^{2}-3 & 3^{3}-3^{2} & 1-3^{3} \\ 0 & 3^{3}-3 & 1-3^{2} & 3-3^{3} \\ 0 & 1-3 & 3-3^{2} & 3^{2}-3^{3}\end{array}\right|$
$\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right)\left|\begin{array}{ccc}6 & 18 & -26 \\ 24 & -8 & -24 \\ -2 & -6 & -18\end{array}\right|$
$\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right) 2^{3}\left|\begin{array}{ccc}3 & -9 & 13 \\ 12 & 4 & 12 \\ -1 & 3 & 9\end{array}\right|$

Now, applying $R_{1} \rightarrow R_{1}+3 R_{3}$
$\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right) 2^{3}\left|\begin{array}{ccc}0 & 0 & 40 \\ 12 & 4 & 12 \\ -1 & 3 & 9\end{array}\right|$
$=\left(1+3+3^{2}+3^{3}\right) 2^{3}[40(36-(-4))]$
$=(40)(8)(40)(40)=512000$
So, $\Delta=512000$
(viii) Given,
$\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$
$\Rightarrow \Delta=6\left|\begin{array}{ccc}17 & 3 & 6 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}-R_{1}$, we get,
$\Rightarrow \Delta=6\left|\begin{array}{ccc}17 & 3 & 6 \\ 1 & 3 & 4 \\ 0 & 0 & 0\end{array}\right|=0$
So, $\Delta=0$
2. Without expanding, show that the value of each of the following determinants is zero:
(i) $\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{array}\right|$
(ii) $\left|\begin{array}{ccc}6 & 3 & -2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$
(iii) $\left\lvert\, \begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{array}\right.$
(iv) $\left|\begin{array}{lll}\frac{1}{a} & a^{2} & b c \\ \frac{1}{b} & b^{2} & a c \\ \frac{1}{c} & c^{2} & a b\end{array}\right|$
(v) $\left|\begin{array}{ccc}a+b & 2 a+b & 3 a+b \\ 2 a+b & 3 a+b & 4 a+b \\ 4 a+b & 5 a+b & 6 a+b\end{array}\right|$
(vi) $\left|\begin{array}{ccc}1 & a & a^{2}-b c \\ 1 & b & b^{2}-a c \\ 1 & c & c^{2}-a b\end{array}\right|$
(vii) $\left|\begin{array}{lll}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{array}\right|$
(viii) $\left|\begin{array}{ccc}0 & x & y \\ -x & 0 & z \\ -y & -z & 0\end{array}\right|$
(ix) $\left|\begin{array}{lll}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{array}\right|$
$(x)\left|\begin{array}{cccc}1^{2} & 2^{2} & 3^{2} & 4^{2} \\ 2^{2} & 3^{2} & 4^{2} & 5^{2} \\ 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 4^{2} & 5^{2} & 6^{2} & 7^{2}\end{array}\right|$
$(x i)\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|$
(xii) $\left|\begin{array}{lll}\left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1\end{array}\right|$
(xiii) $\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|$
(xiv) $\left|\begin{array}{ccc}\sin ^{2} 23^{\circ} & \sin ^{2} 67^{\circ} & \cos 180^{\circ} \\ -\sin ^{2} 67^{\circ} & -\sin ^{2} 23^{\circ} & \cos ^{2} 180^{\circ} \\ \cos 180^{\circ} & \sin ^{2} 23^{\circ} & \sin ^{2} 67^{\circ}\end{array}\right|$
$(x v)\left|\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & \cos 2 y \\ \sin x & \cos x & \sin y \\ -\cos x & \sin x & -\cos y\end{array}\right|$
(xvi) $\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{46} & 5 & \sqrt{10} \\ 3+\sqrt{115} & \sqrt{15} & 5\end{array}\right|$
(xvii) $\left|\begin{array}{lll}\sin ^{2} A & \cot A & 1 \\ \sin ^{2} B & \cot B & 1 \\ \sin ^{2} C & \cot C & 1\end{array}\right|$, where A, B, C are the angles of $\triangle A B C$

Solution:

(i) Given,
$\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{array}\right|$

Let, $\Delta=\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{array}\right|$
Now by applying row operation $R_{3} \rightarrow R_{3}-R_{2}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 4 & 1 & -2\end{array}\right|$
Again apply row operations $R_{2} \rightarrow R_{2}-R_{1}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}8 & 2 & 7 \\ 4 & 1 & -2 \\ 4 & 1 & -2\end{array}\right|$
As, $R_{2}=R_{3}$, therefore the value of the determinant is zero.
(ii) Given,

$$
\left|\begin{array}{ccc}
6 & -3 & 2 \\
2 & -1 & 2 \\
-10 & 5 & 2
\end{array}\right|
$$

Let, $\Delta=\left|\begin{array}{ccc}6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$
Taking (-2) common from C_{1} in above matrix we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}-3 & -3 & 2 \\ -1 & -1 & 2 \\ 5 & 5 & 2\end{array}\right|$
As, $C_{1}=C_{2}$, hence the value of the determinant is zero.
(iii) Given,
$\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{array}\right|$

Let, $\Delta=\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{array}\right|$
Now by applying column operation $C_{3} \rightarrow C_{3}-C_{2}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 2 & 3 & 7\end{array}\right|$
As, $R_{1}=R_{3}$, so value so determinant is zero.
(iv) Given,
$\left|\begin{array}{lll}1 / a & a^{2} & b c \\ 1 / b & b^{2} & a c \\ 1 / c & c^{2} & a b\end{array}\right|$

Let, $\Delta=\left|\begin{array}{ccc}1 / \mathrm{a} & \mathrm{a}^{2} & \mathrm{bc} \\ 1 / \mathrm{b} & \mathrm{b}^{2} & \mathrm{ac} \\ 1 / \mathrm{c} & \mathrm{c}^{2} & \mathrm{ab}\end{array}\right|$
Multiplying R_{1}, R_{2} and R_{3} with a, b and c respectively we get,
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & \mathrm{a}^{3} & \mathrm{abc} \\ 1 & \mathrm{~b}^{3} & \mathrm{abc} \\ 1 & \mathrm{c}^{3} & \mathrm{abc}\end{array}\right|$
Now by taking, abc common from C_{3} gives,
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & \mathrm{a}^{3} & 1 \\ 1 & \mathrm{~b}^{3} & 1 \\ 1 & \mathrm{c}^{3} & 1\end{array}\right|$
As, $\mathrm{C}_{1}=\mathrm{C}_{3}$ hence the value of determinant is zero.
(v) Given,
$\left|\begin{array}{ccc}a+b & 2 a+b & 3 a+b \\ 2 a+b & 3 a+b & 4 a+b \\ 4 a+b & 5 a+b & 6 a+b\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}a+b & 2 a+b & 3 a+b \\ 2 a+b & 3 a+b & 4 a+b \\ 4 a+b & 5 a+b & 6 a+b\end{array}\right|$
Now by applying column operation $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{2}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}\mathrm{a}+\mathrm{b} & 2 \mathrm{a}+\mathrm{b} & \mathrm{a} \\ 2 \mathrm{a}+\mathrm{b} & 3 \mathrm{a}+\mathrm{b} & \mathrm{a} \\ 4 \mathrm{a}+\mathrm{b} & 5 \mathrm{a}+\mathrm{b} & \mathrm{a}\end{array}\right|$
Again applying column operation $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ gives,
$\Rightarrow \Delta=\left|\begin{array}{ccc}\mathrm{a}+\mathrm{b} & \mathrm{a} & \mathrm{a} \\ 2 \mathrm{a}+\mathrm{b} & \mathrm{a} & \mathrm{a} \\ 4 \mathrm{a}+\mathrm{b} & \mathrm{a} & \mathrm{a}\end{array}\right|$
As, $C_{2}=C_{3}$, so the value of the determinant is zero.
(vi) Given,

$$
\left|\begin{array}{lll}
1 & \mathrm{a} & \mathrm{a}^{2}-\mathrm{bc} \\
1 & \mathrm{~b} & \mathrm{~b}^{2}-\mathrm{ac} \\
1 & \mathrm{c} & \mathrm{c}^{2}-\mathrm{ab}
\end{array}\right|
$$

Let, $\Delta=\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{a}^{2}-\mathrm{bc} \\ 1 & \mathrm{~b} & \mathrm{~b}^{2}-\mathrm{ac} \\ 1 & \mathrm{c} & \mathrm{c}^{2}-\mathrm{ab}\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{a}^{2} \\ 1 & \mathrm{~b} & \mathrm{~b}^{2} \\ 1 & \mathrm{c} & \mathrm{c}^{2}\end{array}\right|-\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{bc} \\ 1 & \mathrm{~b} & \mathrm{ac} \\ 1 & \mathrm{c} & \mathrm{ab}\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & a & a^{2} \\ 0 & b-a & b^{2}-a^{2} \\ 0 & c-a & c^{2}-a^{2}\end{array}\right|-\left|\begin{array}{ccc}1 & a & b c \\ 0 & b-a & (a-b) c \\ 0 & c-a & (a-c) b\end{array}\right|$
Taking $(b-a)$ and $(c-a)$ common from R_{2} and R_{3} respectively,
$\Rightarrow \Delta=(b-a)(c-a)\left|\begin{array}{ccc}1 & a & a^{2} \\ 0 & 1 & b+a \\ 0 & 1 & c+a\end{array}\right|-(b-a)(c-a)\left|\begin{array}{ccc}1 & a & b c \\ 0 & 1 & -c \\ 0 & 1 & -b\end{array}\right|$
$=[(b-a)(c-a)][(c+a)-(b+a)-(-b+c)]$
$=[(b-a)(c-a)][c+a+b-a-b-c]$
$=[(b-a)(c-a)][0]=0$
(vii) Given,
$\left|\begin{array}{lll}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{array}\right|$

Let, $\Delta=\left|\begin{array}{lll}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{array}\right|$
Now by applying column operation, $C_{1} \rightarrow C_{1}-8 C_{3}$ we get
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & 1 & 6 \\ 7 & 7 & 4 \\ 2 & 2 & 3\end{array}\right|$
As, $C_{1}=C_{2}$ hence, the determinant is zero.
(viii) Given,
$\left|\begin{array}{ccc}0 & x & y \\ -x & 0 & z \\ -y & -z & 0\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}0 & x & y \\ -\mathrm{x} & 0 & \mathrm{z} \\ -\mathrm{y} & -\mathrm{z} & 0\end{array}\right|$
Multiplying C_{1}, C_{2} and C_{3} with z, y and x respectively we get,
$\Rightarrow \Delta=\left(\frac{1}{\mathrm{xyz}}\right)\left|\begin{array}{ccc}0 & \mathrm{xy} & \mathrm{yx} \\ -\mathrm{xz} & 0 & \mathrm{zx} \\ -\mathrm{yz} & -\mathrm{zy} & 0\end{array}\right|$
Now, taking y, x and z common from R_{1}, R_{2} and R_{3} gives,
$\Rightarrow \Delta=\left(\frac{1}{\mathrm{xyz}}\right)\left|\begin{array}{ccc}0 & \mathrm{x} & \mathrm{x} \\ -\mathrm{z} & 0 & \mathrm{z} \\ -\mathrm{y} & -\mathrm{y} & 0\end{array}\right|$
Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}$ gives,
$\Rightarrow \Delta=\left(\frac{1}{\mathrm{xyz}}\right)\left|\begin{array}{ccc}0 & 0 & \mathrm{x} \\ -\mathrm{z} & -\mathrm{z} & \mathrm{z} \\ -\mathrm{y} & -\mathrm{y} & 0\end{array}\right|$
As, $C_{1}=C_{2}$, therefore determinant is zero.
(ix) Given,
$\left|\begin{array}{lll}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{array}\right|$
Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-7 \mathrm{C}_{3}$, we get
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & 1 & 6 \\ 7 & 7 & 4 \\ 3 & 3 & 2\end{array}\right|$

As, $\mathrm{C}_{1}=\mathrm{C}_{2}$, hence determinant is zero
(x) Given,
$\left|\begin{array}{llll}1^{2} & 2^{2} & 3^{2} & 4^{2} \\ 2^{2} & 3^{2} & 4^{2} & 5^{2} \\ 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 4^{2} & 5^{2} & 6^{2} & 7^{2}\end{array}\right|$

Let, $\Delta=\left|\begin{array}{llll}1^{2} & 2^{2} & 3^{2} & 4^{2} \\ 2^{2} & 3^{2} & 4^{2} & 5^{2} \\ 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 4^{2} & 5^{2} & 6^{2} & 7^{2}\end{array}\right|$
Now we have to apply the column operation $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{2}$, and $\mathrm{C}_{4} \rightarrow \mathrm{C}_{4}-\mathrm{C}_{1}$, then we get,
$\Rightarrow \Delta=\left|\begin{array}{llll}1^{2} & 2^{2} & 3^{2}-2^{2} & 4^{2}-1^{2} \\ 2^{2} & 3^{2} & 4^{2}-3^{2} & 5^{2}-2^{2} \\ 3^{2} & 4^{2} & 5^{2}-4^{2} & 6^{2}-3^{2} \\ 4^{2} & 5^{2} & 6^{2}-5^{2} & 7^{2}-4^{2}\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{cccc}1^{2} & 2^{2} & 5 & 15 \\ 2^{2} & 3^{2} & 7 & 21 \\ 3^{2} & 4^{2} & 9 & 27 \\ 4^{2} & 5^{2} & 11 & 33\end{array}\right|$
Taking 3 common from C_{4} we get,
$\Rightarrow \Delta=3\left|\begin{array}{cccc}1^{2} & 2^{2} & 5 & 5 \\ 2^{2} & 3^{2} & 7 & 7 \\ 3^{2} & 4^{2} & 9 & 9 \\ 4^{2} & 5^{2} & 11 & 11\end{array}\right|$
As, C3 = C4 so, the determinant is zero.
(xi) Given,
$\left\lvert\, \begin{gathered}a \\ a+2 x \\ x\end{gathered}\right.$
b
$b+2 y$
y
$\left.\begin{gathered}c \\ c+2 z \\ z\end{gathered} \right\rvert\,$

