1. Find the principal value of the following:

(i) $\sin ^{-1}\left(-\sqrt{\frac{3}{2}}\right)$
(ii) $\sin ^{-1}\left(\cos \frac{2 \pi}{3}\right)$
(iii) $\sin ^{-1}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)$
(iv) $\sin ^{-1}\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right)$
(v) $\sin ^{-1}\left(\cos \frac{3 \pi}{4}\right)$
(vi) $\sin ^{-1}\left(\tan \frac{5 \pi}{4}\right)$

Solution:

(i) Let $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=y$

Then $\sin y=\left(\frac{-\sqrt{3}}{2}\right)$
$=-\sin \left(\frac{\pi}{3}\right)$
$=\sin \left(-\frac{\pi}{3}\right)$
We know that the principal value of $\sin ^{-1}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
And $-\sin \frac{\pi}{3}=\sin \left(\frac{-\pi}{3}\right)$
Therefore principal value of $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=\frac{-\pi}{3}$
(ii) Let $\sin ^{-1}\left(\cos \frac{2 \pi}{3}\right)=y$

Then $\sin y=\cos \left(\frac{2 \pi}{3}\right)$
$=-\sin \left(\frac{\pi}{2}+\frac{\pi}{6}\right)$
$=-\sin \left(\frac{\pi}{6}\right)$
We know that the principal value of $\sin ^{-1}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

$$
\text { And }-\sin \left(\frac{\pi}{6}\right)=\cos \left(\frac{2 \pi}{3}\right)
$$

Therefore principal value of $\sin ^{-1}\left(\cos \frac{2 \pi}{3}\right)$ is $\frac{-\pi}{6}$
(iii) Given functions can be written as

$$
\sin ^{-1}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}\right)
$$

Taking $1 / \mathrm{V} 2$ as common from the above equation we get,
$=\sin ^{-1}\left(\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}-\frac{1}{2} \times \frac{1}{\sqrt{2}}\right)$
Taking $\mathrm{V} 3 / 2$ as common, and $1 / \mathrm{V} 2$ from the above equation we get,
$=\sin ^{-1}\left(\frac{\sqrt{3}}{2} \times \sqrt{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}-\frac{1}{\sqrt{2}} \times \sqrt{1-\left(\frac{\sqrt{3}}{2}\right)^{2}}\right)$
On simplifying, we get
$=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)-\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

By substituting the values,
$=\frac{\pi}{3}-\frac{\pi}{4}$
Taking LCM and cross multiplying we get,

$$
=\frac{\pi}{12}
$$

(iv) The given question can be written as

$$
\sin ^{-1}\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}\right)
$$

Taking $1 / \mathrm{V} 2$ as common from the above equation we get

$$
=\sin ^{-1}\left(\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}+\frac{1}{2} \times \frac{1}{\sqrt{2}}\right)
$$

Taking $\sqrt{ } 3 / 2$ as common, and $1 / \sqrt{ } 2$ from the above equation we get,

$$
=\sin ^{-1}\left(\frac{\sqrt{3}}{2} \times \sqrt{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}+\frac{1}{\sqrt{2}} \times \sqrt{1-\left(\frac{\sqrt{3}}{2}\right)^{2}}\right)
$$

On simplifying we get,
$=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)+\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
By substituting the corresponding values we get

$$
\begin{aligned}
& =\frac{\pi}{3}+\frac{\pi}{4} \\
& =\frac{7 \pi}{12}
\end{aligned}
$$

(v) Let

$$
\sin ^{-1}\left(\cos \frac{3 \pi}{4}\right)=y
$$

Then above equation can be written as

$$
\sin y=\cos \frac{3 \pi}{4}=-\sin \left(\pi-\frac{3 \pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right)
$$

We know that the principal value of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Therefore above equation becomes,
$-\sin \left(\frac{\pi}{4}\right)=\cos \frac{3 \pi}{4}$
Therefore the principal value of $\sin ^{-1}\left(\cos \frac{3 \pi}{4}\right)$ is $-\frac{\pi}{4}$
(vi) Let

$$
\mathrm{y}=\sin ^{-1}\left(\tan \frac{5 \pi}{4}\right)
$$

Therefore above equation can be written as
$\operatorname{Sin} y=\left(\tan \frac{5 \pi}{4}\right)=\tan \left(\pi+\frac{\pi}{4}\right)=\tan \frac{\pi}{4}=1=\sin \left(\frac{\pi}{2}\right)$
We know that the principal value of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\sin \left(\frac{\pi}{2}\right)=\tan \frac{5 \pi}{4}$
Therefore the principal value of $\sin ^{-1}\left(\tan \frac{5 \pi}{4}\right)$ is $\frac{\pi}{2}$.

2. Find the value of each of the following:

(i)

$$
\sin ^{-1} \frac{1}{2}-2 \sin ^{-1} \frac{1}{\sqrt{2}}
$$

(ii)

$$
\sin ^{-1}\left\{\cos \left(\sin ^{-1} \frac{\sqrt{3}}{2}\right)\right\}
$$

Solution:

(i) The given question can be written as,

$$
\sin ^{-1} \frac{1}{2}-2 \sin ^{-1} \frac{1}{\sqrt{2}}=\sin ^{-1} \frac{1}{2}-\sin ^{-1}\left(2 \times \frac{1}{\sqrt{2}} \sqrt{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}\right)
$$

On simplifying, we get

$$
=\sin ^{-1} \frac{1}{2}-\sin ^{-1}(1)
$$

By substituting the corresponding values, we get
$=\frac{\pi}{6}-\frac{\pi}{2}$
$=-\frac{\pi}{3}$
(ii) Given question can be written as

We know that $\left(\sin ^{-1} \frac{\sqrt{3}}{2}\right)=\pi / 3$
$=\sin ^{-1}\left\{\cos \left(\frac{\pi}{3}\right)\right\}$
Now substituting the values we get,
$=\sin ^{-1}\left\{\frac{1}{2}\right\}$
$=\frac{\pi}{6}$

1. Find the domain of definition of $f(x)=\cos ^{-1}\left(x^{2}-4\right)$

Solution:

Given $f(x)=\cos ^{-1}\left(x^{2}-4\right)$
We know that domain of $\cos ^{-1}\left(x^{2}-4\right)$ lies in the interval $[-1,1]$
Therefore, we can write as
$-1 \leq x^{2}-4 \leq 1$
$4-1 \leq x^{2} \leq 1+4$
$3 \leq x^{2} \leq 5$
$\pm \sqrt{ } 3 \leq x \leq \pm$ V 5
$-\mathrm{V} 5 \leq \mathrm{x} \leq-\mathrm{V} 3$ and $\mathrm{V} 3 \leq \mathrm{x} \leq \sqrt{ } 5$
Therefore domain of $\cos ^{-1}\left(x^{2}-4\right)$ is $[-\sqrt{ } 5,-\sqrt{ } 3] \cup[\sqrt{ } 3, \sqrt{ } 5]$
2. Find the domain of $f(x)=\cos ^{-1} 2 x+\sin ^{-1} x$.

Solution:

Given that $f(x)=\cos ^{-1} 2 x+\sin ^{-1} x$.
Now we have to find the domain of $f(x)$,
We know that domain of $\cos ^{-1} x$ lies in the interval $[-1,1]$
Also know that domain of $\sin ^{-1} x$ lies in the interval $[-1,1]$
Therefore, the domain of $\cos ^{-1}(2 x)$ lies in the interval $[-1,1]$
Hence we can write as,
$-1 \leq 2 x \leq 1$
$-1 / 2 \leq x \leq 1 / 2$
Hence, domain of $\cos ^{-1}(2 x)+\sin ^{-1} x$ lies in the interval $[-1 / 2,1 / 2]$

1. Find the principal value of each of the following:
(i) $\tan ^{-1}(1 / \sqrt{ } 3)$
(ii) $\tan ^{-1}(-1 / \sqrt{ } 3)$
(iii) $\tan ^{-1}(\cos (\pi / 2))$
(iv) $\tan ^{-1}(2 \cos (2 \pi / 3))$

Solution:

(i) Given $\tan ^{-1}(1 / v 3)$

We know that for any $x \in R, \tan ^{-1}$ represents an angle in $(-\pi / 2, \pi / 2)$ whose tangent is x.
So, $\tan ^{-1}(1 / \sqrt{ } 3)=$ an angle in $(-\pi / 2, \pi / 2)$ whose tangent is $(1 / \sqrt{ } 3)$
But we know that the value is equal to $\pi / 6$
Therefore $\tan ^{-1}(1 / \sqrt{ } 3)=\pi / 6$
Hence the principal value of $\tan ^{-1}(1 / \sqrt{ } 3)=\pi / 6$
(ii) Given $\tan ^{-1}(-1 / \mathrm{V} 3)$

