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Exercise 6.1         Page No: 6.10 
 
1. Write the minors and cofactors of each element of the first column of the following 
matrices and hence evaluate the determinant in each case: 

 

 

 

 

 

 

 
 
Solution: 
(i) Let Mij and Cij represents the minor and co–factor of an element, where i and j 
represent the row and column.The minor of the matrix can be obtained for a particular 
element by removing the row and column where the element is present. Then finding 
the absolute value of the matrix newly formed. 
Also, Cij = (–1)i+j × Mij 
Given, 

 
From the given matrix we have, 
M11 = –1 
M21 = 20 
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C11 = (–1)1+1 × M11 
= 1 × –1 
= –1 
C21 = (–1)2+1 × M21 
= 20 × –1 
= –20 
Now expanding along the first column we get 
|A| = a11 × C11 + a21× C21 
= 5× (–1) + 0 × (–20) 
= –5 
 
(ii) Let Mij and Cij represents the minor and co–factor of an element, where i and j 
represent the row and column. The minor of matrix can be obtained for particular 
element by removing the row and column where the element is present. Then finding 
the absolute value of the matrix newly formed. 
Also, Cij = (–1)i+j × Mij 

Given  

 
From the above matrix we have 
M11 = 3 
M21 = 4 
C11 = (–1)1+1 × M11 
= 1 × 3 
= 3 
C21 = (–1)2+1 × 4 
= –1 × 4 
= –4 
Now expanding along the first column we get 
|A| = a11 × C11 + a21× C21 
= –1× 3 + 2 × (–4) 
= –11 
 
(iii) Let Mij and Cij represents the minor and co–factor of an element, where i and j 
represent the row and column. The minor of the matrix can be obtained for a particular 
element by removing the row and column where the element is present. Then finding 
the absolute value of the matrix newly formed. 
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Also, Cij = (–1)i+j × Mij 
Given, 

 
M31 = –3 × 2 – (–1) × 2 
M31 = –4 
C11 = (–1)1+1 × M11 
= 1 × –12 
= –12 
C21 = (–1)2+1 × M21 
= –1 × –16 
= 16 
C31 = (–1)3+1 × M31 
= 1 × –4 
= –4 
Now expanding along the first column we get 
|A| = a11 × C11 + a21× C21+ a31× C31 
= 1× (–12) + 4 × 16 + 3× (–4) 
= –12 + 64 –12 
= 40 
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(iv) Let Mij and Cij represents the minor and co–factor of an element, where i and j 
represent the row and column. The minor of the matrix can be obtained for a particular 
element by removing the row and column where the element is present. Then finding 
the absolute value of the matrix newly formed. 
Also, Cij = (–1)i+j × Mij 
Given, 

 
M31 = a × c a – b × bc 
M31 = a2c – b2c 
C11 = (–1)1+1 × M11 
= 1 × (ab2 – ac2) 
= ab2 – ac2 
C21 = (–1)2+1 × M21 
= –1 × (a2b – c2b) 
= c2b – a2b 
C31 = (–1)3+1 × M31 
= 1 × (a2c – b2c) 
= a2c – b2c 
Now expanding along the first column we get 
|A| = a11 × C11 + a21× C21+ a31× C31 
= 1× (ab2 – ac2) + 1 × (c2b – a2b) + 1× (a2c – b2c) 
= ab2 – ac2 + c2b – a2b + a2c – b2c 
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(v) Let Mij and Cij represents the minor and co–factor of an element, where i and j 
represent the row and column. The minor of matrix can be obtained for particular 
element by removing the row and column where the element is present. Then finding 
the absolute value of the matrix newly formed. 
Also, Cij = (–1)i+j × Mij 

Given,  

 
M31 = 2×0 – 5×6 
M31 = –30 
C11 = (–1)1+1 × M11 
= 1 × 5 
= 5 
C21 = (–1)2+1 × M21 
= –1 × –40 
= 40 
C31 = (–1)3+1 × M31 
= 1 × –30 
= –30 
Now expanding along the first column we get 
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|A| = a11 × C11 + a21× C21+ a31× C31 
= 0× 5 + 1 × 40 + 3× (–30) 
= 0 + 40 – 90 
= 50 
 
(vi) Let Mij and Cij represents the minor and co–factor of an element, where i and j 
represent the row and column. The minor of matrix can be obtained for particular 
element by removing the row and column where the element is present. Then finding 
the absolute value of the matrix newly formed. 
Also, Cij = (–1)i+j × Mij 
Given,  

 
M31 = h × f – b × g 
M31 = hf – bg 
C11 = (–1)1+1 × M11 
= 1 × (bc– f2) 
= bc– f2 
C21 = (–1)2+1 × M21 
= –1 × (hc – fg) 
= fg – hc 
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C31 = (–1)3+1 × M31 
= 1 × (hf – bg) 
= hf – bg 
Now expanding along the first column we get 
|A| = a11 × C11 + a21× C21+ a31× C31 
= a× (bc– f2) + h× (fg – hc) + g× (hf – bg) 
= abc– af2 + hgf – h2c +ghf – bg2 
 