Let, $\Delta=\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|$
Now by applying, $C_{2} \rightarrow C_{2}+C_{1}$ and $C_{3} \rightarrow C_{3}+C_{1}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}a & b & c \\ 2 \mathrm{a}+2 \mathrm{x} & 2 \mathrm{~b}+2 \mathrm{y} & 2 \mathrm{c}+2 \mathrm{z} \\ \mathrm{a}+\mathrm{x} & \mathrm{b}+\mathrm{y} & \mathrm{c}+\mathrm{z}\end{array}\right|$
Taking 2 common from R_{2} we get,
$\Rightarrow \Delta=2\left|\begin{array}{ccc}a & b & c \\ a+x & b+y & c+z \\ a+x & b+y & c+z\end{array}\right|$
As, $R_{2}=R_{3}$, hence value of determinant is zero.
(xii) Given,
$\left|\begin{array}{lll}\left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}\left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{lll}2^{2 x}+2^{-2 x}+2 & 2^{2 x}+2^{-2 x}-2 & 1 \\ 3^{2 x}+3^{-2 x}+2 & 3^{2 x}+3^{-2 x}-2 & 1 \\ 4^{2 x}+4^{-2 x}+2 & 4^{2 x}+4^{-2 x}-2 & 1\end{array}\right|$
By applying, column operation $C_{1} \rightarrow C_{1}-C_{2}$, we get
$\Rightarrow \Delta=\left|\begin{array}{lll}4 & 2^{2 x}+2^{-2 x}-2 & 1 \\ 4 & 3^{2 x}+3^{-2 x}-2 & 1 \\ 4 & 4^{2 x}+4^{-2 x}-2 & 1\end{array}\right|$
$\Rightarrow \Delta=4\left|\begin{array}{lll}1 & 2^{2 x}+2^{-2 x}-2 & 1 \\ 1 & 3^{2 x}+3^{-2 x}-2 & 1 \\ 1 & 4^{2 x}+4^{-2 x}-2 & 1\end{array}\right|$
As $C_{1}=C_{3}$ hence determinant is zero.
(xiii) Given,
$\left|\begin{array}{ccc}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|$
Multiplying C_{1} with $\sin \delta, C_{2}$ with $\cos \delta$, we get
$\Rightarrow \Delta=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}\sin \alpha \sin \delta & \cos \alpha \cos \delta & \cos (\alpha+\delta) \\ \sin \beta \sin \delta & \cos \beta \cos \delta & \cos (\beta+\delta) \\ \sin \gamma \sin \delta & \cos \gamma \cos \delta & \cos (\gamma+\delta)\end{array}\right|$
Now, by applying column operation, $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$, we get,
$\Rightarrow \Delta=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}\sin \alpha \sin \delta & \cos \alpha \cos \delta-\sin \alpha \sin \delta & \cos (\alpha+\delta) \\ \sin \beta \sin \delta & \cos \beta \cos \delta-\sin \beta \sin \delta & \cos (\beta+\delta) \\ \sin \gamma \sin \delta & \cos \gamma \cos \delta-\sin \gamma \sin \delta & \cos (\gamma+\delta)\end{array}\right|$
$\Rightarrow \Delta=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}\sin \alpha \sin \delta & \cos (\alpha+\delta) & \cos (\alpha+\delta) \\ \sin \beta \sin \delta & \cos (\beta+\delta) & \cos (\beta+\delta) \\ \sin \gamma \sin \delta & \cos (\gamma+\delta) & \cos (\gamma+\delta)\end{array}\right|$
As $C_{2}=C_{3}$ hence determinant is zero.
(xiv) Given,
$\left|\begin{array}{ccc}\sin ^{2} 23^{\circ} & \sin ^{2} 67^{\circ} & \cos 180^{\circ} \\ -\sin ^{2} 67^{\circ} & -\sin ^{2} 23^{\circ} & \cos ^{2} 180^{\circ} \\ \cos 180^{\circ} & \sin ^{2} 23^{\circ} & \sin ^{2} 67^{\circ}\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}\sin ^{2} 23^{\circ} & \sin ^{2} 67^{\circ} & \cos 180^{\circ} \\ -\sin ^{2} 67^{\circ} & -\sin ^{2} 23^{\circ} & \cos ^{2} 180^{\circ} \\ \cos 180^{\circ} & \sin ^{2} 23^{\circ} & \sin ^{2} 67^{\circ}\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}\sin ^{2} 23^{\circ}+\sin ^{2} 67^{\circ} & \sin ^{2} 67^{\circ} & \cos 180^{\circ} \\ -\sin ^{2} 67^{\circ}-\sin ^{2} 23^{\circ} & -\sin ^{2} 23^{\circ} & \cos ^{2} 180^{\circ} \\ \cos 180^{\circ}+\sin ^{2} 23^{\circ} & \sin ^{2} 23^{\circ} & \sin ^{2} 67^{\circ}\end{array}\right|$
Using, $\sin (90-A)=\cos A, \sin ^{2} A+\cos ^{2} A=1$, and $\cos 180^{\circ}=-1$,
$\Rightarrow \Delta=\left|\begin{array}{ccc}\sin ^{2} 23^{\circ}+\cos ^{2} 23^{\circ} & \sin ^{2} 67^{\circ} & \cos 180^{\circ} \\ -\left(\sin ^{2} 67^{\circ}+\cos ^{2} 67^{\circ}\right) & -\sin ^{2} 23^{\circ} & \cos ^{2} 180^{\circ} \\ -\left(1-\sin ^{2} 23^{\circ}\right) & \sin ^{2} 23^{\circ} & \sin ^{2} 67^{\circ}\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & \sin ^{2} 67^{\circ} & -1 \\ -1 & -\sin ^{2} 23^{\circ} & 1 \\ -\cos ^{2} 23^{\circ} & \sin ^{2} 23^{\circ} & \cos ^{2} 23^{\circ}\end{array}\right|$
Taking, (-1) common from C_{1}, we get
$\Rightarrow \Delta=-\left|\begin{array}{ccc}-1 & \sin ^{2} 67^{\circ} & -1 \\ 1 & -\sin ^{2} 23^{\circ} & 1 \\ \cos ^{2} 23^{\circ} & \sin ^{2} 23^{\circ} & \cos ^{2} 23^{\circ}\end{array}\right|$
Therefore, as $\mathrm{C}_{1}=\mathrm{C}_{3}$ determinant is zero.
(xv) Given,
$\left|\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & \cos 2 y \\ \sin x & \cos x & \sin y \\ -\cos x & \sin x & -\cos y\end{array}\right|$

Let, $\Delta=\left|\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & \cos 2 y \\ \sin x & \cos x & \sin y \\ -\cos x & \sin x & -\cos y\end{array}\right|$
Multiplying R_{2} with $\sin y$ and R_{3} with cos y we get,
$\Rightarrow \Delta=\frac{1}{\sin y \cos y}\left|\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & \cos 2 y \\ \sin x \sin y & \cos x \sin y & \sin ^{2} y \\ -\cos x \cos y & \sin x \cos y & -\cos ^{2} y\end{array}\right|$
Now, by applying row operation $R_{2} \rightarrow R_{2}+R_{3}$, we get,
$=\frac{1}{\sin y \cos y}\left|\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & \cos 2 y \\ \sin x \sin y-\cos x \cos y & \cos x \sin y+\sin x \cos y & \sin ^{2} y-\cos ^{2} y \\ -\cos x \cos y & \sin x \cos y & -\cos ^{2} y\end{array}\right|$

Taking (-1) common from R_{2}, we get
$=\frac{-1}{\sin y \cos y}\left|\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & \cos 2 y \\ -\sin x \sin y+\cos x \cos y & -(\cos x \sin y+\sin x \cos y) & -\sin ^{2} y+\cos ^{2} y \\ -\cos x \cos y & \sin x \cos y & -\cos ^{2} y\end{array}\right|$
$\Rightarrow \Delta=\frac{-1}{\sin y \cos y}\left|\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & \cos 2 y \\ \cos (x+y) & -\sin (x+y) & \cos 2 y \\ -\cos x \cos y & \sin x \cos y & -\cos ^{2} y\end{array}\right|$
As $R_{1}=R_{2}$ hence determinant is zero.
(xvi) Given,
$\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{46} & 5 & \sqrt{10} \\ 3+\sqrt{115} & \sqrt{15} & 5\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{46} & 5 & \sqrt{10} \\ 3+\sqrt{115} & \sqrt{15} & 5\end{array}\right|$
Multiplying C_{2} with $\sqrt{ } 3$ and C_{3} with $\sqrt{ } 23$ we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{15} & \sqrt{115} \\ \sqrt{15}+\sqrt{46} & 5 \sqrt{3} & \sqrt{230} \\ 3+\sqrt{115} & \sqrt{45} & 5 \sqrt{23}\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{5}(\sqrt{3}) & \sqrt{5}(\sqrt{23}) \\ \sqrt{15}+\sqrt{46} & \sqrt{5}(\sqrt{15}) & \sqrt{5}(\sqrt{46}) \\ 3+\sqrt{115} & \sqrt{5}(3) & \sqrt{5}(\sqrt{115})\end{array}\right|$
Now taking $\sqrt{ } 5$ common from C_{2} and C_{3} we get,
$\Rightarrow \Delta=\sqrt{5} \sqrt{5}\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & (\sqrt{3}) & (\sqrt{23}) \\ \sqrt{15}+\sqrt{46} & (\sqrt{15}) & (\sqrt{46}) \\ 3+\sqrt{115} & (3) & (\sqrt{115})\end{array}\right|$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}$
$\Rightarrow \Delta=5\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{23}+\sqrt{3} & (\sqrt{23}) \\ \sqrt{15}+\sqrt{46} & \sqrt{15}+\sqrt{46} & (\sqrt{46}) \\ 3+\sqrt{115} & 3+\sqrt{115} & (\sqrt{115})\end{array}\right|$
As $C_{1}=C_{2}$ hence determinant is zero.
(xvii) Given,
$\left|\begin{array}{lll}\sin ^{2} \mathrm{~A} & \cot \mathrm{~A} & 1 \\ \sin ^{2} \mathrm{~B} & \cot \mathrm{~B} & 1 \\ \sin ^{2} \mathrm{C} & \cot \mathrm{C} & 1\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}\sin ^{2} \mathrm{~A} & \cot \mathrm{~A} & 1 \\ \sin ^{2} \mathrm{~B} & \cot \mathrm{~B} & 1 \\ \sin ^{2} \mathrm{C} & \cot \mathrm{C} & 1\end{array}\right|$
Now,
$\Delta=\sin ^{2} \mathrm{~A}(\cot \mathrm{~B}-\cot \mathrm{C})-\cot \mathrm{A}\left(\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}\right)+1\left(\sin ^{2} \mathrm{~B} \cot \mathrm{C}-\cot \mathrm{B} \sin ^{2} \mathrm{C}\right.$
As A, B and C are angles of a triangle,
$A+B+C=180^{\circ}$
$\Delta=\sin ^{2} \mathrm{~A} \cot \mathrm{~B}-\sin ^{2} \mathrm{~A} \cot \mathrm{C}-\cot \mathrm{A} \sin ^{2} \mathrm{~B}+\cot \mathrm{A} \sin ^{2} \mathrm{C}+\sin ^{2} \mathrm{~B} \cot \mathrm{C}-\cot \mathrm{B}$ $\sin ^{2} \mathrm{C}$

By using formulae, we get
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=k$
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}, \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Delta=0$
Hence proved.