We know that for any $x \in R, \tan ^{-1}$ represents an angle in $(-\pi / 2, \pi / 2)$ whose tangent is x.
So, $\tan ^{-1}(-1 / \sqrt{ } 3)=$ an angle in $(-\pi / 2, \pi / 2)$ whose tangent is $(1 / \sqrt{ } 3)$
But we know that the value is equal to $-\pi / 6$
Therefore $\tan ^{-1}(-1 / \sqrt{ } 3)=-\pi / 6$
Hence the principal value of $\tan ^{-1}(-1 / \sqrt{ } 3)=-\pi / 6$
(iii) Given that $\tan ^{-1}(\cos (\pi / 2))$

But we know that $\cos (\pi / 2)=0$
We know that for any $x \in R, \tan ^{-1}$ represents an angle in $(-\pi / 2, \pi / 2)$ whose tangent is x. Therefore $\tan ^{-1}(0)=0$
Hence the principal value of $\tan ^{-1}(\cos (\pi / 2)$ is 0 .
(iv) Given that $\tan ^{-1}(2 \cos (2 \pi / 3))$

But we know that $\cos \pi / 3=1 / 2$
So, $\cos (2 \pi / 3)=-1 / 2$
Therefore $\tan ^{-1}(2 \cos (2 \pi / 3))=\tan ^{-1}(2 \times-1 / 2)$
$=\tan ^{-1}(-1)$
$=-\pi / 4$
Hence, the principal value of $\tan ^{-1}(2 \cos (2 \pi / 3))$ is $-\pi / 4$

1. Find the principal value of each of the following:
(i) $\sec ^{-1}(-\mathrm{V} 2)$
(ii) $\sec ^{-1}(2)$
(iii) $\sec ^{-1}(2 \sin (3 \pi / 4))$
(iv) $\sec ^{-1}(2 \tan (3 \pi / 4))$

Solution:

(i) Given $\sec ^{-1}(-\mathrm{V} 2)$

Now let $y=\sec ^{-1}(-\mathrm{V} 2)$
Sec $y=-\mathrm{V} 2$
We know that sec $\pi / 4=\sqrt{ } 2$
Therefore, $-\sec (\pi / 4)=-\sqrt{ } 2$
$=\sec (\pi-\pi / 4)$
$=\sec (3 \pi / 4)$
Thus the range of principal value of $\sec ^{-1}$ is $[0, \pi]-\{\pi / 2\}$
And $\sec (3 \pi / 4)=-\mathrm{V} 2$
Hence the principal value of $\sec ^{-1}(-\sqrt{ } 2)$ is $3 \pi / 4$
(ii) Given $\mathrm{sec}^{-1}(2)$

Let $\mathrm{y}=\sec ^{-1}(2)$
Sec $y=2$
$=\operatorname{Sec} \pi / 3$
Therefore the range of principal value of $\sec ^{-1}$ is $[0, \pi]-\{\pi / 2\}$ and $\sec \pi / 3=2$
Thus the principal value of $\sec ^{-1}(2)$ is $\pi / 3$
(iii) Given $\sec ^{-1}(2 \sin (3 \pi / 4))$

But we know that $\sin (3 \pi / 4)=1 / \sqrt{ } 2$
Therefore $2 \sin (3 \pi / 4)=2 \times 1 / v 2$
$2 \sin (3 \pi / 4)=\sqrt{ } 2$
Therefore by substituting above values in $\sec ^{-1}(2 \sin (3 \pi / 4))$, we get
$\operatorname{Sec}^{-1}(\mathrm{~V} 2)$
Let $\operatorname{Sec}^{-1}(\mathrm{~V} 2)=\mathrm{y}$
Sec $y=\sqrt{ }$ 2
$\operatorname{Sec}(\pi / 4)=\mathrm{V} 2$

Therefore range of principal value of $\sec ^{-1}$ is $[0, \pi]-\{\pi / 2\}$ and $\sec (\pi / 4)=\sqrt{ } 2$ Thus the principal value of $\sec ^{-1}(2 \sin (3 \pi / 4))$ is $\pi / 4$.
(iv) Given $\sec ^{-1}(2 \tan (3 \pi / 4))$

But we know that $\tan (3 \pi / 4)=-1$
Therefore, $2 \tan (3 \pi / 4)=2 \times-1$
$2 \tan (3 \pi / 4)=-2$
By substituting these values in $\sec ^{-1}(2 \tan (3 \pi / 4))$, we get
$\operatorname{Sec}^{-1}(-2)$
Now let $y=\operatorname{Sec}^{-1}(-2)$
Sec $y=-2$
$-\sec (\pi / 3)=-2$
$=\sec (\pi-\pi / 3)$
$=\sec (2 \pi / 3)$
Therefore the range of principal value of $\sec ^{-1}$ is $[0, \pi]-\{\pi / 2\}$ and $\sec (2 \pi / 3)=-2$
Thus, the principal value of $\sec ^{-1}(2 \tan (3 \pi / 4))$ is $(2 \pi / 3)$.

1. Find the principal values of each of the following:
(i) $\operatorname{cosec}^{-1}(-\mathrm{v} 2)$
(ii) $\operatorname{cosec}^{-1}(-2)$
(iii) $\operatorname{cosec}^{-1}(2 / \sqrt{ } 3)$
(iv) $\operatorname{cosec}^{-1}(2 \cos (2 \pi / 3))$

Solution:

(i) Given $\operatorname{cosec}^{-1}(-\sqrt{ } 2)$

Let $\mathrm{y}=\operatorname{cosec}^{-1}(-\sqrt{ } 2)$
Cosec $\mathrm{y}=-\mathrm{V} 2$

- Cosec $\mathrm{y}=\mathrm{V} 2$
$-\operatorname{Cosec}(\pi / 4)=\sqrt{ } 2$
$-\operatorname{Cosec}(\pi / 4)=\operatorname{cosec}(-\pi / 4)[$ since $-\operatorname{cosec} \theta=\operatorname{cosec}(-\theta)]$
The range of principal value of $\operatorname{cosec}^{-1}[-\pi / 2, \pi / 2]-\{0\}$ and $\operatorname{cosec}(-\pi / 4)=-\sqrt{ } 2$
$\operatorname{Cosec}(-\pi / 4)=-\sqrt{ } 2$
Therefore the principal value of $\operatorname{cosec}^{-1}(-\sqrt{ } 2)$ is $-\pi / 4$
(ii) Given $\operatorname{cosec}^{-1}(-2)$

Let $y=\operatorname{cosec}^{-1}(-2)$
Cosec $y=-2$

- Cosec $y=2$
$-\operatorname{Cosec}(\pi / 6)=2$
$-\operatorname{Cosec}(\pi / 6)=\operatorname{cosec}(-\pi / 6)[$ since $-\operatorname{cosec} \theta=\operatorname{cosec}(-\theta)]$
The range of principal value of $\operatorname{cosec}^{-1}[-\pi / 2, \pi / 2]-\{0\}$ and $\operatorname{cosec}(-\pi / 6)=-2$
Cosec $(-\pi / 6)=-2$
Therefore the principal value of $\operatorname{cosec}^{-1}(-2)$ is $-\pi / 6$
(iii) Given $\operatorname{cosec}^{-1}(2 / v 3)$

Let $\mathrm{y}=\operatorname{cosec}^{-1}(2 / \sqrt{ } 3)$
Cosec $y=(2 / \sqrt{ } 3)$
$\operatorname{Cosec}(\pi / 3)=(2 / \sqrt{ } 3)$
Therefore range of principal value of $\operatorname{cosec}^{-1}$ is $[-\pi / 2, \pi / 2]-\{0\}$ and $\operatorname{cosec}(\pi / 3)=(2 / \sqrt{ } 3)$ Thus, the principal value of $\operatorname{cosec}^{-1}(2 / \sqrt{ } 3)$ is $\pi / 3$
(iv) Given $\operatorname{cosec}^{-1}(2 \cos (2 \pi / 3))$

But we know that $\cos (2 \pi / 3)=-1 / 2$
Therefore $2 \cos (2 \pi / 3)=2 \times-1 / 2$
$2 \cos (2 \pi / 3)=-1$
By substituting these values in $\operatorname{cosec}^{-1}(2 \cos (2 \pi / 3))$ we get,
$\operatorname{Cosec}^{-1}(-1)$
Let $\mathrm{y}=\operatorname{cosec}^{-1}(-1)$