(vii) Let Mij and Cij represents the minor and co–factor of an element, where i and j 
represent the row and column. The minor of matrix can be obtained for particular 
element by removing the row and column where the element is present. Then finding 
the absolute value of the matrix newly formed. 
Also, Cij = (–1)i+j × Mij 

Given, 

 
M31 = –1(1 × 0 – 5 × (–2)) – 0(0 × 0 – (–1) × (–2)) + 1(0 × 5 – (–1) × 1) 
M31 = –9 
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M41 = –1(1×1 – (–1) × (–2)) – 0(0 × 1 – 1 × (–2)) + 1(0 × (–1) – 1 × 1) 
M41 = 0 
C11 = (–1)1+1 × M11 
= 1 × (–9) 
= –9 
C21 = (–1)2+1 × M21 
= –1 × 9 
= –9 
C31 = (–1)3+1 × M31 
= 1 × –9 
= –9 
C41 = (–1)4+1 × M41 
= –1 × 0 
= 0 
Now expanding along the first column we get 
|A| = a11 × C11 + a21× C21+ a31× C31 + a41× C41 
= 2 × (–9) + (–3) × –9 + 1 × (–9) + 2 × 0 
= – 18 + 27 –9 
= 0 
 
2. Evaluate the following determinants: 

 

 

 

 
 
Solution: 
(i) Given  
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⇒ |A| = x (5x + 1) – (–7) x 
|A| = 5x2 + 8x 
 
(ii) Given  

 
⇒ |A| = cos θ × cos θ – (–sin θ) x sin θ 
|A| = cos2θ + sin2θ 
We know that cos2θ + sin2θ = 1 
|A| = 1 
 
(iii) Given  

 
⇒ |A| = cos15° × cos75° + sin15° x sin75° 
We know that cos (A – B) = cos A cos B + Sin A sin B 
By substituting this we get, |A| = cos (75 – 15)° 
|A| = cos60° 
|A| = 0.5 
 
(iv) Given  

 
⇒ |A| = (a + ib) (a – ib) – (c + id) (–c + id) 
= (a + ib) (a – ib) + (c + id) (c – id) 
= a2 – i2 b2 + c2 – i2 d2 
We know that i2 = -1 
= a2 – (–1) b2 + c2 – (–1) d2 
= a2 + b2 + c2 + d2 
 
3. Evaluate: 

 
 
Solution: 
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Since |AB|= |A||B| 

 
= 2(17 × 12 – 5 × 20) – 3(13 × 12 – 5 × 15) + 7(13 × 20 – 15 × 17) 
= 2 (204 – 100) – 3 (156 – 75) + 7 (260 – 255) 
= 2×104 – 3×81 + 7×5 
= 208 – 243 +35 
= 0 
Now |A|2 = |A|×|A| 
|A|2= 0 
 
4. Show that  

 
 
Solution: 
Given  

 
Let the given determinant as A 
Using sin (A+B) = sin A × cos B + cos A × sin B 
⇒ |A| = sin 10° × cos 80° + cos 10° x sin 80° 
|A| = sin (10 + 80)° 
|A| = sin90° 
|A| = 1 
Hence Proved 
 

 
 
Solution: 
Given,  
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= 2(1 × 1 – 4 × (–2)) – 3(7 × 1 – (–2) × (–3)) – 5(7 × 4 – 1 × (–3)) 
= 2(1 + 8) – 3(7 – 6) – 5(28 + 3) 
= 2 × 9 – 3 × 1 – 5 × 31 
= 18 – 3 – 155 
= –140 
Now by expanding along the second column 

 
= 2(1 × 1 – 4 × (–2)) – 7(3 × 1 – 4 × (–5)) – 3(3 × (–2) – 1 × (–5)) 
= 2 (1 + 8) – 7 (3 + 20) – 3 (–6 + 5) 
= 2 × 9 – 7 × 23 – 3 × (–1) 
= 18 – 161 +3 
= –140 
 

 
 
Solution: 
Given  

 
⇒ |A| = 0 (0 – sinβ (–sinβ)) –sinα (–sinα × 0 – sinβ cosα) – cosα ((–sinα) (–sinβ) – 0 × 
cosα) 
|A| = 0 + sinα sinβ cosα – cosα sinα sinβ 
|A| = 0 
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Exercise 6.2         Page No: 6.57 

 
1. Evaluate the following determinant: 

 

 

 

 

 

 

 

 
 
Solution: 
(i) Given 
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 (ii) Given  

 
= 1[(109) (12) – (119) (11)]  
= 1308 – 1309 
= – 1 
So, Δ = – 1 
 
(iii) Given, 
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= a (bc – f2) – h (hc – fg) + g (hf – bg) 
= abc – af2 – ch2 + fgh + fgh – bg2 
= abc + 2fgh – af2 – bg2 – ch2 
So, Δ = abc + 2fgh – af2 – bg2 – ch2 
 