Evaluate the following (3-9):

3. $\left|\begin{array}{lll}a & b+c & a^{2} \\ b & c+a & b^{2} \\ c & a+b & c^{2}\end{array}\right|$

Solution:

Given,

$$
\left|\begin{array}{lll}
\mathrm{a} & \mathrm{~b}+\mathrm{c} & \mathrm{a}^{2} \\
\mathrm{~b} & \mathrm{c}+\mathrm{a} & \mathrm{~b}^{2} \\
\mathrm{c} & \mathrm{a}+\mathrm{b} & \mathrm{c}^{2}
\end{array}\right|
$$

Let, $\Delta=\left|\begin{array}{lll}a & b+c & a^{2} \\ b & c+a & b^{2} \\ c & a+b & c^{2}\end{array}\right|$
Now by applying column operation $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{1}$
$\Rightarrow \Delta=\left|\begin{array}{lll}\mathrm{a} & \mathrm{b}+\mathrm{c}+\mathrm{a} & \mathrm{a}^{2} \\ \mathrm{~b} & \mathrm{c}+\mathrm{a}+\mathrm{b} & \mathrm{b}^{2} \\ \mathrm{c} & \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{c}^{2}\end{array}\right|$
Taking, $(\mathrm{a}+\mathrm{b}+\mathrm{c}$) common,
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{lll}\mathrm{a} & 1 & \mathrm{a}^{2} \\ \mathrm{~b} & 1 & \mathrm{~b}^{2} \\ \mathrm{c} & 1 & \mathrm{c}^{2}\end{array}\right|$
Again by applying row operation $R_{2} \rightarrow R_{2}-R_{1}$, and $R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow \Delta=(a+b+c)\left|\begin{array}{ccc}a & 1 & a^{2} \\ b-a & 0 & b^{2}-a^{2} \\ c-a & 0 & c^{2}-a^{2}\end{array}\right|$
Taking, $(b-c)$ and $(c-a)$ common,
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{b}-\mathrm{a})(\mathrm{c}-\mathrm{a})\left|\begin{array}{ccc}\mathrm{a} & 1 & \mathrm{a}^{2} \\ 1 & 0 & \mathrm{~b}+\mathrm{a} \\ 1 & 0 & \mathrm{c}+\mathrm{a}\end{array}\right|$
$=(a+b+c)(b-a)(c-a)(b-c)$

So, $\Delta=(a+b+c)(b-a)(c-a)(b-c)$
4. $\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$

Solution:

Given,

$$
\left|\begin{array}{lll}
1 & \mathrm{a} & \mathrm{bc} \\
1 & \mathrm{~b} & \mathrm{ca} \\
1 & \mathrm{c} & \mathrm{ab}
\end{array}\right|
$$

Let, $\Delta=\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{bc} \\ 1 & \mathrm{~b} & \mathrm{ca} \\ 1 & \mathrm{c} & \mathrm{ab}\end{array}\right|$
Now by applying row operation, $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$ we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{bc} \\ 0 & \mathrm{~b}-\mathrm{a} & \mathrm{ca}-\mathrm{bc} \\ 0 & \mathrm{c}-\mathrm{a} & \mathrm{ab}-\mathrm{bc}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & a & b c \\ 0 & b-a & c(a-b) \\ 0 & c-a & b(a-c)\end{array}\right|$
Taking $(a-b)$ and $(a-c)$ common we get,
$\Rightarrow \Delta=(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{bc} \\ 0 & -1 & \mathrm{c} \\ 0 & -1 & \mathrm{~b}\end{array}\right|$
$=(a-b)(c-a)(b-c)$
So, $\Delta=(a-b)(b-c)(c-a)$

The Learning App
5. $\left|\begin{array}{ccc}x+\lambda & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda\end{array}\right|$

Solution:
Given,

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x+\lambda & x & x \\
x & x+\lambda & x \\
x & x & x+\lambda
\end{array}\right| \\
& \text { Let, } \Delta=\left|\begin{array}{ccc}
x+\lambda & x & x \\
x & x+\lambda & x \\
x & x & x+\lambda
\end{array}\right|
\end{aligned}
$$

Applying, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we have,

$$
\Rightarrow \Delta=\left|\begin{array}{ccc}
3 x+\lambda & x & x \\
3 x+\lambda & x+\lambda & x \\
3 x+\lambda & x & x+\lambda
\end{array}\right|
$$

Taking, $(3 x+\lambda)$ common, we get

$$
\Rightarrow \Delta=(3 x+\lambda)\left|\begin{array}{ccc}
1 & x & x \\
1 & x+\lambda & x \\
1 & x & x+\lambda
\end{array}\right|
$$

Applying, $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get,

$$
\Rightarrow \Delta=(3 \mathrm{x}+\lambda)\left|\begin{array}{lll}
1 & \mathrm{x} & \mathrm{x} \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right|
$$

$$
=\lambda^{2}(3 x+\lambda)
$$

So, $\Delta=\lambda^{2}(3 x+\lambda)$
6. $\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$

Solution:

Given,
$\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{c} & \mathrm{a} & \mathrm{b} \\ \mathrm{b} & \mathrm{c} & \mathrm{a}\end{array}\right|$
Now we have to apply column operation, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{lll}\mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{b} & \mathrm{c} \\ \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a} & \mathrm{b} \\ \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{c} & \mathrm{a}\end{array}\right|$
Taking, $(a+b+c)$ we get,
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{lll}1 & \mathrm{~b} & \mathrm{c} \\ 1 & \mathrm{a} & \mathrm{b} \\ 1 & \mathrm{c} & \mathrm{a}\end{array}\right|$
Now by applying row operation, $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get,
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}1 & \mathrm{~b} & \mathrm{c} \\ 0 & \mathrm{a}-\mathrm{b} & \mathrm{b}-\mathrm{c} \\ 0 & \mathrm{c}-\mathrm{b} & \mathrm{a}-\mathrm{c}\end{array}\right|$
$=(a+b+c)[(a-b)(a-c)-(b-c)(c-b)]$
$=(a+b+c)\left[a^{2}-a c-a b+b c+b^{2}+c^{2}-2 b c\right]$
$=(a+b+c)\left[a^{2}+b^{2}+c^{2}-a c-a b-b c\right]$
So, $\Delta=(a+b+c)\left[a^{2}+b^{2}+c^{2}-a c-a b-b c\right]$
7. $\left|\begin{array}{ccc}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right|$

Solution:

Given,
$\left|\begin{array}{lll}\mathrm{x} & 1 & 1 \\ 1 & \mathrm{x} & 1 \\ 1 & 1 & \mathrm{x}\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}\mathrm{x} & 1 & 1 \\ 1 & \mathrm{x} & 1 \\ 1 & 1 & \mathrm{x}\end{array}\right|$
Now by applying column operation, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,

$$
\begin{aligned}
& \Rightarrow \Delta=\left|\begin{array}{lll}
2+\mathrm{x} & 1 & 1 \\
2+\mathrm{x} & \mathrm{x} & 1 \\
2+\mathrm{x} & 1 & \mathrm{x}
\end{array}\right| \\
& \Rightarrow \Delta=(2+\mathrm{x})\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{x} & 1 \\
1 & 1 & \mathrm{x}
\end{array}\right|
\end{aligned}
$$

Again by applying row operation, $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get,
$\Rightarrow \Delta=(2+x)\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & x-1 & 0 \\ 0 & 0 & x-1\end{array}\right|$
$=(2+x)(x-1)^{2}$
So, $\Delta=(2+x)(x-1)^{2}$
8. $\left|\begin{array}{ccc}0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x z^{2} & z y^{2} & 0\end{array}\right|$

Solution:

Given,
$\left|\begin{array}{ccc}0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x^{2} z & z y^{2} & 0\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}0 & x^{2} & x z^{2} \\ x^{2} y & 0 & \mathrm{yz}^{2} \\ \mathrm{x}^{2} \mathrm{z} & \mathrm{zy}^{2} & 0\end{array}\right|$
On simplification we get,
$=0\left(0-y^{3} z^{3}\right)-x y^{2}\left(0-x^{2} y z^{3}\right)+x z^{2}\left(x^{2} y^{3} z-0\right)$
$=0+x^{3} y^{3} z^{3}+x^{3} y^{3} z^{3}$
$=2 x^{3} y^{3} z^{3}$
So, $\Delta=2 x^{3} y^{3} z^{3}$
9. $\left|\begin{array}{ccc}a+x & y & z \\ x & a+y & z \\ x & y & a+z\end{array}\right|$

Solution:

Given,

$$
\left|\begin{array}{ccc}
a+x & y & z \\
x & a+y & z \\
x & y & a+z
\end{array}\right|
$$

Let, $\Delta=\left|\begin{array}{ccc}a+x & y & z \\ x & a+y & z \\ x & y & a+z\end{array}\right|$
Now by applying row operation we get $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{3} \rightarrow R_{3}-R_{2}$
$\Rightarrow \Delta=\left|\begin{array}{ccc}\mathrm{a} & -\mathrm{a} & 0 \\ \mathrm{x} & \mathrm{a}+\mathrm{y} & \mathrm{z} \\ 0 & -\mathrm{a} & \mathrm{a}\end{array}\right|$
Again by applying column operation, $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$
$\Rightarrow \Delta=\left|\begin{array}{ccc}\mathrm{a} & 0 & 0 \\ \mathrm{x} & \mathrm{a}+\mathrm{x}+\mathrm{y} & \mathrm{z} \\ 0 & -\mathrm{a} & \mathrm{a}\end{array}\right|$
$=a[a(a+x+y)+a z]+0+0$
$=a^{2}(a+x+y+z)$
So, $\Delta=a^{2}(a+x+y+z)$
10. If $\Delta=\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|, \Delta_{1}=\left|\begin{array}{ccc}1 & 1 & 1 \\ y z & z x & x y \\ x & y & z\end{array}\right|$, then prove that $\Delta+\Delta_{1}=0$

Solution:

Let, $\Delta=\left|\begin{array}{lll}1 & \mathrm{x} & \mathrm{x}^{2} \\ 1 & \mathrm{y} & \mathrm{y}^{2} \\ 1 & \mathrm{z} & \mathrm{z}^{2}\end{array}\right|+\left|\begin{array}{ccc}1 & 1 & 1 \\ y z & \mathrm{zx} & \mathrm{xy} \\ \mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right|$
As $|A|=|A|^{\top}$
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|+\left|\begin{array}{lll}1 & y z & x \\ 1 & z x & y \\ 1 & x y & z\end{array}\right|$
If any two rows or columns of the determinant are interchanged, then determinant changes its sign
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & \mathrm{x} & \mathrm{x}^{2} \\ 1 & \mathrm{y} & \mathrm{y}^{2} \\ 1 & \mathrm{z} & \mathrm{z}^{2}\end{array}\right|-\left|\begin{array}{ccc}1 & \mathrm{x} & \mathrm{yz} \\ 1 & \mathrm{y} & \mathrm{zx} \\ 1 & \mathrm{z} & \mathrm{xy}\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{lll}0 & 0 & x^{2}-y z \\ 0 & 0 & y^{2}-\mathrm{zx} \\ 0 & 0 & z^{2}-x y\end{array}\right|=0$
So, $\Delta=0$
Hence the proof

Prove the following identities (11-45):
11. $\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c$

Solution:

Given,

$$
\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right|
$$

L.H.S $=\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|$

Apply $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
$=\left|\begin{array}{ccc}a+b+c & b & c \\ 0 & b-c & c-a \\ 2(a+b+c) & c+a & a+b\end{array}\right|$
Taking $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ common from C_{1} we get,
$=(a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 0 & b-c & c-a \\ 2 & c+a & a+b\end{array}\right|$
Applying, $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{1}$
$=(a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 0 & b-c & c-a \\ 0 & c+a-2 b & a+b-2 c\end{array}\right|$
$=(a+b+c)[(b-c)(a+b-2 c)-(c-a)(c+a-2 b)]$
$=a^{3}+b^{3}+c^{3}-3 a b c$
As, L.H.S = R.H.S
Hence, the proof.
12. $\left|\begin{array}{lll}b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c\end{array}\right|=3 a b c-a^{3}-b^{3}-c^{3}$

Solution:

Consider,
L.H.S $=\left|\begin{array}{lll}b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c\end{array}\right|$

As $|A|=|A|^{\top}$
So, $\left|\begin{array}{ccc}b+c & c+a & a+b \\ a-b & b-c & c-a \\ a & b & c\end{array}\right|$
If any two rows or columns of the determinant are interchanged, then determinant changes its sign
$-\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|$
Apply $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
$=-\left|\begin{array}{ccc}a+b+c & b & c \\ 0 & b-c & c-a \\ 2(a+b+c) & c+a & a+b\end{array}\right|$
Taking $(a+b+c)$ common from C_{1} we get,
$=-(a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 0 & b-c & c-a \\ 2 & c+a & a+b\end{array}\right|$
Applying, $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{1}$
$=-(a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 0 & b-c & c-a \\ 0 & c+a-2 b & a+b-2 c\end{array}\right|$
$=-(a+b+c)[(b-c)(a+b-2 c)-(c-a)(c+a-2 b)]$
$=3 a b c-a^{3}-b^{3}-c^{3}$
Therefore, L.H.S = R.H.S,
Hence the proof.
13. $\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$

Solution:

Given,
$\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
L.H.S $=\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|$

Now by applying, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$=\left|\begin{array}{lll}2(a+b+c) & b+c & c+a \\ 2(a+b+c) & c+a & a+b \\ 2(a+b+c) & a+b & b+c\end{array}\right|$
$=2\left|\begin{array}{ccc}(a+b+c) & b+c & c+a \\ (a+b+c) & c+a & a+b \\ (a+b+c) & a+b & b+c\end{array}\right|$
Again apply, $C_{2} \rightarrow C_{2}-C_{1}$, and $C_{3} \rightarrow C_{3}-C_{1}$, we have
$=2\left|\begin{array}{lll}(a+b+c) & -a & -b \\ (a+b+c) & -b & -c \\ (a+b+c) & -c & -a\end{array}\right|$
$=2\left|\begin{array}{lll}(a+b+c) & a & b \\ (a+b+c) & b & c \\ (a+b+c) & c & a\end{array}\right|$
By expanding, we get
$=2\left(\left|\begin{array}{lll}c & a & b \\ a & b & c \\ b & c & a\end{array}\right|+\left|\begin{array}{lll}a & a & b \\ b & b & c \\ c & c & a\end{array}\right|+\left|\begin{array}{lll}b & a & b \\ c & b & c \\ a & c & a\end{array}\right|\right)$
As in second and third determinant both have same column and its value is zero