- Cosec $\mathrm{y}=1$
$-\operatorname{Cosec}(\pi / 2)=\operatorname{cosec}(-\pi / 2)[$ since $-\operatorname{cosec} \theta=\operatorname{cosec}(-\theta)]$
The range of principal value of $\operatorname{cosec}^{-1}[-\pi / 2, \pi / 2]-\{0\}$ and $\operatorname{cosec}(-\pi / 2)=-1$
Cosec $(-\pi / 2)=-1$
Therefore the principal value of $\operatorname{cosec}^{-1}(2 \cos (2 \pi / 3))$ is $-\pi / 2$

1. Find the principal values of each of the following:
(i) $\cot ^{-1}(-\sqrt{ } 3)$
(ii) $\operatorname{Cot}^{-1}(\sqrt{ } 3)$
(iii) $\cot ^{-1}(-1 / \sqrt{ } 3)$
(iv) $\cot ^{-1}(\tan 3 \pi / 4)$

Solution:

(i) Given $\cot ^{-1}(-v 3)$

Let $y=\cot ^{-1}(-\sqrt{ } 3)$
$-\operatorname{Cot}(\pi / 6)=\sqrt{ } 3$
$=\operatorname{Cot}(\pi-\pi / 6)$
$=\cot (5 \pi / 6)$
The range of principal value of $\cot ^{-1}$ is $(0, \pi)$ and $\cot (5 \pi / 6)=-\sqrt{ } 3$
Thus, the principal value of $\cot ^{-1}(-\sqrt{ } 3)$ is $5 \pi / 6$
(ii) Given $\operatorname{Cot}^{-1}(\sqrt{ } 3)$

Let $\mathrm{y}=\cot ^{-1}(\sqrt{ } 3)$
$\operatorname{Cot}(\pi / 6)=\sqrt{ } 3$
The range of principal value of $\cot ^{-1}$ is $(0, \pi)$ and
Thus, the principal value of $\cot ^{-1}(\sqrt{ } 3)$ is $\pi / 6$
(iii) Given $\cot ^{-1}(-1 / v 3)$

Let $\mathrm{y}=\cot ^{-1}(-1 / \mathrm{V} 3)$
Cot $y=(-1 / \sqrt{ } 3)$
$-\operatorname{Cot}(\pi / 3)=1 / v 3$
$=\operatorname{Cot}(\pi-\pi / 3)$
$=\cot (2 \pi / 3)$
The range of principal value of $\cot ^{-1}(0, \pi)$ and $\cot (2 \pi / 3)=-1 / \sqrt{ } 3$
Therefore the principal value of $\cot ^{-1}(-1 / \sqrt{ } 3)$ is $2 \pi / 3$
(iv) Given $\cot ^{-1}(\tan 3 \pi / 4)$

But we know that $\tan 3 \pi / 4=-1$
By substituting this value in $\cot ^{-1}(\tan 3 \pi / 4)$ we get
$\operatorname{Cot}^{-1}(-1)$

Now, let $y=\cot ^{-1}(-1)$
Cot $y=(-1)$
$-\operatorname{Cot}(\pi / 4)=1$
$=\operatorname{Cot}(\pi-\pi / 4)$
$=\cot (3 \pi / 4)$
The range of principal value of $\cot ^{-1}(0, \pi)$ and $\cot (3 \pi / 4)=-1$
Therefore the principal value of $\cot ^{-1}(\tan 3 \pi / 4)$ is $3 \pi / 4$

1. Evaluate each of the following:
(i) $\sin ^{-1}(\sin \pi / 6)$
(ii) $\sin ^{-1}(\sin 7 \pi / 6)$
(iii) $\sin ^{-1}(\sin 5 \pi / 6)$
(iv) $\sin ^{-1}(\sin 13 \pi / 7)$
(v) $\sin ^{-1}(\sin 17 \pi / 8)$
(vi) $\sin ^{-1}\{(\sin -17 \pi / 8)\}$
(vii) $\sin ^{-1}(\sin 3)$
(viii) $\sin ^{-1}(\sin 4)$
(ix) $\sin ^{-1}(\sin 12)$
(x) $\sin ^{-1}(\sin 2)$

Solution:

(i) Given $\sin ^{-1}(\sin \pi / 6)$

We know that the value of $\sin \pi / 6$ is $1 / 2$
By substituting this value in $\sin ^{-1}(\sin \pi / 6)$
We get, $\sin ^{-1}(1 / 2)$
Now let $y=\sin ^{-1}(1 / 2)$
$\operatorname{Sin}(\pi / 6)=1 / 2$
The range of principal value of $\sin ^{-1}(-\pi / 2, \pi / 2)$ and $\sin (\pi / 6)=1 / 2$
Therefore $\sin ^{-1}(\sin \pi / 6)=\pi / 6$
(ii) Given $\sin ^{-1}(\sin 7 \pi / 6)$

But we know that $\sin 7 \pi / 6=-1 / 2$
By substituting this in $\sin ^{-1}(\sin 7 \pi / 6)$ we get,
$\operatorname{Sin}^{-1}(-1 / 2)$
Now let $y=\sin ^{-1}(-1 / 2)$
$-\operatorname{Sin} y=1 / 2$
$-\operatorname{Sin}(\pi / 6)=1 / 2$
$-\operatorname{Sin}(\pi / 6)=\sin (-\pi / 6)$
The range of principal value of $\sin ^{-1}(-\pi / 2, \pi / 2)$ and $\sin (-\pi / 6)=-1 / 2$
Therefore $\sin ^{-1}(\sin 7 \pi / 6)=-\pi / 6$
(iii) Given $\sin ^{-1}(\sin 5 \pi / 6)$

We know that the value of $\sin 5 \pi / 6$ is $1 / 2$
By substituting this value in $\sin ^{-1}(\sin 5 \pi / 6)$
We get, $\sin ^{-1}(1 / 2)$
Now let $y=\sin ^{-1}(1 / 2)$
$\operatorname{Sin}(\pi / 6)=1 / 2$
The range of principal value of $\sin ^{-1}(-\pi / 2, \pi / 2)$ and $\sin (\pi / 6)=1 / 2$
Therefore $\sin ^{-1}(\sin 5 \pi / 6)=\pi / 6$
(iv) Given $\sin ^{-1}(\sin 13 \pi / 7)$

Given question can be written as $\sin (2 \pi-\pi / 7)$
$\operatorname{Sin}(2 \pi-\pi / 7)$ can be written as $\sin (-\pi / 7)$ [since $\sin (2 \pi-\theta)=\sin (-\theta)]$
By substituting these values in $\sin ^{-1}(\sin 13 \pi / 7)$ we get $\sin ^{-1}(\sin -\pi / 7)$
As $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$
Therefore $\sin ^{-1}(\sin 13 \pi / 7)=-\pi / 7$
(v) Given $\sin ^{-1}(\sin 17 \pi / 8)$

Given question can be written as $\sin (2 \pi+\pi / 8)$
$\operatorname{Sin}(2 \pi+\pi / 8)$ can be written as $\sin (\pi / 8)$
By substituting these values in $\sin ^{-1}(\sin 17 \pi / 8)$ we get $\sin ^{-1}(\sin \pi / 8)$
As $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$
Therefore $\sin ^{-1}(\sin 17 \pi / 8)=\pi / 8$
(vi) Given $\sin ^{-1}\{(\sin -17 \pi / 8)\}$

But we know that $-\sin \theta=\sin (-\theta)$
Therefore $(\sin -17 \pi / 8)=-\sin 17 \pi / 8$
$-\sin 17 \pi / 8=-\sin (2 \pi+\pi / 8)$ [since $\sin (2 \pi-\theta)=-\sin (\theta)]$
It can also be written as $-\sin (\pi / 8)$
$-\operatorname{Sin}(\pi / 8)=\sin (-\pi / 8)[$ since $-\sin \theta=\sin (-\theta)]$
By substituting these values in $\sin ^{-1}\{(\sin -17 \pi / 8)\}$ we get,
$\operatorname{Sin}^{-1}(\sin -\pi / 8)$
As $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$
Therefore $\sin ^{-1}(\sin -\pi / 8)=-\pi / 8$
(vii) Given $\sin ^{-1}(\sin 3)$

We know that $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$ which is approximately equal to $[-1.57$, 1.57]

But here $x=3$, which does not lie on the above range,

Therefore we know that $\sin (\pi-x)=\sin (x)$
Hence $\sin (\pi-3)=\sin (3)$ also $\pi-3 \in[-\pi / 2, \pi / 2]$
$\operatorname{Sin}^{-1}(\sin 3)=\pi-3$
(viii) Given $\sin ^{-1}(\sin 4)$

We know that $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$ which is approximately equal to [-1.57, 1.57]