(iv) Given  

 
= 2[1(24 – 4)] = 40 
So, Δ = 40 
 
(v) Given  
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= 1[(– 7) (– 36) – (– 20) (– 13)]  
= 252 – 260 
= – 8 
So, Δ = – 8 
 
(vi) Given, 
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(vii) Given  
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(viii) Given,  

 
 
2. Without expanding, show that the value of each of the following determinants is 
zero: 
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Solution: 
(i) Given, 

 
 
(ii) Given, 
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(iii) Given, 

 
 
(iv) Given, 
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(v) Given,  

 

(vi) Given, 
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(vii) Given, 

 

(viii) Given,  
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As, C1 = C2, hence determinant is zero 

 

(x) Given,  

 

(xi) Given,  
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(xii) Given, 
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(xiii) Given,  

 

 

(xiv) Given, 
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(xv) Given,
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(xvi) Given, 
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(xvii) Given, 

 

Hence proved. 
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Evaluate the following (3 – 9): 

 

 

Solution: 

Given, 

 

= (a + b + c) (b – a) (c – a) (b – c) 
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So, Δ = (a + b + c) (b – a) (c – a) (b – c) 

 

 

 

Solution: 

Given, 
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Solution: 

Given, 
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Solution: 

Given, 
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Solution: 

Given, 

 

 

 

 

Solution: 

Given, 
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Solution: 

Given, 
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= a [a (a + x + y) + az] + 0 + 0 

= a2 (a + x + y + z) 

So, Δ = a2 (a + x + y + z) 

 

 

 

Solution: 
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Prove the following identities (11 – 45): 

 

 

Solution: 

Given, 
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Solution: 

Consider, 
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= – (a + b + c) [(b – c) (a + b – 2c) – (c – a) (c + a – 2b)] 

= 3abc – a3 – b3 – c3 

Therefore, L.H.S = R.H.S,  

Hence the proof. 

 

 

 

Solution: 

Given, 
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Solution: 

Consider, 

, 
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Solution: 

Consider, 

L.H.S =  

Now by applying, R1→R1 + R2 + R3, we get, 
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Solution: 

Consider, 
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Solution: 

Consider, 
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Solution: 

Consider, 
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Hence, the proof. 

 

 

 

Solution: 

Given, 
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= – xyz(x – y) (z – y) [z2 + y2 + zy – x2 – y2 – xy] 

= – xyz(x – y) (z – y) [(z – x) (z + x0 + y (z – x)] 

= – xyz(x – y) (z – y) (z – x) (x + y + z) 

= R.H.S 

Hence, the proof. 

 

 

 

Solution: 

Consider, 
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= (a2 + b2 + c2) (b – a) (c – a) [(b + a) (– b) – (– c) (c + a)] 

= (a2 + b2 + c2) (a – b) (c – a) (b – c) (a + b + c) 

= R.H.S 

Hence, the proof. 

 

 

 

Solution: 

Consider, 

 

= [(2a + 4) (1) – (1) (2a + 6)] 
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= – 2 

= R.H.S 

Hence, the proof. 

 

 

 

Solution: 

Consider, 
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= – (a2 + b2 + c2) (a – b) (c – a) [(– (b + a)) (– b) – (c) (c + a)] 

= (a – b) (b – c) (c – a) (a + b + c) (a2 + b2 + c2) 

= R.H.S 

Hence, the proof. 

 

 

 

Solution: 

Consider, 

 

https://byjus.com/?utm_source=pdf-click
https://byjus.com/?utm_source=pdf-click


 
 

 

 

RD Sharma Solutions for Class 12 Maths Chapter 6 

Determinants 

 

= R.H.S 

Hence, the proof. 

 

 

 

Solution: 

Consider, 
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Solution: 

Consider, 
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Expanding the determinant along R1, we have 

Δ = 1[(1) (7) – (3) (2)] – 0 + 0 
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∴ Δ = 7 – 6 = 1 

Thus,  

Hence the proof. 
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Exercise 6.3         Page No: 6.71 
 
1. Find the area of the triangle with vertices at the points: 
(i) (3, 8), (-4, 2) and (5, -1) 
(ii) (2, 7), (1, 1) and (10, 8) 
(iii) (-1, -8), (-2, -3) and (3, 2) 
(iv) (0, 0), (6, 0) and (4, 3) 
 
Solution:  
(i) Given (3, 8), (-4, 2) and (5, -1) are the vertices of the triangle. 
We know that, if vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the 
triangle is given by: 

 
 
(ii) Given (2, 7), (1, 1) and (10, 8) are the vertices of the triangle. 
We know that if vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the 
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triangle is given by: 

 
 
(iii) Given (-1, -8), (-2, -3) and (3, 2) are the vertices of the triangle. 
We know that if vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the 
triangle is given by: 
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As we know area cannot be negative. Therefore, 15 square unit is the area 
Thus area of triangle is 15 square units 
 