Therefore,
$=2\left|\begin{array}{lll}\mathrm{c} & \mathrm{a} & \mathrm{b} \\ \mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{a}\end{array}\right|$
$=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=$ R.H.S
Hence, the proof.
14. $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$

Solution:
Consider,
L.H.S $=\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|$
R.H.S $=2(a+b+c)^{2}$

Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we have
$=\left|\begin{array}{ccc}2(a+b+c) & a & b \\ 2(a+b+c) & b+c+2 a & b \\ 2(a+b+c) & a & c+a+2 b\end{array}\right|$
Taking, $2(a+b+c)$ common we get,

$$
=2(a+b+C)\left|\begin{array}{ccc}
1 & a & b \\
1 & b+c+2 a & b \\
1 & a & c+a+2 b
\end{array}\right|
$$

Now, applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get,

$$
=2(a+b+C)\left|\begin{array}{ccc}
1 & a & b \\
0 & b+c+a & 0 \\
0 & 0 & c+a+b
\end{array}\right|
$$

Thus, we have
L.H.S $=2(a+b+c)\left[1(a+b+c)^{2}\right]$
$=2(a+b+c)^{3}=$ R.H.S
15. $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$

Solution:

Consider,
L.H.S $=\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|$

Now by applying, $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we get,
$=\left|\begin{array}{ccc}a+b+c & a+b+c & a+b+c \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|$
Taking $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ common we get,
$=(a+b+c)\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$, we get,
$=(a+b+c)\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 b & -b-c-a & 0 \\ 2 c & 0 & -c-a-b\end{array}\right|$
$=(a+b+c)\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 b & b+c+a & 0 \\ 2 c & 0 & b+c+a\end{array}\right|$
$=(a+b+c)^{3}=$ R.H.S
Hence, proved.
16. $\left|\begin{array}{lll}1 & b+c & b^{2}+c^{2} \\ 1 & c+a & c^{2}+a^{2} \\ 1 & a+b & a^{2}+b^{2}\end{array}\right|=(a-b)(b-c)(c-a)$

Solution:

Consider,
L.H.S $=\left|\begin{array}{lll}1 & b+c & b^{2}+c^{2} \\ 1 & c+a & c^{2}+a^{2} \\ 1 & a+b & a^{2}+b^{2}\end{array}\right|$

Now by applying, $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get,
$=\left|\begin{array}{ccc}1 & b+c & b^{2}+c^{2} \\ 0 & a-b & a^{2}-b^{2} \\ 0 & a-c & a^{2}-c^{2}\end{array}\right|$
$=(a-b)(a-c)\left|\begin{array}{ccc}1 & b+c & b^{2}+c^{2} \\ 0 & 1 & a+b \\ 0 & 1 & a+c\end{array}\right|$
Again by applying $R_{3} \rightarrow R_{3}-R_{2}$, we get,
$=(a-b)(a-c)\left|\begin{array}{ccc}1 & b+c & b^{2}+c^{2} \\ 0 & 1 & a+b \\ 0 & 0 & c-a\end{array}\right|$
$=(a-b)(a-c)(b-c)=$ R.H.S
Hence, the proof.
17. $\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|=9(a+b) b^{2}$

Solution:

Consider,
L.H.S $=\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|$

Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we get,
$=\left|\begin{array}{ccc}3 a+3 b & 3 a+3 b & 3 a+3 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|$
Taking, (3a $+2 b$) common we get,
$=(3 a+3 b)\left|\begin{array}{ccc}1 & 1 & 1 \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|$
Applying, $C_{1} \rightarrow C_{1}-C_{2}$ and $C_{3} \rightarrow C_{3}-C_{2}$, we get,
$=(3 a+3 b)\left|\begin{array}{ccc}0 & 1 & 0 \\ 2 b & a & b \\ -b & a+2 b & -2 b\end{array}\right|$
$=(3 a+3 b) b^{2}\left|\begin{array}{ccc}0 & 1 & 0 \\ 2 & a & 1 \\ -1 & a+2 b & -2\end{array}\right|$
$=3(a+b) b^{2}(3)=9(a+b) b^{2}$
= R.H.S
Hence, the proof.
18. $\left|\begin{array}{ccc}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$

Solution:

Consider,
L.H.S $=\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{bc} \\ 1 & \mathrm{~b} & \mathrm{ca} \\ 1 & \mathrm{c} & \mathrm{ab}\end{array}\right|$

Now by applying, $R_{1} \rightarrow a R_{1}, R_{2} \rightarrow b R_{2}, R_{3} \rightarrow c R_{3}$
We get,
$=\left(\frac{1}{\mathrm{abc}}\right)\left|\begin{array}{lll}\mathrm{a} & \mathrm{a}^{2} & \mathrm{abc} \\ \mathrm{b} & \mathrm{b}^{2} & \mathrm{cab} \\ \mathrm{c} & \mathrm{c}^{2} & \mathrm{abc}\end{array}\right|$
$=\left(\frac{a b c}{a b c}\right)\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|$
$=-\left|\begin{array}{lll}a & 1 & a^{2} \\ b & 1 & b^{2} \\ c & 1 & c^{2}\end{array}\right|$
$=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$
Hence, the proof.
19. $\left|\begin{array}{ccc}z & x & y \\ z^{2} & x^{2} & y^{2} \\ z^{4} & x^{4} & y^{4}\end{array}\right|=\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{4} & y^{4} & z^{4}\end{array}\right|=\left|\begin{array}{ccc}x^{2} & y^{2} & z^{2} \\ x^{4} & y^{4} & z^{4} \\ x & y & z\end{array}\right|=x y z(x-y)(y-z)(z-x)(x+y+z)$

Solution:

Given,

$$
\begin{aligned}
\left|\begin{array}{ccc}
z & x & y \\
z^{2} & x^{2} & y^{2} \\
z^{4} & x^{4} & y^{4}
\end{array}\right| & =\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
x^{4} & y^{4} & z^{4}
\end{array}\right|=\left|\begin{array}{ccc}
x^{2} & y^{2} & z^{2} \\
x^{4} & y^{4} & z^{4} \\
x & y & z
\end{array}\right| \\
& =x y z(x-y)(y-z)(z-x)(x+y+z)
\end{aligned}
$$

Consider,

$$
\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
x^{4} & y^{4} & z^{4}
\end{array}\right|
$$

By taking xyz common

$$
\begin{aligned}
& =x y z\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{3} & y^{3} & z^{3}
\end{array}\right| \\
& =x y z\left|\begin{array}{ccc}
0 & 1 & 0 \\
x-y & y & z-y \\
x^{3}-y^{3} & y^{3} & z^{3}-y^{3}
\end{array}\right|
\end{aligned}
$$

$$
=x y z(x-y)(z-y)\left|\begin{array}{ccc}
0 & 1 & 0 \\
1 & y & 1 \\
x^{2}+y^{2}+x y & y^{3} & z^{2}+y^{2}+z y
\end{array}\right|
$$

$=-x y z(x-y)(z-y)\left[z^{2}+y^{2}+z y-x^{2}-y^{2}-x y\right]$
$=-x y z(x-y)(z-y)[(z-x)(z+x 0+y(z-x)]$
$=-x y z(x-y)(z-y)(z-x)(x+y+z)$
= R.H.S
Hence, the proof.
20. $\left|\begin{array}{lll}(b+c)^{2} & a^{2} & b c \\ (c+a)^{2} & b^{2} & c a \\ (a+b)^{2} & c^{4} & a b\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)$

Solution:

Consider,
L.H.S $=\left|\begin{array}{lll}(b+c)^{2} & a^{2} & b c \\ (c+a)^{2} & b^{2} & c a \\ (a+b)^{2} & c^{2} & a b\end{array}\right|$

Applying, $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}-2 \mathrm{C}_{3}$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
(b+c)^{2}-a^{2}-2 b c & a^{2} & b c \\
(c+a)^{2}-b^{2}-2 c a & b^{2} & c a \\
(a+b)^{2}-c^{2}-2 a b & c^{2} & a b
\end{array}\right| \\
& =\left|\begin{array}{lll}
a^{2}+b^{2}+c^{2} & a^{2} & b c \\
a^{2}+b^{2}+c^{2} & b^{2} & c a \\
a^{2}+b^{2}+c^{2} & c^{2} & a b
\end{array}\right|
\end{aligned}
$$

Taking ($a^{2}+b^{2}+c^{2}$), common, we get,
$=\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{lll}1 & a^{2} & b c \\ 1 & b^{2} & c a \\ 1 & c^{2} & a b\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get,
$=\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}1 & a^{2} & b c \\ 0 & b^{2}-a^{2} & c a-b c \\ 0 & c^{2}-a^{2} & a b-b c\end{array}\right|$
$=\left(a^{2}+b^{2}+c^{2}\right)(b-a)(c-a)\left|\begin{array}{ccc}1 & a^{2} & b c \\ 0 & b+a & -c \\ 0 & c+a & -b\end{array}\right|$
$=\left(a^{2}+b^{2}+c^{2}\right)(b-a)(c-a)[(b+a)(-b)-(-c)(c+a)]$
$=\left(a^{2}+b^{2}+c^{2}\right)(a-b)(c-a)(b-c)(a+b+c)$
= R.H.S
Hence, the proof.
21. $\left|\begin{array}{lll}(a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1\end{array}\right|=-2$

Solution:

Consider,
L.H.S $=\left|\begin{array}{lll}(a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1\end{array}\right|$

Now by applying row operation, $R_{3} \rightarrow R_{3}-R_{2}$
$=\left|\begin{array}{ccc}(a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3) 2 & 1 & 0\end{array}\right|$
Again by applying, $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$
$=\left|\begin{array}{ccc}(a+1)(a+2) & a+2 & 1 \\ (a+2) 2 & 1 & 0 \\ (a+3) 2 & 1 & 0\end{array}\right|$
$=[(2 a+4)(1)-(1)(2 a+6)]$
$=-2$
= R.H.S
Hence, the proof.
22. $\left|\begin{array}{lll}a^{2} & a^{2}-(b-c)^{2} & b c \\ b^{2} & b^{2}-(c-a)^{2} & c a \\ c^{2} & c^{2}-(a-b)^{2} & a b\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)$

Solution:

Consider,
L.H.S $=\left|\begin{array}{lll}a^{2} & a^{2}-(b-c)^{2} & b c \\ b^{2} & b^{2}-(c-a)^{2} & c a \\ c^{2} & c-(a-b)^{2} & a b\end{array}\right|$

Applying, $C_{2} \rightarrow C_{2}-2 C_{1}-2 C_{3}$, we get,

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
a^{2} & a^{2}-(b-c)^{2}-2 a^{2}-2 b c & b c \\
b^{2} & b^{2}-(c-a)^{2} a^{2}-(b-c)^{2}-2 b^{2}-2 c a & c a \\
c^{2} & c-(a-b)^{2} a^{2}-(b-c)^{2}-2 c^{2}-2 a b & a b
\end{array}\right| \\
& =\left|\begin{array}{lll}
a^{2} & -\left(a^{2}+b^{2}+c^{2}\right) & b c \\
b^{2} & -\left(a^{2}+b^{2}+c^{2}\right) & c a \\
c^{2} & -\left(a^{2}+b^{2}+c^{2}\right) & a b
\end{array}\right|
\end{aligned}
$$

Taking, $-\left(a^{2}+b^{2}+c^{2}\right)$ common from C_{2} we get,
$=-\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{lll}a^{2} & 1 & b c \\ b^{2} & 1 & c a \\ c^{2} & 1 & a b\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get
$=-\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}a^{2} & 1 & b c \\ b^{2}-a^{2} & 0 & c a-b c \\ c^{2}-a^{2} & 0 & a b-b c\end{array}\right|$
$=-\left(a^{2}+b^{2}+c^{2}\right)(a-b)(c-a)\left|\begin{array}{ccc}a^{2} & 1 & b c \\ -(b+a) & 0 & c \\ c+a & 0 & -b\end{array}\right|$
$=-\left(a^{2}+b^{2}+c^{2}\right)(a-b)(c-a)[(-(b+a))(-b)-(c)(c+a)]$
$=(a-b)(b-c)(c-a)(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)$
= R.H.S
Hence, the proof.
23. $\left|\begin{array}{ccc}1 & a^{2}+b c & a^{3} \\ 1 & b^{2}+c a & b^{3} \\ 1 & c^{2}+a b & c^{3}\end{array}\right|=-(a-b)(b-c)(c-a)\left(a^{2}+b^{2}+c^{2}\right)$

Solution:

Consider,
L.H.S $=\left|\begin{array}{lll}1 & a^{2}+b c & a^{3} \\ 1 & b^{2}+c a & b^{3} \\ 1 & c^{2}+a b & c^{3}\end{array}\right|$