But here $x=4$, which does not lie on the above range,
Therefore we know that $\sin (\pi-x)=\sin (x)$
Hence $\sin (\pi-4)=\sin (4)$ also $\pi-4 \in[-\pi / 2, \pi / 2]$
$\operatorname{Sin}^{-1}(\sin 4)=\pi-4$
(ix) Given $\sin ^{-1}(\sin 12)$

We know that $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$ which is approximately equal to [-1.57, 1.57]

But here $x=12$, which does not lie on the above range,
Therefore we know that $\sin (2 n \pi-x)=\sin (-x)$
Hence $\sin (2 n \pi-12)=\sin (-12)$
Here $n=2$ also $12-4 \pi \in[-\pi / 2, \pi / 2]$
$\operatorname{Sin}^{-1}(\sin 12)=12-4 \pi$
(x) Given $\sin ^{-1}(\sin 2)$

We know that $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$ which is approximately equal to [-1.57, 1.57]

But here $x=2$, which does not lie on the above range,
Therefore we know that $\sin (\pi-x)=\sin (x)$
Hence $\sin (\pi-2)=\sin (2)$ also $\pi-2 \in[-\pi / 2, \pi / 2]$
$\operatorname{Sin}^{-1}(\sin 2)=\pi-2$

2. Evaluate each of the following:

(i) $\cos ^{-1}\{\cos (-\pi / 4)\}$
(ii) $\cos ^{-1}(\cos 5 \pi / 4)$
(iii) $\cos ^{-1}(\cos 4 \pi / 3)$
(iv) $\cos ^{-1}(\cos 13 \pi / 6)$
(v) $\cos ^{-1}(\cos 3)$
(vi) $\cos ^{-1}(\cos 4)$
(vii) $\cos ^{-1}(\cos 5)$
(viii) $\cos ^{-1}(\cos 12)$

Solution:

(i) Given $\cos ^{-1}\{\cos (-\pi / 4)\}$

We know that $\cos (-\pi / 4)=\cos (\pi / 4)[$ since $\cos (-\theta)=\cos \theta$
Also know that $\cos (\pi / 4)=1 / \sqrt{ } 2$
By substituting these values in $\cos ^{-1}\{\cos (-\pi / 4)\}$ we get,
$\operatorname{Cos}^{-1}(1 / \sqrt{ } 2)$
Now let $y=\cos ^{-1}(1 / \sqrt{ } 2)$
Therefore $\cos y=1 / \sqrt{ } 2$
Hence range of principal value of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (\pi / 4)=1 / \sqrt{ } 2$
Therefore $\cos ^{-1}\{\cos (-\pi / 4)\}=\pi / 4$
(ii) Given $\cos ^{-1}(\cos 5 \pi / 4)$

But we know that $\cos (5 \pi / 4)=-1 / \sqrt{ } 2$
By substituting these values in $\cos ^{-1}\{\cos (5 \pi / 4)\}$ we get,
$\operatorname{Cos}^{-1}(-1 / v 2)$
Now let $\mathrm{y}=\cos ^{-1}(-1 / \sqrt{ } 2)$
Therefore $\cos y=-1 / \sqrt{ } 2$
$-\operatorname{Cos}(\pi / 4)=1 / \sqrt{ } 2$
$\operatorname{Cos}(\pi-\pi / 4)=-1 / \sqrt{ } 2$
$\operatorname{Cos}(3 \pi / 4)=-1 / \sqrt{ } 2$
Hence range of principal value of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (3 \pi / 4)=-1 / \sqrt{ } 2$
Therefore $\cos ^{-1}\{\cos (5 \pi / 4)\}=3 \pi / 4$
(iii) Given $\cos ^{-1}(\cos 4 \pi / 3)$

But we know that $\cos (4 \pi / 3)=-1 / 2$
By substituting these values in $\cos ^{-1}\{\cos (4 \pi / 3)\}$ we get,
$\operatorname{Cos}^{-1}(-1 / 2)$
Now let $y=\cos ^{-1}(-1 / 2)$
Therefore $\cos y=-1 / 2$
$-\operatorname{Cos}(\pi / 3)=1 / 2$
$\operatorname{Cos}(\pi-\pi / 3)=-1 / 2$
$\operatorname{Cos}(2 \pi / 3)=-1 / 2$
Hence range of principal value of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (2 \pi / 3)=-1 / 2$
Therefore $\cos ^{-1}\{\cos (4 \pi / 3)\}=2 \pi / 3$
(iv) Given $\cos ^{-1}(\cos 13 \pi / 6)$

But we know that $\cos (13 \pi / 6)=\sqrt{ } 3 / 2$
By substituting these values in $\cos ^{-1}\{\cos (13 \pi / 6)\}$ we get,
$\operatorname{Cos}^{-1}(\sqrt{2} / 2)$
Now let $y=\cos ^{-1}(\sqrt{2} / 2)$
Therefore $\cos y=\sqrt{ } 3 / 2$
$\operatorname{Cos}(\pi / 6)=\sqrt{ } 3 / 2$
Hence range of principal value of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (\pi / 6)=\sqrt{ } 3 / 2$
Therefore $\cos ^{-1}\{\cos (13 \pi / 6)\}=\pi / 6$
(v) Given $\cos ^{-1}(\cos 3)$

We know that $\cos ^{-1}(\cos \theta)=\theta$ if $0 \leq \theta \leq \pi$
Therefore by applying this in given question we get, $\operatorname{Cos}^{-1}(\cos 3)=3,3 \in[0, \pi]$
(vi) Given $\cos ^{-1}(\cos 4)$

We have $\cos ^{-1}(\cos x)=x$ if $x \in[0, \pi] \approx[0,3.14]$
And here $x=4$ which does not lie in the above range.
We know that $\cos (2 \pi-x)=\cos (x)$
Thus, $\cos (2 \pi-4)=\cos (4)$ so $2 \pi-4$ belongs in $[0, \pi]$
Hence $\cos ^{-1}(\cos 4)=2 \pi-4$
(vii) Given $\cos ^{-1}(\cos 5)$

We have $\cos ^{-1}(\cos x)=x$ if $x \in[0, \pi] \approx[0,3.14]$
And here $x=5$ which does not lie in the above range.
We know that $\cos (2 \pi-x)=\cos (x)$
Thus, $\cos (2 \pi-5)=\cos (5)$ so $2 \pi-5$ belongs in $[0, \pi]$
Hence $\cos ^{-1}(\cos 5)=2 \pi-5$
(viii) Given $\cos ^{-1}(\cos 12)$
$\operatorname{Cos}^{-1}(\cos \mathrm{x})=\mathrm{x}$ if $\mathrm{x} \in[0, \pi] \approx[0,3.14]$
And here $x=12$ which does not lie in the above range.
We know $\cos (2 n \pi-x)=\cos (x)$
$\operatorname{Cos}(2 n \pi-12)=\cos (12)$
Here $\mathrm{n}=2$.
Also $4 \pi-12$ belongs in $[0, \pi]$
$\therefore \cos ^{-1}(\cos 12)=4 \pi-12$

3. Evaluate each of the following:

(i) $\tan ^{-1}(\tan \pi / 3)$
(ii) $\tan ^{-1}(\tan 6 \pi / 7)$
(iii) $\tan ^{-1}(\tan 7 \pi / 6)$
(iv) $\tan ^{-1}(\tan 9 \pi / 4)$
(v) $\tan ^{-1}(\tan 1)$
(vi) $\tan ^{-1}(\tan 2)$
(vii) $\tan ^{-1}(\tan 4)$
(viii) $\tan ^{-1}(\tan 12)$

Solution:

(i) Given $\tan ^{-1}(\tan \pi / 3)$

As $\tan ^{-1}(\tan \mathrm{x})=\mathrm{x}$ if $\mathrm{x} \in[-\pi / 2, \pi / 2]$
By applying this condition in the given question we get,
$\operatorname{Tan}^{-1}(\tan \pi / 3)=\pi / 3$
(ii) Given $\tan ^{-1}(\tan 6 \pi / 7)$

We know that $\tan 6 \pi / 7$ can be written as $(\pi-\pi / 7)$
$\operatorname{Tan}(\pi-\pi / 7)=-\tan \pi / 7$
We know that $\tan ^{-1}(\tan x)=x$ if $x \in[-\pi / 2, \pi / 2]$
$\operatorname{Tan}^{-1}(\tan 6 \pi / 7)=-\pi / 7$
(iii) Given $\tan ^{-1}(\tan 7 \pi / 6)$