(iv) Given (-1, -8), (-2, -3) and (3, 2) are the vertices of the triangle. 
We know that if vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the 
triangle is given by: 

 
 
2. Using the determinants show that the following points are collinear: 
(i) (5, 5), (-5, 1) and (10, 7) 
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(ii) (1, -1), (2, 1) and (10, 8) 
(iii) (3, -2), (8, 8) and (5, 2) 
(iv) (2, 3), (-1, -2) and (5, 8) 
 
Solution: 
(i) Given (5, 5), (-5, 1) and (10, 7) 
We have the condition that three points to be collinear, the area of the triangle formed 
by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) 
and (x3, y3), then the area of the triangle is given by 

 
 
(ii) Given (1, -1), (2, 1) and (10, 8) 
We have the condition that three points to be collinear, the area of the triangle formed 
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by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) 
and (x3, y3), then the area of the triangle is given by, 

 
 
(iii) Given (3, -2), (8, 8) and (5, 2) 
We have the condition that three points to be collinear, the area of the triangle formed 
by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) 
and (x3, y3), then the area of the triangle is given by, 

 
Now, by substituting given value in above formula 
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Since, Area of triangle is zero 
Hence, points are collinear. 

(iv) Given (2, 3), (-1, -2) and (5, 8)
We have the condition that three points to be collinear, the area of the triangle formed
by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2)
and (x3, y3), then the area of the triangle is given by,

+

+
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3. If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab 
 
Solution: 
Given (a, 0), (0, b) and (1, 1) are collinear 
We have the condition that three points to be collinear, the area of the triangle formed 
by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) 
and (x3, y3), then the area of the triangle is given by, 

 

⇒  
⇒ a + b = ab 
Hence Proved 
 
4. Using the determinants prove that the points (a, b), (a', b') and (a - a', b - b) are 
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collinear if a b' = a' b. 
 
Solution: 
Given (a, b), (a', b') and (a - a', b - b) are collinear 
We have the condition that three points to be collinear, the area of the triangle formed 
by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) 
and (x3, y3), then the area of the triangle is given by, 

 
⇒ a b' = a' b 
Hence, the proof. 
 
5. Find the value of λ so that the points (1, -5), (-4, 5) and (λ, 7) are collinear. 
 
Solution: 
Given (1, -5), (-4, 5) and (λ, 7) are collinear 
We have the condition that three points to be collinear, the area of the triangle formed 
by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) 
and (x3, y3), then the area of the triangle is given by, 
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⇒ - 50 – 10λ = 0 
⇒ λ = – 5 
 
6. Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, -6) and (5, 
4). 
 
Solution: 
Given (x, 4), (2, -6) and (5, 4) are the vertices of a triangle. 
We have the condition that three points to be collinear, the area of the triangle formed 
by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) 
and (x3, y3), then the area of the triangle is given by, 
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⇒ [x (– 10) – 4(– 3) + 1(8 – 30)] = ± 70 
⇒ [– 10x + 12 + 38] = ± 70 
⇒ ±70 = – 10x + 50 
Taking positive sign, we get 
⇒ + 70 = – 10x + 50 
⇒ 10x = – 20 
⇒ x = – 2 
Taking –negative sign, we get 
⇒ – 70 = – 10x + 50 
⇒ 10x = 120 
⇒ x = 12 
Thus x = – 2, 12 
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Exercise 6.4         Page No: 6.84 
 
Solve the following system of linear equations by Cramer’s rule: 
1. x – 2y = 4 
-3x + 5y = -7 
 
Solution: 
Given x – 2y = 4 
-3x + 5y = -7 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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Solving determinant, expanding along 1st row 
⇒ D = 5(1) – (– 3) (– 2) 
⇒ D = 5 – 6 
⇒ D = – 1 
Again, 

 
Solving determinant, expanding along 1st row 
⇒ D1 = 5(4) – (– 7) (– 2) 
⇒ D1 = 20 – 14 
⇒ D1 = 6 
And 

 
Solving determinant, expanding along 1st row 
⇒ D2 = 1(– 7) – (– 3) (4) 
⇒ D2 = – 7 + 12 
⇒ D2 = 5 
Thus by Cramer’s Rule, we have 

 
 
2. 2x – y = 1 
7x – 2y = -7 
 
Solution: 
Given 2x – y = 1 and  

https://byjus.com/?utm_source=pdf-click
https://byjus.com/?utm_source=pdf-click


 
 

 

 

RD Sharma Solutions for Class 12 Maths Chapter 6 

Determinants 

 

7x – 2y = -7 
Let there be a system of n simultaneous linear equations and with n unknown given by 

 
Solving determinant, expanding along 1st row 
⇒ D1 = 1(– 2) – (– 7) (– 1) 
⇒ D1 = – 2 – 7 
⇒ D1 = – 9 
And 
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Solving determinant, expanding along 1st row 
⇒ D2 = 2(– 7) – (7) (1) 
⇒ D2 = – 14 – 7 
⇒ D2 = – 21 
Thus by Cramer’s Rule, we have 

 
 