Applying, $R_{2} \rightarrow R_{2}-R_{1}$, and $R_{3} \rightarrow R_{3}-R_{1}$

$$
=\left|\begin{array}{ccc}
1 & a^{2}+b c & a^{3} \\
0 & b^{2}+c a-a^{2}-b c & b^{3}-a^{3} \\
0 & c^{2}+a b-a^{2}-b c & c^{3}-a^{3}
\end{array}\right|
$$

$$
=\left|\begin{array}{ccc}
1 & a^{2}+b c & a^{3} \\
0 & b^{2}-a^{2}-c(b-a) & b^{3}-a^{3} \\
0 & c^{2}-a^{2}+b(c-a) & c^{3}-a^{3}
\end{array}\right|
$$

$$
=(b-a)(c-a)\left|\begin{array}{ccc}
1 & a^{2}+b c & a^{3} \\
0 & b+a-c & b^{2}+a^{2}+a b \\
0 & c+a+b & c^{2}+a^{2}+a c
\end{array}\right|
$$

$$
=(b-a)(c-a)\left[((b+a-c))\left(c^{2}+a^{2}+a c\right)-\left(b^{2}+a^{2}+a b\right)\left(c^{2}+a^{2}+a c\right)\right]
$$

$$
=-(a-b)(c-a)(b-c)\left(a^{2}+b^{2}+c^{2}\right)
$$

= R.H.S
Hence, the proof.
24. $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$

Solution:

Consider,
L.H.S $=\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|$

Taking, a, b, c common from C_{1}, C_{2}, C_{3} respectively we get,
$=a b c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ b & b+c & c\end{array}\right|$
Applying, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,
$=a b c\left|\begin{array}{ccc}2(a+c) & c & a+c \\ 2(a+b) & b & a \\ 2(b+c) & b+c & c\end{array}\right|$
$=2 a b c\left|\begin{array}{ccc}(a+c) & c & a+c \\ (a+b) & b & a \\ (b+c) & b+c & c\end{array}\right|$
Applying, $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$, we get,
$=2 a b c\left|\begin{array}{ccc}(a+c) & -a & 0 \\ (a+b) & -a & -b \\ (b+c) & 0 & -b\end{array}\right|$
Applying, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,
$=2 a b c\left|\begin{array}{ccc}c & -a & 0 \\ 0 & -a & -b \\ c & 0 & -b\end{array}\right|$
Taking c, a, b common from C_{1}, C_{2}, C_{3} respectively, we get,
$=2 a^{2} b^{2} c^{2}\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & -1 & -1 \\ 1 & 0 & -1\end{array}\right|$
Applying, $R_{3} \rightarrow R_{3}-R_{1}$, we have
$=2 a^{2} b^{2} c^{2}\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & -1\end{array}\right|$
$=2 a^{2} b^{2} c^{2}(2)$
$=4 a^{2} b^{2} c^{2}=$ R.H.S
Hence, proved.
25. $\left|\begin{array}{ccc}x+4 & x & x \\ x & x+4 & x \\ x & x & x+4\end{array}\right|=16(3 x+4)$

Solution:

Consider,
L.H.S $=\left|\begin{array}{ccc}x+4 & x & x \\ x & x+4 & x \\ x & x & x+4\end{array}\right|$

Applying, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,
$=\left|\begin{array}{ccc}3 x+4 & x & x \\ 3 x+4 & x+4 & x \\ 3 x+4 & x & x+4\end{array}\right|$
Taking $(3 x+4)$ common we get,
$=(3 x+4)\left|\begin{array}{ccc}1 & x & x \\ 1 & x+4 & x \\ 1 & x & x+4\end{array}\right|$
Now by applying, $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get,
$=(3 x+4)\left|\begin{array}{lll}1 & x & x \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right|$
$=16(3 x+4)$
Hence the proof.
26. $\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|=1$

Solution:

$\Delta=\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|$
We know that the value of a determinant remains same if we apply the operation $\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{R}_{\mathrm{i}}+\mathrm{kR} \mathrm{R}_{\mathrm{j}}$ or $\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{C}_{\mathrm{i}}+\mathrm{k} \mathrm{C}_{\mathrm{j}}$.

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{pC}_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & 1+p-p(1) & 1+p+q \\ 2 & 3+2 p-p(2) & 4+3 p+2 q \\ 3 & 6+3 p-p(3) & 10+6 p+3 q\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 1 & 1+p+q \\ 2 & 3 & 4+3 p+2 q \\ 3 & 6 & 10+6 p+3 q\end{array}\right|$
Applying $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{qC}_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1+p+q-q(1) \\ 2 & 3 & 4+3 p+2 q-q(2) \\ 3 & 6 & 10+6 p+3 q-q(3)\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 1 & 1+\mathrm{p} \\ 2 & 3 & 4+3 \mathrm{p} \\ 3 & 6 & 10+6 \mathrm{p}\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}-\mathrm{pC}_{2}$, we get
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1+p-p(1) \\ 2 & 3 & 4+3 p-p(3) \\ 3 & 6 & 10+6 p-p(6)\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 6 & 10\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & 1-1 & 1 \\ 2 & 3-2 & 4 \\ 3 & 6-3 & 10\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 0 & 1 \\ 2 & 1 & 4 \\ 3 & 3 & 10\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}-C_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & 0 & 1-1 \\ 2 & 1 & 4-2 \\ 3 & 3 & 10-3\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{llc}1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 6 & 10\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 2 \\ 3 & 3 & 7\end{array}\right|$
Expanding the determinant along R_{1}, we have
$\Delta=1[(1)(7)-(3)(2)]-0+0$
$\therefore \Delta=7-6=1$
Thus, $\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|=1$
Hence the proof.

1. Find the area of the triangle with vertices at the points:
(i) $(3,8),(-4,2)$ and $(5,-1)$
(ii) $(2,7),(1,1)$ and $(10,8)$
(iii) $(-1,-8),(-2,-3)$ and $(3,2)$
(iv) $(0,0),(6,0)$ and $(4,3)$

Solution:

(i) Given $(3,8),(-4,2)$ and $(5,-1)$ are the vertices of the triangle.

We know that, if vertices of a triangle are ($\left.x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the triangle is given by:
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|$
Now, substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & -1 & 1\end{array}\right|$
Expanding along R_{1}

$$
\begin{aligned}
& =\frac{1}{2}\left[3\left|\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right|-8\left|\begin{array}{cc}
-4 & 1 \\
5 & 1
\end{array}\right|+1\left|\begin{array}{cc}
-4 & 2 \\
5 & -1
\end{array}\right|\right] \\
& =\frac{1}{2}[3(3)-8(-9)+1(-6)] \\
& =\frac{1}{2}[9+72-6] \\
& =\frac{75}{2} \text { Square units }
\end{aligned}
$$

Thus area of triangle is $\frac{75}{2}$ square units
(ii) Given $(2,7),(1,1)$ and $(10,8)$ are the vertices of the triangle.

We know that if vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the
triangle is given by:
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|$
Now, substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1\end{array}\right|$
Expanding along R_{1}
$=\frac{1}{2}\left[2\left|\begin{array}{ll}1 & 1 \\ 8 & 1\end{array}\right|-7\left|\begin{array}{cc}1 & 1 \\ 10 & 1\end{array}\right|+1\left|\begin{array}{cc}1 & 1 \\ 10 & 8\end{array}\right|\right]$
$=\frac{1}{2}[2(-7)-7(-9)+1(-2)]$
$=\frac{1}{2}[-14+63-2]$
$=\frac{47}{2}$ Square units
Thus area of triangle is $\frac{47}{2}$ square units
(iii) Given ($-1,-8$), ($-2,-3$) and (3,2) are the vertices of the triangle.

We know that if vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the triangle is given by:
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|$
Now, substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}-1 & -8 & 1 \\ -2 & -3 & 1 \\ 3 & 2 & 1\end{array}\right|$
Expanding along R_{1}
$=\frac{1}{2}\left[-1\left|\begin{array}{cc}-3 & 1 \\ 2 & 1\end{array}\right|-8\left|\begin{array}{cc}-2 & 1 \\ 3 & 1\end{array}\right|+1\left|\begin{array}{cc}-2 & -3 \\ 3 & 2\end{array}\right|\right]$
$=\frac{1}{2}[-1(-5)-8(-5)+1(5)]$
$=\frac{1}{2}[5-40+5]$
$=\frac{-30}{2}$ Square units
As we know area cannot be negative. Therefore, 15 square unit is the area Thus area of triangle is 15 square units
(iv) Given $(-1,-8),(-2,-3)$ and $(3,2)$ are the vertices of the triangle.

We know that if vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the triangle is given by:
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|$
Now, substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{lll}0 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1\end{array}\right|$
Expanding along R_{1}
$=\frac{1}{2}\left[0\left|\begin{array}{ll}0 & 1 \\ 3 & 1\end{array}\right|-0\left|\begin{array}{ll}6 & 1 \\ 4 & 1\end{array}\right|+1\left|\begin{array}{ll}6 & 0 \\ 4 & 3\end{array}\right|\right]$
$=\frac{1}{2}[0-0+1(18)]$
$=\frac{1}{2}[18]$
$=9$ square units
Thus area of triangle is 9 square units
2. Using the determinants show that the following points are collinear:
(i) $(5,5),(-5,1)$ and $(10,7)$
(ii) $(1,-1),(2,1)$ and $(10,8)$
(iii) $(3,-2),(8,8)$ and $(5,2)$
(iv) $(2,3),(-1,-2)$ and $(5,8)$

Solution:

(i) Given (5,5), $(-5,1)$ and (10,7)

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and (x_{3}, y_{3}), then the area of the triangle is given by
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$
Now, substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}5 & 5 & 1 \\ -5 & 1 & 1 \\ 10 & 7 & 1\end{array}\right|=0$
$\frac{1}{2}\left|\begin{array}{ccc}5 & 5 & 1 \\ -5 & 1 & 1 \\ 10 & 7 & 1\end{array}\right|$
Expanding along R_{1}

$$
\begin{aligned}
& \left.=\frac{1}{2}\left[\left.5\left|\begin{array}{ll}
1 & 1 \\
7 & 1
\end{array}\right|-5\left|\begin{array}{cc}
-5 & 1 \\
10 & 1
\end{array}\right|+1 \right\rvert\, \begin{array}{cc}
-5 & 1 \\
10 & 7
\end{array}\right]\right] \\
& =\frac{1}{2}[5(-6)-5(-15)+1(-45)] \\
& =\frac{1}{2}[-35+75-45] \\
& =0
\end{aligned}
$$

Since, Area of triangle is zero
Hence, points are collinear
(ii) Given ($1,-1$), $(2,1)$ and (10,8)

We have the condition that three points to be collinear, the area of the triangle formed
by these points will be zero. Now, we know that, vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the triangle is given by,
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$
Now, by substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & 1 \\ 4 & 5 & 1\end{array}\right|=0$
$\frac{1}{2}\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & 1 \\ 4 & 5 & 1\end{array}\right|$
Expanding along R_{1}
$=\frac{1}{2}\left[1\left|\begin{array}{ll}1 & 1 \\ 5 & 1\end{array}\right|+1\left|\begin{array}{ll}2 & 1 \\ 4 & 1\end{array}\right|+1\left|\begin{array}{ll}2 & 1 \\ 4 & 5\end{array}\right|\right]$
$=\frac{1}{2}[1-5+2-4+10-4]$
$=\frac{1}{2}[0]$
$=0$
Since, Area of triangle is zero.
Hence, points are collinear.
(iii) Given $(3,-2),(8,8)$ and $(5,2)$

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and (x_{3}, y_{3}), then the area of the triangle is given by,
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$
Now, by substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}3 & -2 & 1 \\ 8 & 8 & 1 \\ 5 & 2 & 1\end{array}\right|=0$
$\frac{1}{2}\left|\begin{array}{ccc}3 & -2 & 1 \\ 8 & 8 & 1 \\ 5 & 2 & 1\end{array}\right|$
Expanding along R_{1}
$=\frac{1}{2}\left[3\left|\begin{array}{ll}8 & 1 \\ 2 & 1\end{array}\right|+2\left|\begin{array}{ll}8 & 1 \\ 5 & 1\end{array}\right|+1\left|\begin{array}{ll}8 & 8 \\ 5 & 2\end{array}\right|\right]$
$=\frac{1}{2}[3(6)+2(3)+1(-24)]$
$=\frac{1}{2}[0]$
$=0$
Since, Area of triangle is zero
Hence, points are collinear.
(iv) Given (2,3), ($-1,-2$) and (5,8)

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the triangle is given by,

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|=0
$$

Now, by substituting given value in above formula

$$
\begin{aligned}
& \Delta=\frac{1}{2}\left|\begin{array}{ccc}
2 & 3 & 1 \\
-1 & -2 & 1 \\
5 & 8 & 1
\end{array}\right|=0 \\
& \frac{1}{2}\left|\begin{array}{ccc}
2 & 3 & 1 \\
-1 & -2 & 1 \\
5 & 8 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{1}

$$
\begin{aligned}
& =\frac{1}{2}\left[2\left|\begin{array}{cc}
-2 & 1 \\
8 & 1
\end{array}\right|-3\left|\begin{array}{cc}
-1 & 1 \\
5 & 1
\end{array}\right|+1\left|\begin{array}{cc}
-1 & -2 \\
5 & 8
\end{array}\right|\right] \\
& =\frac{1}{2}[2(-10)-3(-1-5)+1(-8+10)] \\
& =\frac{1}{2}[-20+18+2] \\
& =0
\end{aligned}
$$

Since, Area of triangle is zero
Hence, points are collinear.
3. If the points $(a, 0),(0, b)$ and $(1,1)$ are collinear, prove that $a+b=a b$

Solution:

Given $(a, 0),(0, b)$ and $(1,1)$ are collinear
We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the triangle is given by,
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$
Thus

$$
\frac{1}{2}\left|\begin{array}{lll}
\mathrm{a} & 0 & 1 \\
0 & \mathrm{~b} & 1 \\
1 & 1 & 1
\end{array}\right|=0
$$

Expanding along R_{1}

$$
\begin{aligned}
& \Rightarrow 0=\frac{1}{2}\left[a\left|\begin{array}{ll}
\mathrm{b} & 1 \\
1 & 1
\end{array}\right|-0\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|+1\left|\begin{array}{ll}
0 & \mathrm{~b} \\
1 & 1
\end{array}\right|\right] \\
& \Rightarrow \frac{1}{2}[\mathrm{a}(\mathrm{~b}-1)-0(-1)+1(-\mathrm{b})]=0 \\
& \Rightarrow \frac{1}{2}[\mathrm{ab}-\mathrm{a}-\mathrm{b}]=0 \\
& \Rightarrow \mathrm{a}+\mathrm{b}=\mathrm{ab} \\
& \text { Hence Proved }
\end{aligned}
$$

4. Using the determinants prove that the points $(a, b),\left(a^{\prime}, b^{\prime}\right)$ and $\left(a-a^{\prime}, b-b\right)$ are
collinear if $\mathbf{a} \mathbf{b}^{\mathbf{\prime}}=\mathbf{a}^{\mathbf{\prime}} \mathbf{b}$.