We know that $\tan 7 \pi / 6=1 / \sqrt{ } 3$
By substituting this value in $\tan ^{-1}(\tan 7 \pi / 6)$ we get,
$\mathrm{Tan}^{-1}(1 / \mathrm{V} 3)$
Now let $\tan ^{-1}(1 / \sqrt{ } 3)=y$
Tan $\mathrm{y}=1 / \mathrm{V} 3$
$\operatorname{Tan}(\pi / 6)=1 / \mathrm{v} 3$
The range of the principal value of $\tan ^{-1}$ is $(-\pi / 2, \pi / 2)$ and $\tan (\pi / 6)=1 / \sqrt{ } 3$
Therefore $\tan ^{-1}(\tan 7 \pi / 6)=\pi / 6$
(iv) Given $\tan ^{-1}(\tan 9 \pi / 4)$

We know that $\tan 9 \pi / 4=1$
By substituting this value in $\tan ^{-1}(\tan 9 \pi / 4)$ we get,
Tan^{-1} (1)
Now let $\tan ^{-1}(1)=y$

Tan $\mathrm{y}=1$
$\operatorname{Tan}(\pi / 4)=1$
The range of the principal value of $\tan ^{-1}$ is $(-\pi / 2, \pi / 2)$ and $\tan (\pi / 4)=1$
Therefore $\tan ^{-1}(\tan 9 \pi / 4)=\pi / 4$
(v) Given $\tan ^{-1}(\tan 1)$

But we have $\tan ^{-1}(\tan x)=x$ if $x \in[-\pi / 2, \pi / 2]$
By substituting this condition in given question
$\operatorname{Tan}^{-1}(\tan 1)=1$
(vi) Given $\tan ^{-1}(\tan 2)$

As $\tan ^{-1}(\tan x)=x$ if $x \in[-\pi / 2, \pi / 2]$
But here $x=2$ which does not belongs to above range
We also have $\tan (\pi-\theta)=-\tan (\theta)$
Therefore $\tan (\theta-\pi)=\tan (\theta)$
$\operatorname{Tan}(2-\pi)=\tan (2)$
Now $2-\pi$ is in the given range
Hence $\tan ^{-1}(\tan 2)=2-\pi$
(vii) Given $\tan ^{-1}(\tan 4)$

As $\tan ^{-1}(\tan x)=x$ if $x \in[-\pi / 2, \pi / 2]$
But here $x=4$ which does not belongs to above range
We also have $\tan (\pi-\theta)=-\tan (\theta)$
Therefore $\tan (\theta-\pi)=\tan (\theta)$
$\operatorname{Tan}(4-\pi)=\tan (4)$
Now $4-\pi$ is in the given range
Hence $\tan ^{-1}(\tan 2)=4-\pi$
(viii) Given $\tan ^{-1}(\tan 12)$

As $\tan ^{-1}(\tan x)=x$ if $x \in[-\pi / 2, \pi / 2]$
But here $x=12$ which does not belongs to above range
We know that $\tan (2 n \pi-\theta)=-\tan (\theta)$
$\operatorname{Tan}(\theta-2 n \pi)=\tan (\theta)$
Here $\mathrm{n}=2$
Tan $(12-4 \pi)=\tan (12)$
Now $12-4 \pi$ is in the given range
$\therefore \tan ^{-1}(\tan 12)=12-4 \pi$.

1. Evaluate each of the following:
(i) $\sin \left(\sin ^{-1} 7 / 25\right)$
(ii) $\operatorname{Sin}\left(\cos ^{-1} 5 / 13\right)$
(iii) $\operatorname{Sin}\left(\tan ^{-1} 24 / 7\right)$
(iv) $\operatorname{Sin}\left(\sec ^{-1} 17 / 8\right)$
(v) $\operatorname{Cosec}\left(\cos ^{-1} 8 / 17\right)$
(vi) $\operatorname{Sec}\left(\sin ^{-1} 12 / 13\right)$
(vii) $\operatorname{Tan}\left(\cos ^{-1} 8 / 17\right)$
(viii) $\cot \left(\cos ^{-1} 3 / 5\right)$
(ix) $\operatorname{Cos}\left(\tan ^{-1} 24 / 7\right)$

Solution:

(i) Given $\sin \left(\sin ^{-1} 7 / 25\right)$

Now let $y=\sin ^{-1} 7 / 25$
$\operatorname{Sin} y=7 / 25$ where $y \in[0, \pi / 2]$
Substituting these values in $\sin \left(\sin ^{-1} 7 / 25\right)$ we get
$\operatorname{Sin}\left(\sin ^{-1} 7 / 25\right)=7 / 25$
(ii) Given $\operatorname{Sin}\left(\cos ^{-1} 5 / 13\right)$

$$
\text { Let } \cos ^{-1} \frac{5}{13}=y
$$

$$
\Rightarrow \cos \mathrm{y}=\frac{5}{13} \text { Where } \mathrm{y} \in\left[0, \frac{\pi}{2}\right]
$$

Now we have to find

$$
\sin \left(\cos ^{-1} \frac{5}{13}\right)=\sin y
$$

We know that $\sin ^{2} \theta+\cos ^{2} \theta=1$
By substituting this trigonometric identity we get
$\Rightarrow \sin y= \pm \sqrt{1-\cos ^{2} y}$
Where $\mathrm{y} \in\left[0, \frac{\pi}{2}\right]$
$\Rightarrow \sin y=\sqrt{1-\cos ^{2} y}$
Now by substituting cos y value we get

$$
\begin{aligned}
& \Rightarrow \sin y=\sqrt{1-\left(\frac{5}{13}\right)^{2}} \\
& \Rightarrow \sin y=\sqrt{1-\frac{25}{169}} \\
& \Rightarrow \sin y=\sqrt{\frac{144}{169}} \\
& \Rightarrow \sin y=\frac{12}{13} \sin \left[\cos ^{-1}\left(\frac{5}{13}\right)\right]=\frac{12}{13}
\end{aligned}
$$

(iii) Given $\operatorname{Sin}\left(\tan ^{-1} 24 / 7\right)$

Let $\tan ^{-1} \frac{24}{7}=y$
$\Rightarrow \tan \mathrm{y}=\frac{24}{7}$ Where $\mathrm{y} \in\left[0, \frac{\pi}{2}\right]$
Now we have to find

$$
\sin \left(\tan ^{-1} \frac{24}{7}\right)=\sin y
$$

We know that $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
$\Rightarrow 1+\cot ^{2} y=\operatorname{cosec}^{2} y$
Now substituting this trigonometric identity we get,
$\Rightarrow 1+\left(\frac{7}{24}\right)^{2}=\operatorname{cosec}^{2} y$
$\Rightarrow 1+\frac{49}{576}=\frac{1}{\sin ^{2} y}$
On rearranging we get,

$$
\begin{aligned}
& \Rightarrow \sin ^{2} y=\frac{576}{625} \\
& \Rightarrow \sin y=\frac{24}{25} \text { Where } \quad y \in\left[0, \frac{\pi}{2}\right] \\
& \Rightarrow \sin \left(\tan ^{-1} \frac{24}{7}\right)=\frac{24}{25}
\end{aligned}
$$

(iv) Given $\operatorname{Sin}\left(\sec ^{-1} 17 / 8\right)$

$$
\text { Let } \sec ^{-1} \frac{17}{8}=y
$$

$$
\Rightarrow \sec \mathrm{y}=\frac{17}{8} \text { Where } \mathrm{y} \in\left[0, \frac{\pi}{2}\right]
$$

Now we have find

$$
\sin \left(\sec ^{-1} \frac{17}{8}\right)=\sin y
$$

We know that, $\quad \cos y=\frac{1}{\sec y}$
$\Rightarrow \cos y=\frac{8}{17}$
Now, $\sin \mathrm{y}=\sqrt{1-\cos ^{2} \mathrm{y}}$ where $\mathrm{y} \in\left[0, \frac{\pi}{2}\right]$ By substituting, $\cos y$ value we get,

$$
\begin{aligned}
& \Rightarrow \quad \sin y=\sqrt{1-\left(\frac{8}{17}\right)^{2}} \\
& \Rightarrow \quad \sin y=\sqrt{\frac{225}{289}} \\
& \Rightarrow \sin y=\frac{15}{17} \\
& \Rightarrow \sin \left(\sec ^{-1} \frac{17}{8}\right)=\frac{15}{17}
\end{aligned}
$$

(v) Given Cosec $\left(\cos ^{-1} 8 / 17\right)$

Let $\cos ^{-1}(8 / 17)=y$
$\cos y=8 / 17$ where $y \in[0, \pi / 2]$
Now, we have to find
$\operatorname{Cosec}\left(\cos ^{-1} 8 / 17\right)=\operatorname{cosec} y$
We know that,
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\sin ^{2} \theta=V\left(1-\cos ^{2} \theta\right)$
So,
$\sin y=v\left(1-\cos ^{2} y\right)$
$=V\left(1-(8 / 17)^{2}\right)$
$=V(1-64 / 289)$

$$
\begin{aligned}
& =V(289-64 / 289) \\
& =V(225 / 289) \\
& =15 / 17
\end{aligned}
$$