3. 2x – y = 17 
3x + 5y = 6 
 
Solution: 
Given 2x – y = 17 and 
3x + 5y = 6 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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Solving determinant, expanding along 1st row 
⇒ D1 = 17(5) – (6) (– 1) 
⇒ D1 = 85 + 6 
⇒ D1 = 91 

 
Solving determinant, expanding along 1st row 
⇒ D2 = 2(6) – (17) (3) 
⇒ D2 = 12 – 51 
⇒ D2 = – 39 
Thus by Cramer’s Rule, we have 

 
 

https://byjus.com/?utm_source=pdf-click
https://byjus.com/?utm_source=pdf-click


 
 

 

 

RD Sharma Solutions for Class 12 Maths Chapter 6 

Determinants 

 

4. 3x + y = 19 
3x – y = 23 
 
Solution: 
Let there be a system of n simultaneous linear equations and with n unknown given by 

 
Solving determinant, expanding along 1st row 
⇒ D = 3(– 1) – (3) (1) 
⇒ D = – 3 – 3 
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⇒ D = – 6 
Again, 

 
Solving determinant, expanding along 1st row 
⇒ D1 = 19(– 1) – (23) (1) 
⇒ D1 = – 19 – 23 
⇒ D1 = – 42 

 
Solving determinant, expanding along 1st row 
⇒ D2 = 3(23) – (19) (3) 
⇒ D2 = 69 – 57 
⇒ D2 = 12 
Thus by Cramer’s Rule, we have 

 
 
5. 2x – y = -2 
3x + 4y = 3 
 
Solution: 
Given 2x – y = -2 and 
3x + 4y = 3 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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Solving determinant, expanding along 1st row 
⇒ D2 = 3(2) – (– 2) (3) 
⇒ D2 = 6 + 6 
⇒ D2 = 12 
Thus by Cramer’s Rule, we have 

 
 
6. 3x + ay = 4 
2x + ay = 2, a ≠ 0 
 
Solution: 
Given 3x + ay = 4 and 
2x + ay = 2, a ≠ 0 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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3x + ay = 4 
2x + ay = 2, a≠0 
So by comparing with the theorem, let's find D, D1 and D2 

 
Solving determinant, expanding along 1st row 
⇒ D = 3(a) – (2) (a) 
⇒ D = 3a – 2a 
⇒ D = a 
Again, 

 
Solving determinant, expanding along 1st row 
⇒ D1 = 4(a) – (2) (a) 
⇒ D = 4a – 2a 
⇒ D = 2a 

 
Solving determinant, expanding along 1st row 
⇒ D2 = 3(2) – (2) (4) 
⇒ D = 6 – 8 
⇒ D = – 2 
Thus by Cramer’s Rule, we have 

 
 
7. 2x + 3y = 10 
x + 6y = 4 
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Solution: 
Let there be a system of n simultaneous linear equations and with n unknown given by 

 
Solving determinant, expanding along 1st row 
⇒ D = 2 (6) – (3) (1) 
⇒ D = 12 – 3 
⇒ D = 9 
Again, 
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Solving determinant, expanding along 1st row 
⇒ D1 = 10 (6) – (3) (4) 
⇒ D = 60 – 12 
⇒ D = 48 

 
Solving determinant, expanding along 1st row 
⇒ D2 = 2 (4) – (10) (1) 
⇒ D2 = 8 – 10 
⇒ D2 = – 2 
Thus by Cramer’s Rule, we have 

 
 
8. 5x + 7y = -2 
4x + 6y = -3 
 
Solution: 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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Now, here we have 
5x + 7y = – 2 
4x + 6y = – 3 
So by comparing with the theorem, let's find D, D1 and D2 

 
Solving determinant, expanding along 1st row 
⇒ D = 5(6) – (7) (4) 
⇒ D = 30 – 28 
⇒ D = 2 
Again, 

 
Solving determinant, expanding along 1st row 
⇒ D1 = – 2(6) – (7) (– 3) 
⇒ D1 = – 12 + 21 
⇒ D1 = 9 

 
Solving determinant, expanding along 1st row 
⇒ D2 = – 3(5) – (– 2) (4) 
⇒ D2 = – 15 + 8 
⇒ D2 = – 7 
Thus by Cramer’s Rule, we have 
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9. 9x + 5y = 10 
3y – 2x = 8 
 
Solution: 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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Solving determinant, expanding along 1st row 
⇒ D = 3(9) – (5) (– 2) 
⇒ D = 27 + 10 
⇒ D = 37 
Again, 

 
Solving determinant, expanding along 1st row 
⇒ D1 = 10(3) – (8) (5) 
⇒ D1 = 30 – 40 
⇒ D1 = – 10 

 
Solving determinant, expanding along 1st row 
⇒ D2 = 9(8) – (10) (– 2) 
⇒ D2 = 72 + 20 
⇒ D2 = 92 
Thus by Cramer’s Rule, we have 

 
 