Solution:

Given (a, b), (a^{\prime}, b^{\prime}) and ($a-a^{\prime}, b-b$) are collinear
We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the triangle is given by,
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$
Thus

$$
\frac{1}{2}\left|\begin{array}{ccc}
a & b & 1 \\
a^{\prime} & b^{\prime} & 1 \\
a-a^{\prime} & b-b^{\prime} & 1
\end{array}\right|=0
$$

Expanding along R_{1}

$$
\begin{aligned}
& \Rightarrow 0=\frac{1}{2}\left[\begin{array}{cc}
\left.a\right|_{b-b^{\prime}} ^{b^{\prime}} & 1
\end{array}|-b| \begin{array}{cc}
a^{\prime} & 1 \\
a-a^{\prime} & 1
\end{array}|+1| \begin{array}{cc}
a^{\prime} & b^{\prime} \\
a-a^{\prime} & b-b^{\prime}
\end{array}\right] \\
& \Rightarrow \frac{1}{2}\left[a\left(b^{\prime}-b+b^{\prime}\right)-b\left(a^{\prime}-a+a^{\prime}\right)+1\left(a^{\prime} b-a^{\prime} b^{\prime}-a b^{\prime}+a^{\prime} b^{\prime}\right)\right]=0 \\
& \Rightarrow \frac{1}{2}\left[a^{\prime} b-a b+a b^{\prime}-a^{\prime} b+a b+a^{\prime} b+a^{\prime} b-a^{\prime} b^{\prime}-a b^{\prime}+a^{\prime} b^{\prime}\right]=0 \\
& \Rightarrow a b^{\prime}-a^{\prime} b=0 \\
& \Rightarrow a b=a b \\
& \text { Hence, the proof. }
\end{aligned}
$$

5. Find the value of λ so that the points $(1,-5),(-4,5)$ and $(\lambda, 7)$ are collinear.

Solution:

Given ($1,-5$), $(-4,5)$ and $(\lambda, 7)$ are collinear
We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the triangle is given by,
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$
Now, by substituting given value in above formula

$$
\Delta=\frac{1}{2}\left|\begin{array}{ccc}
1 & -5 & 1 \\
-4 & 5 & 1 \\
\lambda & 7 & 1
\end{array}\right|=0
$$

Expanding along R_{1}
$\Rightarrow^{\frac{1}{2}}\left[1\left|\begin{array}{ll}5 & 1 \\ 7 & 1\end{array}\right|+5\left|\begin{array}{cc}-4 & 1 \\ \lambda & 1\end{array}\right|+1\left|\begin{array}{cc}-4 & 5 \\ \lambda & 7\end{array}\right|\right]=0$
$\Rightarrow \frac{1}{2}[1(-2)+5(-4-\lambda)+1(-28-5 \lambda)]=0$
$\Rightarrow \frac{1}{2}[-2-20-5 \lambda-28-5 \lambda]=0$
$\Rightarrow-50-10 \lambda=0$
$\Rightarrow \lambda=-5$
6. Find the value of x if the area of Δ is 35 square cms with vertices $(x, 4),(2,-6)$ and (5 , 4).

Solution:

Given $(x, 4),(2,-6)$ and $(5,4)$ are the vertices of a triangle.
We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the triangle is given by,

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|
$$

Now, by substituting given value in above formula
$\left.\Rightarrow 35=\left|\frac{1}{2}\right| \begin{array}{ccc}\mathrm{x} & 4 & 1 \\ 2 & -6 & 1 \\ 5 & 4 & 1\end{array} \right\rvert\,$
Removing modulus

$$
\Rightarrow 2 \times 35=\left|\begin{array}{ccc}
\mathrm{x} & 4 & 1 \\
2 & -6 & 1 \\
5 & 4 & 1
\end{array}\right|
$$

Expanding along R_{1}

$$
\begin{aligned}
& {\left[\left.\begin{array}{cc}
\mathrm{x} & -6 \\
4 & 1
\end{array}|-4| \begin{array}{cc}
2 & 1 \\
5 & 1
\end{array}|+1| \begin{array}{cc}
2 & -6 \\
5 & 4
\end{array} \right\rvert\,\right]= \pm 70 } \\
\Rightarrow & {[x(-10)-4(-3)+1(8-30)]= \pm 70 } \\
\Rightarrow & {[-10 x+12+38]= \pm 70 } \\
\Rightarrow & \pm 70=-10 x+50
\end{aligned}
$$

Taking positive sign, we get

$$
\begin{aligned}
& \Rightarrow+70=-10 x+50 \\
& \Rightarrow 10 x=-20 \\
& \Rightarrow x=-2
\end{aligned}
$$

Taking -negative sign, we get

$$
\begin{aligned}
& \Rightarrow-70=-10 x+50 \\
& \Rightarrow 10 x=120 \\
& \Rightarrow x=12
\end{aligned}
$$

Thus $x=-2,12$

Solve the following system of linear equations by Cramer's rule:

1. $x-2 y=4$
$-3 x+5 y=-7$

Solution:

Given $x-2 y=4$
$-3 x+5 y=-7$
Let there be a system of n simultaneous linear equations and with n unknown given by

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$
Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{X}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$x-2 y=4$
$-3 x+5 y=-7$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{cc}1 & -2 \\ -3 & 5\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=5(1)-(-3)(-2)$
$\Rightarrow D=5-6$
$\Rightarrow D=-1$
Again,
$\Rightarrow D_{1}=\left|\begin{array}{cc}4 & -2 \\ -7 & 5\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=5(4)-(-7)(-2)$
$\Rightarrow D_{1}=20-14$
$\Rightarrow D_{1}=6$
And
$\Rightarrow D_{2}=\left|\begin{array}{cc}1 & 4 \\ -3 & -7\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=1(-7)-(-3)(4)$
$\Rightarrow D_{2}=-7+12$
$\Rightarrow D_{2}=5$
Thus by Cramer's Rule, we have
$\Rightarrow \mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}}$
$\Rightarrow x=\frac{6}{-1}$
$\Rightarrow x=-6$
And
$\Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}$
$\Rightarrow y=\frac{5}{-1}$
$\Rightarrow \mathrm{y}=-5$
2. $2 x-y=1$
$7 x-2 y=-7$

Solution:

Given $2 x-y=1$ and
$7 x-2 y=-7$
Let there be a system of n simultaneous linear equations and with n unknown given by
$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: : :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}\mathrm{a}_{11} & \mathrm{a}_{12} & \ldots & a_{1 \mathrm{n}} \\ \mathrm{a}_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ \mathrm{a}_{\mathrm{n} 1} & a_{\mathrm{n} 1} & \ldots & a_{\mathrm{nn}}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by

Then,
$x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D}$ Provided that $D \neq 0$
Now, here we have
$2 x-y=1$
$7 x-2 y=-7$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow \quad \mathrm{D}=\left|\begin{array}{ll}2 & -1 \\ 7 & -2\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=1(-2)-(-7)(-1)$
$\Rightarrow D_{1}=-2-7$
$\Rightarrow D_{1}=-9$
And
$\Rightarrow D_{2}=\left|\begin{array}{cc}2 & 1 \\ 7 & -7\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=2(-7)-(7)(1)$
$\Rightarrow D_{2}=-14-7$
$\Rightarrow D_{2}=-21$
Thus by Cramer's Rule, we have
$\Rightarrow \mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}}$
$\Rightarrow x=\frac{-9}{3}$
$\Rightarrow x=-3$
And $\Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}$
$\Rightarrow y=\frac{-21}{3}$
$\Rightarrow y=-7$
3. $2 x-y=17$
$3 x+5 y=6$

Solution:

Given $2 x-y=17$ and
$3 x+5 y=6$
Let there be a system of n simultaneous linear equations and with n unknown given by

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n} \\
& \text { Let } D=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 1} & \ldots & a_{n n}
\end{array}\right|
\end{aligned}
$$

Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$

Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$2 x-y=17$
$3 x+5 y=6$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow \quad \mathrm{D}=\left|\begin{array}{cc}2 & -1 \\ 3 & 5\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=17(5)-(6)(-1)$
$\Rightarrow D_{1}=85+6$
$\Rightarrow D_{1}=91$
$\Rightarrow D_{2}=\left|\begin{array}{cc}2 & 17 \\ 3 & 6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=2(6)-(17)(3)$
$\Rightarrow D_{2}=12-51$
$\Rightarrow D_{2}=-39$
Thus by Cramer's Rule, we have
$\Rightarrow \mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}}$
$\Rightarrow \mathrm{x}=\frac{91}{13}$
$\Rightarrow x=7$
And $\Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}$
$\Rightarrow \mathrm{y}=\frac{-39}{13}$
$\Rightarrow y=-3$
4. $3 x+y=19$
$3 x-y=23$

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by $\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
:!
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$
Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$3 x+y=19$
$3 x-y=23$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{cc}3 & 1 \\ 3 & -1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=3(-1)-(3)(1)$
$\Rightarrow D=-3-3$
$\Rightarrow \mathrm{D}=-6$
Again,
$\Rightarrow D_{1}=\left|\begin{array}{cc}19 & 1 \\ 23 & -1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=19(-1)-(23)(1)$
$\Rightarrow \mathrm{D}_{1}=-19-23$
$\Rightarrow D_{1}=-42$
$\Rightarrow D_{2}=\left|\begin{array}{ll}3 & 19 \\ 3 & 23\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=3(23)-(19)$ (3)
$\Rightarrow D_{2}=69-57$
$\Rightarrow D_{2}=12$
Thus by Cramer's Rule, we have
$\Rightarrow \mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}}$
$\Rightarrow x=\frac{-42}{-6}$
$\Rightarrow \mathrm{x}=7$
And $\Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}$
$\Rightarrow y=\frac{12}{-6}$
$\Rightarrow y=-2$
5. $2 x-y=-2$
$3 x+4 y=3$

Solution:

Given $2 x-y=-2$ and
$3 x+4 y=3$
Let there be a system of n simultaneous linear equations and with n unknown given by

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

: :

$$
\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}
$$

Let $\mathrm{D}=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$

Then,
$x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D}$ Provided that $D \neq 0$
Now, here we have
$2 x-y=-2$
$3 x+4 y=3$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow \quad \mathrm{D}=\left|\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=2(4)-(3)(-1)$
$\Rightarrow D=8+3$
$\Rightarrow D=11$
Again,
$\Rightarrow D_{1}=\left|\begin{array}{cc}-2 & -1 \\ 3 & 4\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=-2(4)-(3)(-1)$
$\Rightarrow D_{1}=-8+3$
$\Rightarrow \mathrm{D}_{1}=-5$
$\Rightarrow \quad D_{2}=\left|\begin{array}{cc}2 & -2 \\ 3 & 3\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=3(2)-(-2)(3)$
$\Rightarrow D_{2}=6+6$
$\Rightarrow D_{2}=12$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{-5}{11}
\end{aligned}
$$

$$
\text { And } \Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}
$$

$$
\Rightarrow y=\frac{12}{11}
$$

6. $3 x+a y=4$

$2 x+a y=2, a \neq 0$

Solution:

Given $3 x+a y=4$ and
$2 x+a y=2, a \neq 0$
Let there be a system of n simultaneous linear equations and with n unknown given by $\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$

Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
$3 x+a y=4$
$2 x+a y=2, a \neq 0$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{ll}3 & \mathrm{a} \\ 2 & \mathrm{a}\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=3(\mathrm{a})-(2)$ (a)
$\Rightarrow D=3 a-2 a$
$\Rightarrow \mathrm{D}=\mathrm{a}$
Again,
$\Rightarrow D_{1}=\left|\begin{array}{ll}4 & \mathrm{a} \\ 2 & \mathrm{a}\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=4(a)-(2)(a)$
$\Rightarrow D=4 a-2 a$
$\Rightarrow D=2 a$
$\Rightarrow D_{2}=\left|\begin{array}{ll}3 & 4 \\ 2 & 2\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=3(2)-(2)(4)$
$\Rightarrow D=6-8$
$\Rightarrow D=-2$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{2 a}{a} \\
& \Rightarrow x=2 \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{-2}{a}
\end{aligned}
$$

7. $2 x+3 y=10$
$x+6 y=4$

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by $\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by $\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$

Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{X}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$2 x+3 y=10$
$x+6 y=4$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow \quad D=\left|\begin{array}{ll}2 & 3 \\ 1 & 6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=2(6)-(3)(1)$
$\Rightarrow D=12-3$
$\Rightarrow D=9$
Again,
$\Rightarrow D_{1}=\left|\begin{array}{cc}10 & 3 \\ 4 & 6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=10(6)-(3)(4)$
$\Rightarrow D=60-12$
$\Rightarrow D=48$
$\Rightarrow D_{2}=\left|\begin{array}{cc}2 & 10 \\ 1 & 4\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=2$ (4) - (10) (1)
$\Rightarrow D_{2}=8-10$
$\Rightarrow D_{2}=-2$
Thus by Cramer's Rule, we have
$\Rightarrow \mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}}$
$\Rightarrow X=\frac{48}{9}$
$\Rightarrow \mathrm{X}=\frac{16}{3}$
$\Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}$
$\Rightarrow \mathrm{y}=\frac{-2}{9}$
$\Rightarrow \mathrm{y}=\frac{-2}{9}$
8. $5 x+7 y=-2$
$4 x+6 y=-3$

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots: \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n} \\
& \text { Let } D=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 1} & \ldots & a_{n n}
\end{array}\right|
\end{aligned}
$$

Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by $\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$
Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$5 x+7 y=-2$
$4 x+6 y=-3$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{ll}5 & 7 \\ 4 & 6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=5(6)-(7)(4)$
$\Rightarrow D=30-28$
$\Rightarrow \mathrm{D}=2$
Again,
$\Rightarrow D_{1}=\left|\begin{array}{ll}-2 & 7 \\ -3 & 6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=-2(6)-(7)(-3)$
$\Rightarrow D_{1}=-12+21$
$\Rightarrow D_{1}=9$
$\Rightarrow D_{2}=\left|\begin{array}{ll}5 & -2 \\ 4 & -3\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=-3(5)-(-2)(4)$
$\Rightarrow D_{2}=-15+8$
$\Rightarrow D_{2}=-7$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{9}{2} \\
& \Rightarrow x=\frac{9}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}} \\
& \Rightarrow \mathrm{y}=\frac{-7}{2} \\
& \Rightarrow \mathrm{y}=\frac{-7}{2}
\end{aligned}
$$

9. $9 x+5 y=10$
$3 y-2 x=8$

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by
$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by $\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$

Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$9 x+5 y=10$
$3 y-2 x=8$
So by comparing with the theorem, let's find $\mathrm{D}, \mathrm{D}_{1}$ and D_{2}
$\Rightarrow \mathrm{D}=\left|\begin{array}{cc}9 & 5 \\ -2 & 3\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=3(9)-(5)(-2)$
$\Rightarrow D=27+10$
$\Rightarrow D=37$
Again,
$\Rightarrow D_{1}=\left|\begin{array}{cc}10 & 5 \\ 8 & 3\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=10(3)-(8)(5)$
$\Rightarrow D_{1}=30-40$
$\Rightarrow D_{1}=-10$
$\Rightarrow D_{2}=\left|\begin{array}{cc}9 & 10 \\ -2 & 8\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=9(8)-(10)(-2)$
$\Rightarrow D_{2}=72+20$
$\Rightarrow D_{2}=92$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow \mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}} \\
& \Rightarrow \mathrm{x}=\frac{-10}{37} \\
& \Rightarrow \mathrm{x}=\frac{-10}{37} \\
& \Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}} \\
& \Rightarrow \mathrm{y}=\frac{92}{37} \\
& \Rightarrow \mathrm{y}=\frac{92}{37}
\end{aligned}
$$

10. $x+2 y=1$
$3 x+y=4$

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

$$
\begin{aligned}
& \mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1} \\
& \mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}
\end{aligned}
$$

: : :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$
Then,
$x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D}$ Provided that $D \neq 0$
Now, here we have
$x+2 y=1$
$3 x+y=4$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}
$\Rightarrow \quad D=\left|\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=1(1)-(3)(2)$
$\Rightarrow D=1-6$
$\Rightarrow D=-5$
Again,
$\Rightarrow D_{1}=\left|\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=1(1)-(2)(4)$
$\Rightarrow D_{1}=1-8$
$\Rightarrow D_{1}=-7$
$\Rightarrow D_{2}=\left|\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=1(4)-(1)(3)$
$\Rightarrow D_{2}=4-3$
$\Rightarrow D_{2}=1$
Thus by Cramer's Rule, we have
$\Rightarrow \mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}}$
$\Rightarrow \mathrm{X}=\frac{-7}{-5}$
$\Rightarrow x=\frac{7}{5}$
$\Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}$
$\Rightarrow \mathrm{y}=\frac{1}{-5}$
$\Rightarrow \mathrm{y}=-\frac{1}{5}$

Solve the following system of linear equations by Cramer's rule:
11. $3 x+y+z=2$
$2 x-4 y+3 z=-1$
$4 x+y-3 z=-11$

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by
$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: : :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by

Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$3 x+y+z=2$
$2 x-4 y+3 z=-1$
$4 x+y-3 z=-11$
So by comparing with the theorem, let's find D, D_{1}, D_{2} and D_{3}
$\Rightarrow D=\left|\begin{array}{ccc}3 & 1 & 1 \\ 2 & -4 & 3 \\ 4 & 1 & -3\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=3[(-4)(-3)-(3)(1)]-1[(2)(-3)-12]+1[2-4(-4)]$
$\Rightarrow D=3[12-3]-[-6-12]+[2+16]$
$\Rightarrow D=27+18+18$
$\Rightarrow D=63$
Again,
$\Rightarrow D_{1}=\left|\begin{array}{ccc}2 & 1 & 1 \\ -1 & -4 & 3 \\ -11 & 1 & -3\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=2[(-4)(-3)-(3)(1)]-1[(-1)(-3)-(-11)(3)]+1[(-1)-(-4)(-11)]$
$\Rightarrow D_{1}=2[12-3]-1[3+33]+1[-1-44]$
$\Rightarrow D_{1}=2[9]-36-45$
$\Rightarrow D_{1}=18-36-45$
$\Rightarrow D_{1}=-63$
Again
$\Rightarrow D_{2}=\left|\begin{array}{ccc}3 & 2 & 1 \\ 2 & -1 & 3 \\ 4 & -11 & -3\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=3[3+33]-2[-6-12]+1[-22+4]$
$\Rightarrow D_{2}=3[36]-2(-18)-18$
$\Rightarrow D_{2}=126$
$\Rightarrow D_{3}=\left|\begin{array}{ccc}3 & 1 & 2 \\ 2 & -4 & -1 \\ 4 & 1 & -11\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{3}=3[44+1]-1[-22+4]+2[2+16]$
$\Rightarrow D_{3}=3[45]-1(-18)+2(18)$
$\Rightarrow D_{3}=135+18+36$
$\Rightarrow D_{3}=189$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{-63}{63} \\
& \Rightarrow x=-1 \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{126}{63} \\
& \Rightarrow y=2 \\
& \Rightarrow z=\frac{D_{3}}{D} \\
& \Rightarrow z=\frac{189}{63} \\
& \Rightarrow z=3
\end{aligned}
$$

12. $x-4 y-z=11$
$2 x-5 y+2 z=39$
$-3 x+2 y+z=1$

Solution:

Given,
$x-4 y-z=11$
$2 x-5 y+2 z=39$
$-3 x+2 y+z=1$
Let there be a system of n simultaneous linear equations and with n unknown given by
$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: : :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by $\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$

Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$x-4 y-z=11$
$2 x-5 y+2 z=39$
$-3 x+2 y+z=1$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{ccc}1 & -4 & -1 \\ 2 & -5 & 2 \\ -3 & 2 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=1[(-5)(1)-(2)(2)]+4[(2)(1)+6]-1[4+5(-3)]$
$\Rightarrow D=1[-5-4]+4[8]-[-11]$
$\Rightarrow D=-9+32+11$
$\Rightarrow D=34$
Again,
$\Rightarrow \mathrm{D}_{1}=\left|\begin{array}{ccc}11 & -4 & -1 \\ 39 & -5 & 2 \\ 1 & 2 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=11[(-5)(1)-(2)(2)]+4[(39)(1)-(2)(1)]-1[2(39)-(-5)(1)]$
$\Rightarrow D_{1}=11[-5-4]+4[39-2]-1[78+5]$
$\Rightarrow D_{1}=11[-9]+4(37)-83$
$\Rightarrow D_{1}=-99-148-45$
$\Rightarrow D_{1}=-34$
Again
$\Rightarrow D_{2}=\left|\begin{array}{ccc}1 & 11 & -1 \\ 2 & 39 & 2 \\ -3 & 1 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=1[39-2]-11[2+6]-1[2+117]$
$\Rightarrow D_{2}=1[37]-11(8)-119$
$\Rightarrow D_{2}=-170$
And,
$\Rightarrow \mathrm{D}_{3}=\left|\begin{array}{ccc}1 & -4 & 11 \\ 2 & -5 & 39 \\ -3 & 2 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{3}=1[-5-(39)(2)]-(-4)[2-(39)(-3)]+11[4-(-5)(-3)]$
$\Rightarrow D_{3}=1[-5-78]+4(2+117)+11(4-15)$
$\Rightarrow D_{3}=-83+4(119)+11(-11)$
$\Rightarrow D_{3}=272$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{-34}{34} \\
& \Rightarrow x=-1
\end{aligned}
$$

Again,
$\Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}$
$\Rightarrow \mathrm{y}=\frac{-170}{34}$
$\Rightarrow y=-5$
$\Rightarrow z=\frac{D_{3}}{D}=(272 / 34)=8$
13. $6 x+y-3 z=5$
$x+3 y-2 z=5$
$2 x+y+4 z=8$

Solution:

Given
$6 x+y-3 z=5$
$x+3 y-2 z=5$
$2 x+y+4 z=8$
Let there be a system of n simultaneous linear equations and with n unknown given by
$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: : :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$

Then,
$x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D}$ Provided that $D \neq 0$
Now, here we have
$6 x+y-3 z=5$
$x+3 y-2 z=5$
$2 x+y+4 z=8$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{ccc}6 & 1 & -3 \\ 1 & 3 & -2 \\ 2 & 1 & 4\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D=6[(4)(3)-(1)(-2)]-1[(4)(1)+4]-3[1-3(2)]$
$\Rightarrow D=6[12+2]-[8]-3[-5]$
$\Rightarrow D=84-8+15$
$\Rightarrow D=91$
Again, Solve D_{1} formed by replacing $1^{\text {st }}$ column by B matrices
Here
$B=\left|\begin{array}{l}5 \\ 5 \\ 8\end{array}\right|$
$\Rightarrow D_{1}=\left|\begin{array}{ccc}5 & 1 & -3 \\ 5 & 3 & -2 \\ 8 & 1 & 4\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{1}=5[(4)(3)-(-2)(1)]-1[(5)(4)-(-2)(8)]-3[(5)-(3)(8)]$
$\Rightarrow D_{1}=5[12+2]-1[20+16]-3[5-24]$
$\Rightarrow D_{1}=5[14]-36-3(-19)$
$\Rightarrow D_{1}=70-36+57$
$\Rightarrow D_{1}=91$
Again, Solve D_{2} formed by replacing $1^{\text {st }}$ column by B matrices
Here

$$
B=\left|\begin{array}{l}
5 \\
5 \\
8
\end{array}\right|
$$

$$
\Rightarrow \quad \mathrm{D}_{2}=\left|\begin{array}{ccc}
6 & 5 & -3 \\
1 & 5 & -2 \\
2 & 8 & 4
\end{array}\right|
$$

Solving determinant
$\Rightarrow D_{2}=6[20+16]-5[4-2(-2)]+(-3)[8-10]$
$\Rightarrow D_{2}=6[36]-5(8)+(-3)(-2)$
$\Rightarrow D_{2}=182$
And, Solve D_{3} formed by replacing $1^{\text {st }}$ column by B matrices
Here

$$
\begin{aligned}
& \mathrm{B}=\left|\begin{array}{l}
5 \\
5 \\
8
\end{array}\right| \\
& \Rightarrow \mathrm{D}_{3}=\left|\begin{array}{lll}
6 & 1 & 5 \\
1 & 3 & 5 \\
2 & 1 & 8
\end{array}\right|
\end{aligned}
$$

Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{3}=6[24-5]-1[8-10]+5[1-6]$
$\Rightarrow D_{3}=6[19]-1(-2)+5(-5)$
$\Rightarrow D_{3}=114+2-25$
$\Rightarrow D_{3}=91$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{91}{91} \\
& \Rightarrow x=1 \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{182}{91} \\
& \Rightarrow y=2 \\
& \Rightarrow z=\frac{D_{3}}{D} \\
& \Rightarrow z=\frac{91}{91} \\
& \Rightarrow z=1
\end{aligned}
$$