Hence,
Cosec $y=1 / \sin y=1 /(15 / 17)=17 / 15$
Therefore,
Cosec $\left(\cos ^{-1} 8 / 17\right)=17 / 15$
(vi) Given Sec $\left(\sin ^{-1} 12 / 13\right)$

$$
\text { Let } \sin ^{-1} \frac{12}{13}=\mathrm{y} \text { where } \mathrm{y} \in\left[0, \frac{\pi}{2}\right]
$$

$$
\Rightarrow \quad \sin y=\frac{12}{13}
$$

Now we have to find

$$
\sec \left(\sin ^{-1} \frac{12}{13}\right)=\sec y
$$

We know that $\sin ^{2} \theta+\cos ^{2} \theta=1$
According to this identity $\cos y$ can be written as
$\Rightarrow \cos y=\sqrt{1-\sin ^{2} y}$ Where $\mathrm{y} \in\left[0, \frac{\pi}{2}\right]$
Now substituting the value of $\sin y$ we get,
$\Rightarrow \cos y=\sqrt{1-\left(\frac{12}{13}\right)^{2}}$
$\Rightarrow \cos y=\sqrt{1-\frac{144}{169}}$
$\Rightarrow \cos y=\sqrt{\frac{25}{169}}$
$\Rightarrow \cos y=\frac{5}{13}$
$\Rightarrow \quad \sec y=\frac{1}{\cos y}$
$\Rightarrow \quad \sec y=\frac{13}{5}$
$\Rightarrow \sec \left(\sin ^{-1} \frac{12}{13}\right)=\frac{13}{5}$
(vii) Given $\operatorname{Tan}\left(\cos ^{-1} 8 / 17\right)$

Let $\cos ^{-1} \frac{8}{17}=y \underset{\text { where }}{ } \mathrm{y} \in\left[0, \frac{\pi}{2}\right]$
$\Rightarrow \quad \cos y=\frac{8}{17}$
Now we have to find

$$
\tan \left(\cos ^{-1} \frac{8}{17}\right)=\tan y
$$

We know that $1+\tan ^{2} \theta=\sec ^{2} \theta$
Rearranging and substituting the value of $\tan y$ we get,

$$
\Rightarrow \tan y=\sqrt{\sec ^{2} y-1} \text { Where } y \in\left[0, \frac{\pi}{2}\right]
$$

We have $\sec y=1 / \cos y \mid$
$\Rightarrow \tan y=\sqrt{\left(\frac{1}{\cos ^{2} y}\right)-1}$
$\Rightarrow \tan y=\sqrt{\left(\frac{17}{8}\right)^{2}-1}$
$\Rightarrow \tan \mathrm{y}=\sqrt{\frac{289}{64}-1}$
$\Rightarrow \tan y=\sqrt{\frac{225}{64}}$
$\Rightarrow \quad \tan y=\frac{15}{8}$
$\Rightarrow \quad \tan \left(\cos ^{-1} \frac{8}{17}\right)=\frac{15}{8}$
(viii) Given $\cot \left(\cos ^{-1} 3 / 5\right)$

Let $\cos ^{-1} \frac{3}{5}=y \underset{\text { where }}{ } \mathrm{y} \in\left[0, \frac{\pi}{2}\right]$
$\Rightarrow \cos y=\frac{3}{5}$
Now we have to find

$$
\cot \left(\cos ^{-1} \frac{3}{5}\right)=\cot y
$$

We know that $1+\tan ^{2} \theta=\sec ^{2} \theta$
Rearranging and substituting the value of $\tan y$ we get,
$\Rightarrow \tan y=\sqrt{\sec ^{2} y-1}$ Where $y \in\left[0, \frac{\pi}{2}\right]$
We have $\sec y=1 / \cos y$, on substitution we get,
$\Rightarrow \frac{1}{\cot y}=\sqrt{\left(\frac{1}{\cos ^{2} y}\right)-1}$
$\Rightarrow \frac{1}{\cot y}=\sqrt{\left(\frac{5}{3}\right)^{2}-1}$
$\Rightarrow \frac{1}{\cot y}=\sqrt{\frac{16}{9}}$
$\Rightarrow \cot y=\frac{3}{4}$
$\Rightarrow \quad \cot \left(\cos ^{-1} \frac{3}{5}\right)=\frac{3}{4}$
(ix) Given $\operatorname{Cos}\left(\tan ^{-1} 24 / 7\right)$

Let $\tan ^{-1} \frac{24}{7}=\mathrm{y}$
$\Rightarrow \quad \tan \mathrm{y}=\frac{24}{7}$ Where $\mathrm{y} \in\left[0, \frac{\pi}{2}\right]$
Now we have to find,

$$
\cos \left(\tan ^{-1} \frac{24}{7}\right)=\cos y
$$

We know that $1+\tan ^{2} \theta=\sec ^{2} \theta$
$\Rightarrow 1+\tan ^{2} y=\sec ^{2} y$
On rearranging and substituting the value of sec y we get,
$\Rightarrow \sec \mathrm{y}=\sqrt{1+\tan ^{2} \mathrm{y}}$ Where $\mathrm{y} \in\left[0, \frac{\pi}{2}\right]$
$\Rightarrow \sec y=\sqrt{1+\left(\frac{24}{7}\right)^{2}}$
$\Rightarrow \quad \sec y=\sqrt{\frac{625}{49}}$
$\Rightarrow \quad \sec y=\frac{25}{7}$

$$
\begin{aligned}
& \Rightarrow \cos y=\frac{1}{\sec y} \\
& \Rightarrow \cos y=\frac{7}{25} \\
& \Rightarrow \cos \left(\tan ^{-1} \frac{24}{7}\right)=\frac{7}{25}
\end{aligned}
$$

1. Evaluate:

(i) $\operatorname{Cos}\left\{\sin ^{-1}(-7 / 25)\right\}$
(ii) $\operatorname{Sec}\left\{\cot ^{-1}(-5 / 12)\right\}$
(iii) $\operatorname{Cot}\left\{\sec ^{-1}(-13 / 5)\right\}$

Solution:

(i) Given $\operatorname{Cos}\left\{\sin ^{-1}(-7 / 25)\right\}$

$$
\text { Let } \sin ^{-1}\left(-\frac{7}{25}\right)=x_{\text {Where }} \mathrm{x} \in\left[-\frac{\pi}{2}, 0\right]
$$

$$
\Rightarrow \quad \sin x=-\frac{7}{25}
$$

Now we have to find

$$
\cos \left[\sin ^{-1}\left(-\frac{7}{25}\right)\right]=\cos x
$$

We know that $\sin ^{2} x+\cos ^{2} x=1$
On rearranging and substituting we get,

$$
\begin{aligned}
& \Rightarrow \cos x=\sqrt{1-\sin ^{2} x} \text { Since } x \in\left[-\frac{\pi}{2}, 0\right] \\
& \Rightarrow \cos x=\sqrt{1-\frac{49}{625}} \\
& \Rightarrow \cos x=\sqrt{\frac{576}{625}} \\
& \Rightarrow \cos x=\frac{24}{25}
\end{aligned}
$$

$$
\Rightarrow \cos \left[\sin ^{-1}\left(-\frac{7}{25}\right)\right]=\frac{24}{25}
$$

(ii) Given $\operatorname{Sec}\left\{\cot ^{-1}(-5 / 12)\right\}$

$$
\begin{aligned}
& \text { Let } \cot ^{-1}\left(-\frac{5}{12}\right)=\mathrm{x}_{\text {where }} \mathrm{x} \in\left(\frac{\pi}{2}, \pi\right) \\
& \Rightarrow \cot \mathrm{x}=-\frac{5}{12}
\end{aligned}
$$

Now we have to find,

$$
\sec \left[\cot ^{-1}\left(-\frac{5}{12}\right)\right]=\sec x
$$

We know that $1+\tan ^{2} x=\sec ^{2} x$
On rearranging, we get

$$
\Rightarrow 1+\frac{1}{\cot ^{2} x}=\sec ^{2} x
$$

Substituting these values we get,

$$
\begin{aligned}
& \left.\Rightarrow \sec x=-\sqrt{1+\frac{1}{\cot ^{2} x}} \right\rvert\, \text { Since } \\
& \left.\Rightarrow \sec x=-\sqrt{1+\left(\frac{12}{2}\right)^{2}}, \pi\right) \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \sec x=-\frac{13}{5} \\
\Rightarrow & \sec \left[\cot ^{-1}\left(-\frac{5}{12}\right)\right]=-\frac{13}{5}
\end{aligned}
$$