10. x + 2y = 1 
3x + y = 4 
 
Solution: 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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Solving determinant, expanding along 1st row 
⇒ D = 1(1) – (3) (2) 
⇒ D = 1 – 6 
⇒ D = – 5 
Again, 

 
Solving determinant, expanding along 1st row 
⇒ D1 = 1(1) – (2) (4) 
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⇒ D1 = 1 – 8 
⇒ D1 = – 7 

 
Solving determinant, expanding along 1st row 
⇒ D2 = 1(4) – (1) (3) 
⇒ D2 = 4 – 3 
⇒ D2 = 1 
Thus by Cramer’s Rule, we have 

 
 
Solve the following system of linear equations by Cramer’s rule: 
11. 3x + y + z = 2 
2x – 4y + 3z = -1 
4x + y – 3z = -11 
 
Solution: 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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Now, here we have 
3x + y + z = 2 
2x – 4y + 3z = – 1 
4x + y – 3z = – 11 
So by comparing with the theorem, let's find D, D1, D2 and D3 

 
Solving determinant, expanding along 1st row 
⇒ D = 3[(– 4) (– 3) – (3) (1)] – 1[(2) (– 3) – 12] + 1[2 – 4(– 4)] 
⇒ D = 3[12 – 3] – [– 6 – 12] + [2 + 16] 
⇒ D = 27 + 18 + 18 
⇒ D = 63 
Again, 

 
Solving determinant, expanding along 1st row 
⇒ D1 = 2[( – 4)( – 3) – (3)(1)] – 1[( – 1)( – 3) – ( – 11)(3)] + 1[( – 1) – ( – 4)( – 11)] 
⇒ D1 = 2[12 – 3] – 1[3 + 33] + 1[– 1 – 44] 
⇒ D1 = 2[9] – 36 – 45 
⇒ D1 = 18 – 36 – 45 
⇒ D1 = – 63 
Again 

 
Solving determinant, expanding along 1st row 
⇒ D2 = 3[3 + 33] – 2[– 6 – 12] + 1[– 22 + 4] 
⇒ D2 = 3[36] – 2(– 18) – 18 
⇒ D2 = 126 
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⇒  
Solving determinant, expanding along 1st row 
⇒ D3 = 3[44 + 1] – 1[– 22 + 4] + 2[2 + 16] 
⇒ D3 = 3[45] – 1(– 18) + 2(18) 
⇒ D3 = 135 + 18 + 36 
⇒ D3 = 189 
Thus by Cramer’s Rule, we have 

 
 
12. x – 4y – z = 11 
2x – 5y + 2z = 39 
-3x + 2y + z = 1 
 
Solution: 
Given, 
x – 4y – z = 11 
2x – 5y + 2z = 39 
-3x + 2y + z = 1 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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Now, here we have 
x – 4y – z = 11 
2x – 5y + 2z = 39 
– 3x + 2y + z = 1 
So by comparing with theorem, now we have to find D, D1 and D2 

 
Solving determinant, expanding along 1st row 
⇒ D = 1[(– 5) (1) – (2) (2)] + 4[(2) (1) + 6] – 1[4 + 5(– 3)] 
⇒ D = 1[– 5 – 4] + 4[8] – [– 11] 
⇒ D = – 9 + 32 + 11 
⇒ D = 34 
Again, 

 
Solving determinant, expanding along 1st row 
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⇒ D1 = 11[(– 5) (1) – (2) (2)] + 4[(39) (1) – (2) (1)] – 1[2 (39) – (– 5) (1)]
⇒ D1 = 11[– 5 – 4] + 4[39 – 2] – 1[78 + 5]
⇒ D1 = 11[– 9] + 4(37) – 83
⇒ D1 = – 99 – 148 – 45
⇒ D1 = – 34
Again

Solving determinant, expanding along 1st row 
⇒ D2 = 1[39 – 2] – 11[2 + 6] – 1[2 + 117]
⇒ D2 = 1[37] – 11(8) – 119
⇒ D2 = – 170
And,

⇒ 
Solving determinant, expanding along 1st row 
⇒ D3 = 1[– 5 – (39) (2)] – (– 4) [2 – (39) (– 3)] + 11[4 – (– 5)(– 3)]
⇒ D3 = 1 [– 5 – 78] + 4 (2 + 117) + 11 (4 – 15)
⇒ D3 = – 83 + 4(119) + 11(– 11)
⇒ D3 = 272
Thus by Cramer’s Rule, we have

13. 6x + y – 3z = 5
x + 3y – 2z = 5

= (272/34) = 8
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2x + y + 4z = 8 
 
Solution: 
Given 
6x + y – 3z = 5 
x + 3y – 2z = 5 
2x + y + 4z = 8 
Let there be a system of n simultaneous linear equations and with n unknown given by 

 
Now, here we have 
6x + y – 3z = 5 
x + 3y – 2z = 5 
2x + y + 4z = 8 
So by comparing with theorem, now we have to find D , D1 and D2 