14. $x+y=5$
$y+z=3$
$x+z=4$

Solution:

Given $x+y=5$
$y+z=3$
$x+z=4$
Let there be a system of n simultaneous linear equations and with n unknown given by
$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$

Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$
Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{X}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$x+y=5$
$y+z=3$
$x+z=4$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}
$\Rightarrow \mathrm{D}=\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D=1[1]-1[-1]+0[-1]$
$\Rightarrow D=1+1+0$
$\Rightarrow D=2$
Again, Solve D_{1} formed by replacing $1^{\text {st }}$ column by B matrices
Here

$$
\begin{aligned}
& \mathrm{B}=\left|\begin{array}{l}
5 \\
3 \\
4
\end{array}\right| \\
& \Rightarrow \mathrm{D}_{1}=\left|\begin{array}{lll}
5 & 1 & 0 \\
3 & 1 & 1 \\
4 & 0 & 1
\end{array}\right|
\end{aligned}
$$

Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{1}=5[1]-1[(3)(1)-(4)(1)]+0[0-(4)(1)]$
$\Rightarrow D_{1}=5-1[3-4]+0[-4]$
$\Rightarrow D_{1}=5-1[-1]+0$
$\Rightarrow D_{1}=5+1+0$
$\Rightarrow D_{1}=6$
Again, Solve D_{2} formed by replacing $1^{\text {st }}$ column by B matrices Here
$B=\left|\begin{array}{l}5 \\ 3 \\ 4\end{array}\right|$
$\Rightarrow \mathrm{D}_{2}=\left|\begin{array}{lll}1 & 5 & 0 \\ 0 & 3 & 1 \\ 1 & 4 & 1\end{array}\right|$
Solving determinant
$\Rightarrow D_{2}=1[3-4]-5[-1]+0[0-3]$
$\Rightarrow D_{2}=1[-1]+5+0$
$\Rightarrow D_{2}=4$
And, Solve D_{3} formed by replacing $1^{\text {st }}$ column by B matrices
Here
$B=\left|\begin{array}{l}5 \\ 3 \\ 4\end{array}\right|$
$\Rightarrow \mathrm{D}_{3}=\left|\begin{array}{lll}1 & 1 & 5 \\ 0 & 1 & 3 \\ 1 & 0 & 4\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{3}=1[4-0]-1[0-3]+5[0-1]$
$\Rightarrow D_{3}=1[4]-1(-3)+5(-1)$
$\Rightarrow D_{3}=4+3-5$
$\Rightarrow D_{3}=2$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow \mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}} \\
& \Rightarrow \mathrm{x}=\frac{6}{2} \\
& \Rightarrow \mathrm{x}=3 \\
& \Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}} \\
& \Rightarrow \mathrm{y}=\frac{4}{2} \\
& \Rightarrow \mathrm{y}=2 \\
& \Rightarrow \mathrm{z}=\frac{\mathrm{D}_{3}}{\mathrm{D}} \\
& \Rightarrow \mathrm{z}=\frac{2}{2} \\
& \Rightarrow \mathrm{z}=1
\end{aligned}
$$

15. $2 y-3 z=0$
$x+3 y=-4$
$3 x+4 y=3$

Solution:

Given
$2 y-3 z=0$
$x+3 y=-4$
$3 x+4 y=3$
Let there be a system of n simultaneous linear equations and with n unknown given by $\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$

Then,
$x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D}$ Provided that $D \neq 0$
Now, here we have
$2 y-3 z=0$
$x+3 y=-4$
$3 x+4 y=3$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}
$\Rightarrow \mathrm{D}=\left|\begin{array}{ccc}0 & 2 & -3 \\ 1 & 3 & 0 \\ 3 & 4 & 0\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow \mathrm{D}=0[0]-2[(0)(1)-0]-3[1(4)-3(3)]$
$\Rightarrow D=0-0-3[4-9]$
$\Rightarrow \mathrm{D}=0-0+15$
$\Rightarrow D=15$
Again, Solve D_{1} formed by replacing $1^{\text {st }}$ column by B matrices Here
$B=\left|\begin{array}{c}0 \\ -4 \\ 3\end{array}\right|$
$\Rightarrow \mathrm{D}_{1}=\left|\begin{array}{ccc}0 & 2 & -3 \\ -4 & 3 & 0 \\ 3 & 4 & 0\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{1}=0[0]-2[(0)(-4)-0]-3[4(-4)-3(3)]$
$\Rightarrow D_{1}=0-0-3[-16-9]$
$\Rightarrow D_{1}=0-0-3(-25)$
$\Rightarrow D_{1}=0-0+75$
$\Rightarrow D_{1}=75$
Again, Solve D_{2} formed by replacing $2^{\text {nd }}$ column by B matrices
Here
$B=\left|\begin{array}{c}0 \\ -4 \\ 3\end{array}\right|$
$\Rightarrow D_{2}=\left|\begin{array}{ccc}0 & 0 & -3 \\ 1 & -4 & 0 \\ 3 & 3 & 0\end{array}\right|$
Solving determinant
$\Rightarrow \mathrm{D}_{2}=0[0]-0[(0)(1)-0]-3[1(3)-3(-4)]$
$\Rightarrow D_{2}=0-0+(-3)(3+12)$
$\Rightarrow D_{2}=-45$
And, Solve D_{3} formed by replacing $3^{\text {rd }}$ column by B matrices
Here
$B=\left|\begin{array}{c}0 \\ -4 \\ 3\end{array}\right|$
$\Rightarrow D_{3}=\left|\begin{array}{ccc}0 & 2 & 0 \\ 1 & 3 & -4 \\ 3 & 4 & 3\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{3}=0[9-(-4) 4]-2[(3)(1)-(-4)(3)]+0[1(4)-3(3)]$
$\Rightarrow D_{3}=0[25]-2(3+12)+0(4-9)$
$\Rightarrow D_{3}=0-30+0$
$\Rightarrow D_{3}=-30$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{75}{15} \\
& \Rightarrow x=5 \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{-45}{15} \\
& \Rightarrow y=-3 \\
& \Rightarrow z=\frac{D_{3}}{D} \\
& \Rightarrow z=\frac{-30}{15} \\
& \Rightarrow z=-2
\end{aligned}
$$

16. $5 x-7 y+z=11$
$6 x-8 y-z=15$
$3 x+2 y-6 z=7$

Solution:

Given
$5 x-7 y+z=11$
$6 x-8 y-z=15$
$3 x+2 y-6 z=7$
Let there be a system of n simultaneous linear equations and with n unknown given by
$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: : :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}\mathrm{a}_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$
Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$5 x-7 y+z=11$
$6 x-8 y-z=15$
$3 x+2 y-6 z=7$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{ccc}5 & -7 & 1 \\ 6 & -8 & -1 \\ 3 & 2 & -6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D=5[(-8)(-6)-(-1)(2)]-7[(-6)(6)-3(-1)]+1[2(6)-3(-8)]$
$\Rightarrow D=5[48+2]-7[-36+3]+1[12+24]$
$\Rightarrow D=250-231+36$
$\Rightarrow D=55$
Again, Solve D_{1} formed by replacing $1^{\text {st }}$ column by B matrices
Here
$B=\left|\begin{array}{c}11 \\ 15 \\ 7\end{array}\right|$
$\Rightarrow \mathrm{D}_{1}=\left|\begin{array}{ccc}11 & -7 & 1 \\ 15 & -8 & -1 \\ 7 & 2 & -6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{1}=11[(-8)(-6)-(2)(-1)]-(-7)[(15)(-6)-(-1)(7)]+1[(15) 2-(7)(-8)]$
$\Rightarrow D_{1}=11[48+2]+7[-90+7]+1[30+56]$
$\Rightarrow D_{1}=11[50]+7[-83]+86$
$\Rightarrow D_{1}=550-581+86$
$\Rightarrow D_{1}=55$
Again, Solve D_{2} formed by replacing $2^{\text {nd }}$ column by B matrices
Here
$B=\left|\begin{array}{c}11 \\ 15 \\ 7\end{array}\right|$
$\Rightarrow D_{2}=\left|\begin{array}{ccc}5 & 11 & 1 \\ 6 & 15 & -1 \\ 3 & 7 & -6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{2}=5[(15)(-6)-(7)(-1)]-11[(6)(-6)-(-1)(3)]+1[(6) 7-(15)(3)]$
$\Rightarrow D_{2}=5[-90+7]-11[-36+3]+1[42-45]$
$\Rightarrow D_{2}=5[-83]-11(-33)-3$
$\Rightarrow D_{2}=-415+363-3$
$\Rightarrow D_{2}=-55$
And, Solve D_{3} formed by replacing $3^{\text {rd }}$ column by B matrices
Here

$$
B=\left|\begin{array}{c}
11 \\
15 \\
7
\end{array}\right|
$$

$\Rightarrow \mathrm{D}_{3}=\left|\begin{array}{ccc}5 & -7 & 11 \\ 6 & -8 & 15 \\ 3 & 2 & 7\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{3}=5[(-8)(7)-(15)(2)]-(-7)[(6)(7)-(15)(3)]+11[(6) 2-(-8)(3)]$
$\Rightarrow D_{3}=5[-56-30]-(-7)[42-45]+11[12+24]$
$\Rightarrow D_{3}=5[-86]+7[-3]+11[36]$
$\Rightarrow D_{3}=-430-21+396$
$\Rightarrow \mathrm{D}_{3}=-55$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{55}{55} \\
& \Rightarrow x=1 \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{-55}{55} \\
& \Rightarrow y=-1 \\
& \Rightarrow z=\frac{D_{3}}{D} \\
& \Rightarrow z=\frac{-55}{55} \\
& \Rightarrow z=-1
\end{aligned}
$$

Solve each of the following system of homogeneous linear equations:

1. $x+y-2 z=0$
$2 x+y-3 z=0$
$5 x+4 y-9 z=0$

Solution:

Given $x+y-2 z=0$
$2 x+y-3 z=0$
$5 x+4 y-9 z=0$
Any system of equation can be written in matrix form as $A X=B$
Now finding the Determinant of these set of equations,

$$
\mathrm{D}=\left|\begin{array}{lll}
1 & 1 & -2 \\
2 & 1 & -3 \\
5 & 4 & -9
\end{array}\right|
$$

$$
|A|=1\left|\begin{array}{ll}
1 & -3 \\
4 & -9
\end{array}\right|-1\left|\begin{array}{ll}
2 & -3 \\
5 & -9
\end{array}\right|-2\left|\begin{array}{ll}
2 & 1 \\
5 & 4
\end{array}\right|
$$

$$
=1(1 \times(-9)-4 \times(-3))-1(2 \times(-9)-5 \times(-3))-2(4 \times 2-5 \times 1)
$$

$$
=1(-9+12)-1(-18+15)-2(8-5)
$$

$$
=1 \times 3-1 \times(-3)-2 \times 3
$$

$$
=3+3-6
$$

$$
=0
$$

Since $D=0$, so the system of equation has infinite solution.
Now let $\mathrm{z}=\mathrm{k}$
$\Rightarrow \mathrm{x}+\mathrm{y}=2 \mathrm{k}$
And $2 \mathrm{x}+\mathrm{y}=3 \mathrm{k}$
Now using the Cramer's rule
$x=\frac{D_{1}}{D}$
$\mathrm{x}=\frac{\left|\begin{array}{cc}2 \mathrm{k} & 1 \\ 3 \mathrm{k} & 1\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ 2 & 1\end{array}\right|}$
$x=\frac{-k}{-1}$
$\mathrm{x}=\mathrm{k}$
Similarly,

$$
\mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}
$$

$\mathrm{y}=\frac{\left|\begin{array}{cc}1 & 2 \mathrm{k} \\ 2 & 3 \mathrm{k}\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ 2 & 1\end{array}\right|}$
$y=\frac{-k}{-1}$
$y=k$
Hence, $x=y=z=k$.
2. $2 x+3 y+4 z=0$
$x+y+z=0$
$2 x+5 y-2 z=0$

Solution:

Given
$2 x+3 y+4 z=0$
$x+y+z=0$
$2 x+5 y-2 z=0$
Any system of equation can be written in matrix form as $A X=B$
Now finding the Determinant of these set of equations,
$\mathrm{D}=\left|\begin{array}{ccc}2 & 3 & 4 \\ 1 & 1 & 1 \\ 2 & 5 & -2\end{array}\right|$

$$
\begin{aligned}
& |A|=2\left|\begin{array}{cc}
1 & 1 \\
5 & -2
\end{array}\right|-3\left|\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right|+4\left|\begin{array}{cc}
1 & 1 \\
2 & 5
\end{array}\right| \\
& =2(1 \times(-2)-1 \times 5)-3(1 \times(-2)-2 \times 1)+4(1 \times 5-2 \times 1) \\
& =2(-2-5)-3(-2-2)+4(5-2) \\
& =1 \times(-7)-3 \times(-4)+4 \times 3 \\
& =-7+12+12 \\
& =17
\end{aligned}
$$

Since $D \neq 0$, so the system of equation has infinite solution.
Therefore the system of equation has only solution as $x=y=z=0$.