(iii) Given Cot $\left\{\sec ^{-1}(-13 / 5)\right\}$

$$
\text { Let } \sec ^{-1}\left(-\frac{13}{5}\right)=x \underset{\text { where }}{ } \mathrm{x} \in\left(\frac{\pi}{2}, \pi\right)
$$

$$
\Rightarrow \quad \sec x=-\frac{13}{5}
$$

Now we have find,

$$
\cot \left[\sec ^{-1}\left(-\frac{13}{5}\right)\right]=\cot x
$$

We know that $1+\tan ^{2} x=\sec ^{2} x$
On rearranging, we get
$\Rightarrow \tan \mathrm{x}=-\sqrt{\sec ^{2} \mathrm{x}-1}$
Now substitute the value of $\sec x$, we get

$$
\begin{aligned}
& \Rightarrow \tan x=-\sqrt{\left(-\frac{13}{5}\right)^{2}-1} \\
& \Rightarrow \tan x=-\frac{12}{5}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \cot x=-\frac{5}{12} \\
\Rightarrow & \cot \left[\sec ^{-1}\left(-\frac{13}{5}\right)\right]=-\frac{5}{12}
\end{aligned}
$$

1. Evaluate:

(i) $\operatorname{Cot}\left(\sin ^{-1}(3 / 4)+\sec ^{-1}(4 / 3)\right)$
(ii) $\operatorname{Sin}\left(\tan ^{-1} x+\tan ^{-1} 1 / x\right)$ for $x<0$
(iii) $\operatorname{Sin}\left(\tan ^{-1} x+\tan ^{-1} 1 / x\right)$ for $x>0$
(iv) Cot $\left(\tan ^{-1} a+\cot ^{-1} a\right)$
(v) $\operatorname{Cos}\left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right),|x| \geq 1$

Solution:

(i) Given $\operatorname{Cot}\left(\sin ^{-1}(3 / 4)+\sec ^{-1}(4 / 3)\right)$

$$
\begin{aligned}
& =\cot \left(\sin ^{-1} \frac{3}{4}+\cos ^{-1} \frac{3}{4}\right) \\
& \left(\because \sec ^{-1} x=\cos ^{-1} \frac{1}{x}\right)
\end{aligned}
$$

We have

$$
\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}
$$

By substituting these values in given question, we get

$$
\begin{aligned}
& =\cot \frac{\pi}{2} \\
& = \\
& =0
\end{aligned}
$$

(ii) Given $\operatorname{Sin}\left(\tan ^{-1} \mathrm{x}+\tan ^{-1} 1 / \mathrm{x}\right)$ for $\mathrm{x}<0$

$$
=\sin \left(\tan ^{-1} x+\left(\cot ^{-1} x-\pi\right)\right)\left(\because \tan ^{-1} \theta=\cot ^{-1} \frac{1}{\theta}-\pi \quad \text { for } x<0\right)
$$

$$
=\sin \left(\frac{\pi}{2}-\pi\right)\left(\because \tan ^{-1} \theta+\cot ^{-1} \theta=\frac{\pi}{2}\right)
$$

On simplifying, we get

$$
=\sin \left(-\frac{\pi}{2}\right)
$$

We know that $\sin (-\theta)=-\sin \theta$

$$
=-\sin \frac{\pi}{2}=-1
$$

(iii) Given $\operatorname{Sin}\left(\tan ^{-1} \mathrm{x}+\tan ^{-1} 1 / \mathrm{x}\right)$ for $\mathrm{x}>0$

$$
=\sin \left(\tan ^{-1} x+\cot ^{-1} x\right)\left(\because \tan ^{-1} \theta=\cot ^{-1} \frac{1}{\theta} \quad \text { for } x>0\right)
$$

Again we know that,

$$
\tan ^{-1} \theta+\cot ^{-1} \theta=\frac{\pi}{2}
$$

Now by substituting above identity in given question we get,

$$
\begin{aligned}
& =\sin \frac{\pi}{2} \\
& =1
\end{aligned}
$$

(iv) Given Cot $\left(\tan ^{-1} a+\cot ^{-1} a\right)$

We know that,

$$
\tan ^{-1} \theta+\cot ^{-1} \theta=\frac{\pi}{2}
$$

Now by substituting above identity in given question we get,
$=\cot \left(\frac{\pi}{2}\right)$
$=0$
(v) Given $\operatorname{Cos}\left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right),|x| \geq 1$

We know that

$$
\sec ^{-1} \theta=\cos ^{-1} \frac{1}{\theta}
$$

Again we have

$$
\operatorname{cosec}^{-1} \theta=\sin ^{-1} \frac{1}{\theta}
$$

By substituting these values in given question we get,

$$
=\cos \left(\cos ^{-1} \frac{1}{x}+\sin ^{-1} \frac{1}{x}\right)
$$

We know that from the identities,

$$
\sin ^{-1} \theta+\cos ^{-1} \theta=\frac{\pi}{2}
$$

Now by substituting we get,

$$
\begin{aligned}
& \cos \frac{\pi}{2} \\
= & 0
\end{aligned}
$$

2. If $\cos ^{-1} x+\cos ^{-1} y=\pi / 4$, find the value of $\sin ^{-1} x+\sin ^{-1} y$.

Solution:

Given $\cos ^{-1} x+\cos ^{-1} y=\pi / 4$

We know that

$$
\sin ^{-1} \theta+\cos ^{-1} \theta=\frac{\pi}{2}
$$

Now substituting above identity in given question we get,

$$
\Rightarrow\left(\frac{\pi}{2}-\sin ^{-1} x\right)+\left(\frac{\pi}{2}-\sin ^{-1} y\right)=\frac{\pi}{4}
$$

Adding and simplifying we get,

$$
\Rightarrow \pi-\left(\sin ^{-1} x+\sin ^{-1} y\right)=\frac{\pi}{4}
$$

On rearranging,

$$
\begin{aligned}
\Rightarrow & \sin ^{-1} x+\sin ^{-1} y=\pi-\frac{\pi}{4} \\
\Rightarrow & \sin ^{-1} x+\sin ^{-1} y=\frac{3 \pi}{4}
\end{aligned}
$$

3. If $\sin ^{-1} x+\sin ^{-1} y=\pi / 3$ and $\cos ^{-1} x-\cos ^{-1} y=\pi / 6$, find the values of x and y.

Solution:

Given $\sin ^{-1} x+\sin ^{-1} y=\pi / 3 \ldots . .$. . Equation (i)
And $\cos ^{-1} x-\cos ^{-1} y=\pi / 6 \ldots$. . Equation (ii)
Subtracting Equation (ii) from Equation (i), we get

$$
\Rightarrow\left(\sin ^{-1} x-\cos ^{-1} x\right)+\left(\sin ^{-1} y+\cos ^{-1} y\right)=\frac{\pi}{3}-\frac{\pi}{6}
$$

We know that,

$$
\sin ^{-1} \theta+\cos ^{-1} \theta=\frac{\pi}{2}
$$

By substituting above identity, we get
$\Rightarrow\left(\sin ^{-1} x-\cos ^{-1} x\right)+\left(\frac{\pi}{2}\right)=\frac{\pi}{6}$
Replacing $\sin ^{-1} x$ by $\pi / 2-\cos ^{-1} x$ and rearranging we get,
$\Rightarrow\left(\frac{\pi}{2}-\cos ^{-1} x\right)-\cos ^{-1} x=-\frac{\pi}{3}$
Now by adding,

$$
\begin{aligned}
& \Rightarrow 2 \cos ^{-1} x=\frac{5 \pi}{6} \\
& \Rightarrow \cos ^{-1} x=\frac{5 \pi}{12} \\
& \Rightarrow x=\cos \left(\frac{5 \pi}{12}\right) \\
& \Rightarrow x=\cos \left(\frac{\pi}{4}+\frac{\pi}{6}\right)
\end{aligned}
$$

We know that $\operatorname{Cos}(A+B)=\operatorname{Cos} A \cdot \operatorname{Cos} B-\operatorname{Sin} A \cdot \operatorname{Sin} B$, substituting this we get,
$\Rightarrow \mathrm{x}=\cos \frac{\pi}{4} \cdot \cos \frac{\pi}{6}-\sin \frac{\pi}{4} \cdot \sin \frac{\pi}{6}$
$\Rightarrow \quad x=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
$\Rightarrow \quad \mathrm{x}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
Now, putting the value of $\cos ^{-1} \mathrm{x}$ in equation (ii)

$$
\Rightarrow \frac{5 \pi}{12}-\cos ^{-1} y=\frac{\pi}{6}
$$

$$
\Rightarrow \cos ^{-1} y=\frac{\pi}{4}
$$

$$
\Rightarrow \mathrm{y}=\frac{1}{\sqrt{2}}
$$

$$
\Rightarrow \quad \mathrm{x}=\frac{\sqrt{3}-1}{2 \sqrt{2}} \quad \mathrm{And}=\frac{1}{\sqrt{2}}
$$