 
Solving determinant, expanding along 1st Row 
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⇒ D = 6[(4) (3) – (1) (– 2)] – 1[(4) (1) + 4] – 3[1 – 3(2)] 
⇒ D = 6[12 + 2] – [8] – 3[– 5] 
⇒ D = 84 – 8 + 15 
⇒ D = 91 
Again, Solve D1 formed by replacing 1st column by B matrices 
Here 

 
Solving determinant, expanding along 1st Row 
⇒ D1 = 5[(4) (3) – (– 2) (1)] – 1[(5) (4) – (– 2) (8)] – 3[(5) – (3) (8)] 
⇒ D1 = 5[12 + 2] – 1[20 + 16] – 3[5 – 24] 
⇒ D1 = 5[14] – 36 – 3(– 19) 
⇒ D1 = 70 – 36 + 57 
⇒ D1 = 91 
Again, Solve D2 formed by replacing 1st column by B matrices 
Here 

 
Solving determinant 
⇒ D2 = 6[20 + 16] – 5[4 – 2(– 2)] + (– 3)[8 – 10] 
⇒ D2 = 6[36] – 5(8) + (– 3) (– 2) 
⇒ D2 = 182 
And, Solve D3 formed by replacing 1st column by B matrices 
Here 
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Solving determinant, expanding along 1st Row 
⇒ D3 = 6[24 – 5] – 1[8 – 10] + 5[1 – 6] 
⇒ D3 = 6[19] – 1(– 2) + 5(– 5) 
⇒ D3 = 114 + 2 – 25 
⇒ D3 = 91 
Thus by Cramer’s Rule, we have 

 
 
14. x + y = 5 
y + z = 3 
x + z = 4 
 
Solution: 
Given x + y = 5 
y + z = 3 
x + z = 4 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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Let Dj be the determinant obtained from D after replacing the jth column by 

 
Now, here we have 
x + y = 5 
y + z = 3 
x + z = 4 
So by comparing with theorem, now we have to find D, D1 and D2 

 
Solving determinant, expanding along 1st Row 
⇒ D = 1[1] – 1[– 1] + 0[– 1] 
⇒ D = 1 + 1 + 0 
⇒ D = 2 
Again, Solve D1 formed by replacing 1st column by B matrices 
Here 

 
Solving determinant, expanding along 1st Row 
⇒ D1 = 5[1] – 1[(3) (1) – (4) (1)] + 0[0 – (4) (1)] 
⇒ D1 = 5 – 1[3 – 4] + 0[– 4] 
⇒ D1 = 5 – 1[– 1] + 0 
⇒ D1 = 5 + 1 + 0 
⇒ D1 = 6 
Again, Solve D2 formed by replacing 1st column by B matrices 
Here 
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Solving determinant 
⇒ D2 = 1[3 – 4] – 5[– 1] + 0[0 – 3] 
⇒ D2 = 1[– 1] + 5 + 0 
⇒ D2 = 4 
And, Solve D3 formed by replacing 1st column by B matrices 
Here 

 
Solving determinant, expanding along 1st Row 
⇒ D3 = 1[4 – 0] – 1[0 – 3] + 5[0 – 1] 
⇒ D3 = 1[4] – 1(– 3) + 5(– 1) 
⇒ D3 = 4 + 3 – 5 
⇒ D3 = 2 
Thus by Cramer’s Rule, we have 
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15. 2y – 3z = 0 
x + 3y = -4 
3x + 4y = 3 
 
Solution: 
Given 
2y – 3z = 0 
x + 3y = -4 
3x + 4y = 3 
Let there be a system of n simultaneous linear equations and with n unknown given by 

 
Now, here we have 
2y – 3z = 0 
x + 3y = – 4 
3x + 4y = 3 
So by comparing with theorem, now we have to find D, D1 and D2 
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Solving determinant, expanding along 1st Row 
⇒ D = 0[0] – 2[(0) (1) – 0] – 3[1 (4) – 3 (3)] 
⇒ D = 0 – 0 – 3[4 – 9] 
⇒ D = 0 – 0 + 15 
⇒ D = 15 
Again, Solve D1 formed by replacing 1st column by B matrices 
Here 

 
Solving determinant, expanding along 1st Row 
⇒ D1 = 0[0] – 2[(0) (– 4) – 0] – 3[4 (– 4) – 3(3)] 
⇒ D1 = 0 – 0 – 3[– 16 – 9] 
⇒ D1 = 0 – 0 – 3(– 25) 
⇒ D1 = 0 – 0 + 75 
⇒ D1 = 75 
Again, Solve D2 formed by replacing 2nd column by B matrices 
Here 

 
Solving determinant 
⇒ D2 = 0[0] – 0[(0) (1) – 0] – 3[1 (3) – 3(– 4)] 
⇒ D2 = 0 – 0 + (– 3) (3 + 12) 
⇒ D2 = – 45 
And, Solve D3 formed by replacing 3rd column by B matrices 
Here 
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Solving determinant, expanding along 1st Row 
⇒ D3 = 0[9 – (– 4) 4] – 2[(3) (1) – (– 4) (3)] + 0[1 (4) – 3 (3)] 
⇒ D3 = 0[25] – 2(3 + 12) + 0(4 – 9) 
⇒ D3 = 0 – 30 + 0 
⇒ D3 = – 30 
Thus by Cramer’s Rule, we have 

 
 
16. 5x – 7y + z = 11 
6x – 8y – z = 15 
3x + 2y – 6z = 7 
 
Solution: 
Given 
5x – 7y + z = 11 
6x – 8y – z = 15 
3x + 2y – 6z = 7 
Let there be a system of n simultaneous linear equations and with n unknown given by 
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Now, here we have 
5x – 7y + z = 11 
6x – 8y – z = 15 
3x + 2y – 6z = 7 
So by comparing with theorem, now we have to find D, D1 and D2 

 
Solving determinant, expanding along 1st Row 
⇒ D = 5[(– 8) (– 6) – (– 1) (2)] – 7[(– 6) (6) – 3(– 1)] + 1[2(6) – 3(– 8)] 
⇒ D = 5[48 + 2] – 7[– 36 + 3] + 1[12 + 24] 
⇒ D = 250 – 231 + 36 
⇒ D = 55 
Again, Solve D1 formed by replacing 1st column by B matrices 
Here 

 

https://byjus.com/?utm_source=pdf-click
https://byjus.com/?utm_source=pdf-click


 
 

 

 

RD Sharma Solutions for Class 12 Maths Chapter 6 

Determinants 

 

 
Solving determinant, expanding along 1st Row 
⇒ D1 = 11[(– 8) (– 6) – (2) (– 1)] – (– 7) [(15) (– 6) – (– 1) (7)] + 1[(15)2 – (7) (– 8)] 
⇒ D1 = 11[48 + 2] + 7[– 90 + 7] + 1[30 + 56] 
⇒ D1 = 11[50] + 7[– 83] + 86 
⇒ D1 = 550 – 581 + 86 
⇒ D1 = 55 
Again, Solve D2 formed by replacing 2nd column by B matrices 
Here 

 
Solving determinant, expanding along 1st Row 
⇒ D2 = 5[(15) (– 6) – (7) (– 1)] – 11 [(6) (– 6) – (– 1) (3)] + 1[(6)7 – (15) (3)] 
⇒ D2 = 5[– 90 + 7] – 11[– 36 + 3] + 1[42 – 45] 
⇒ D2 = 5[– 83] – 11(– 33) – 3 
⇒ D2 = – 415 + 363 – 3 
⇒ D2 = – 55 
And, Solve D3 formed by replacing 3rd column by B matrices 
Here 

 
Solving determinant, expanding along 1st Row 
⇒ D3 = 5[(– 8) (7) – (15) (2)] – (– 7) [(6) (7) – (15) (3)] + 11[(6)2 – (– 8) (3)] 
⇒ D3 = 5[– 56 – 30] – (– 7) [42 – 45] + 11[12 + 24] 
⇒ D3 = 5[– 86] + 7[– 3] + 11[36] 
⇒ D3 = – 430 – 21 + 396 
⇒ D3 = – 55 
Thus by Cramer’s Rule, we have 
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Exercise 6.5         Page No: 6.89 
 
Solve each of the following system of homogeneous linear equations: 
1. x + y – 2z = 0 
2x + y – 3z =0 
5x + 4y – 9z = 0 
 
Solution: 
Given x + y – 2z = 0 
2x + y – 3z =0 
5x + 4y – 9z = 0 
Any system of equation can be written in matrix form as AX = B 

Now finding the Determinant of these set of equations, 

 

= 1(1 × (– 9) – 4 × (– 3)) – 1(2 × (– 9) – 5 × (– 3)) – 2(4 × 2 – 5 × 1) 

= 1(– 9 + 12) – 1(– 18 + 15) – 2(8 – 5) 

= 1 × 3 –1 × (– 3) – 2 × 3 

= 3 + 3 – 6 

= 0 

Since D = 0, so the system of equation has infinite solution. 

Now let z = k 

⇒ x + y = 2k 

And 2x + y = 3k 

Now using the Cramer’s rule 
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2. 2x + 3y + 4z = 0 
x + y + z = 0 
2x + 5y – 2z = 0 
 
Solution: 
Given  
2x + 3y + 4z = 0 
x + y + z = 0 
2x + 5y – 2z = 0 
Any system of equation can be written in matrix form as AX = B 
Now finding the Determinant of these set of equations, 
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= 2(1 × (– 2) – 1 × 5) – 3(1 × (– 2) – 2 × 1) + 4(1 × 5 – 2 × 1) 
= 2(– 2 – 5) – 3(– 2 – 2) + 4(5 – 2) 
= 1 × (– 7) – 3 × (– 4) + 4 × 3 
= – 7 + 12 + 12 
= 17 
Since D ≠ 0, so the system of equation has infinite solution. 
Therefore the system of equation has only solution as x = y = z = 0. 
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