4. If $\cot \left(\cos ^{-1} 3 / 5+\sin ^{-1} x\right)=0$, find the value of x.

Solution:

Given $\cot \left(\cos ^{-1} 3 / 5+\sin ^{-1} x\right)=0$
On rearranging we get,
$\left(\cos ^{-1} 3 / 5+\sin ^{-1} x\right)=\cot ^{-1}(0)$
$\left(\operatorname{Cos}^{-1} 3 / 5+\sin ^{-1} x\right)=\pi / 2$
We know that $\cos ^{-1} x+\sin ^{-1} x=\pi / 2$
Then $\sin ^{-1} x=\pi / 2-\cos ^{-1} x$
Substituting the above in $\left(\cos ^{-1} 3 / 5+\sin ^{-1} x\right)=\pi / 2$ we get,
$\left(\operatorname{Cos}^{-1} 3 / 5+\pi / 2-\cos ^{-1} x\right)=\pi / 2$
Now on rearranging we get,
$\left(\operatorname{Cos}^{-1} 3 / 5-\cos ^{-1} x\right)=\pi / 2-\pi / 2$
$\left(\operatorname{Cos}^{-1} 3 / 5-\cos ^{-1} x\right)=0$
Therefore $\operatorname{Cos}^{-1} 3 / 5=\cos ^{-1} x$
On comparing the above equation we get,
$x=3 / 5$

5. If $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}=17 \pi^{2} / 36$, find x.

Solution:

Given $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}=17 \pi^{2} / 36$
We know that $\cos ^{-1} x+\sin ^{-1} x=\pi / 2$
Then $\cos ^{-1} x=\pi / 2-\sin ^{-1} x$
Substituting this in $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}=17 \pi^{2} / 36$ we get
$\left(\sin ^{-1} x\right)^{2}+\left(\pi / 2-\sin ^{-1} x\right)^{2}=17 \pi^{2} / 36$
Let $y=\sin ^{-1} x$
$y^{2}+((\pi / 2)-y)^{2}=17 \pi^{2} / 36$
$y^{2}+\pi^{2} / 4-y^{2}-2 y((\pi / 2)-y)=17 \pi^{2} / 36$
$\pi^{2} / 4-\pi y+2 y^{2}=17 \pi^{2} / 36$
On rearranging and simplifying, we get
$2 y^{2}-\pi y+2 / 9 \pi^{2}=0$
$18 y^{2}-9 \pi y+2 \pi^{2}=0$
$18 y^{2}-12 \pi y+3 \pi y+2 \pi^{2}=0$
$6 y(3 y-2 \pi)+\pi(3 y-2 \pi)=0$
Now, $(3 y-2 \pi)=0$ and $(6 y+\pi)=0$
Therefore $y=2 \pi / 3$ and $y=-\pi / 6$
Now substituting $y=-\pi / 6$ in $y=\sin ^{-1} x$ we get
$\sin ^{-1} x=-\pi / 6$
$x=\sin (-\pi / 6)$
$x=-1 / 2$
Now substituting $y=-2 \pi / 3$ in $y=\sin ^{-1} x$ we get
$x=\sin (2 \pi / 3)$
$x=\sqrt{ } 3 / 2$
Now substituting $x=\sqrt{ } 3 / 2$ in $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}=17 \pi^{2} / 36$ we get,
$=\pi / 3+\pi / 6$
$=\pi / 2$ which is not equal to $17 \pi^{2} / 36$
So we have to neglect this root.
Now substituting $x=-1 / 2$ in $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}=17 \pi^{2} / 36$ we get,
$=\pi^{2} / 36+4 \pi^{2} / 9$
$=17 \pi^{2} / 36$
Hence $x=-1 / 2$.

1. Prove the following results:
(i) $\operatorname{Tan}^{-1}(1 / 7)+\tan ^{-1}(1 / 13)=\tan ^{-1}(2 / 9)$
(ii) $\operatorname{Sin}^{-1}(12 / 13)+\cos ^{-1}(4 / 5)+\tan ^{-1}(63 / 16)=\pi$
(iii) $\tan ^{-1}(1 / 4)+\tan ^{-1}(2 / 9)=\operatorname{Sin}^{-1}(1 / V 5)$

Solution:

(i) Given $\operatorname{Tan}^{-1}(1 / 7)+\tan ^{-1}(1 / 13)=\tan ^{-1}(2 / 9)$

Consider LHS

$$
\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)
$$

We know that, Formula

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

According to the formula, we can write as

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\frac{1}{7}+\frac{1}{13}}{1-\frac{1}{7} \times \frac{1}{13}}\right) \\
& = \\
& =\tan ^{-1}\left(\frac{\frac{13+7}{9+1}}{\frac{911}{91}}\right) \\
& =\tan ^{-1}\left(\frac{20}{90}\right) \\
& =\tan ^{-1}\left(\frac{2}{9}\right) \\
& =\text { RHS }
\end{aligned}
$$

Hence, proved.
(ii) Given $\operatorname{Sin}^{-1}(12 / 13)+\cos ^{-1}(4 / 5)+\tan ^{-1}(63 / 16)=\pi$

Consider LHS

$$
\sin ^{-1}\left(\frac{12}{13}\right)+\cos ^{-1} \frac{4}{5}+\tan ^{-1}\left(\frac{63}{16}\right)
$$

We know that, Formula

$$
\begin{aligned}
& \sin ^{-1} x=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) \\
& \cos ^{-1} x=\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)
\end{aligned}
$$

Now, by substituting the formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\frac{12}{13}}{\sqrt{1-\left(\frac{12}{13}\right)^{2}}}\right)+\tan ^{-1}\left(\frac{\sqrt{1-\left(\frac{4}{5}\right)^{2}}}{\frac{4}{5}}\right)+\tan ^{-1}\left(\frac{63}{16}\right) \\
& = \\
& =\tan ^{-1}\left(\frac{12}{5}\right)+\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{63}{16}\right)
\end{aligned}
$$

Again we know that,

$$
\tan ^{-1} x+\tan ^{-1} y=\pi+\tan ^{-1} \frac{x+y}{1-x y}
$$

Again by substituting, we get

$$
\begin{aligned}
& \pi+\tan ^{-1}\left(\frac{\frac{12}{5}+\frac{3}{4}}{1-\frac{12}{5} \times \frac{3}{4}}\right)+\tan ^{-1}\left(\frac{63}{16}\right) \\
& = \\
& =\pi+\tan ^{-1}\left(-\frac{63}{16}\right)+\tan ^{-1}\left(\frac{63}{16}\right)
\end{aligned}
$$

We know that,

$$
\begin{aligned}
& \tan ^{-1}(-x)=-\tan ^{-1} x \\
& =\pi-\tan ^{-1}\left(\frac{63}{16}\right)+\tan ^{-1}\left(\frac{63}{16}\right) \\
& =\pi
\end{aligned}
$$

So, $\sin ^{-1}\left(\frac{12}{13}\right)+\cos ^{-1} \frac{4}{5}+\tan ^{-1}\left(\frac{63}{16}\right)=\pi$
Hence, proved.
(iii) Given $\tan ^{-1}(1 / 4)+\tan ^{-1}(2 / 9)=\operatorname{Sin}^{-1}(1 / V 5)$

$$
\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)
$$

We know that,
$\tan ^{-1} x+\tan ^{-1} y=\pi+\tan ^{-1} \frac{x+y}{1-x y}$
By substituting this formula we get,
$=\tan ^{-1} \frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4} \times \frac{2}{9}}$
$=\tan ^{-1} \frac{\frac{17}{36}}{\frac{34}{36}}$
$=\tan ^{-1} \frac{\frac{17}{36}}{34}$
$=\tan ^{-1} \frac{1}{2}$
Now let,, $\tan \theta=\frac{1}{2}$
Therefore, $\sin \theta=\frac{1}{\sqrt{5}}$
So, $\theta=\sin ^{-1} \frac{1}{\sqrt{5}}$

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left(\frac{1}{2}\right)=\sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)=\text { RHS } \\
& \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)
\end{aligned}
$$

Hence, Proved.
2. Find the value of $\tan ^{-1}(x / y)-\tan ^{-1}\{(x-y) /(x+y)\}$

Solution:

Given $\tan ^{-1}(x / y)-\tan ^{-1}\{(x-y) /(x+y)\}$
We know that,

$$
\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}
$$

Now by substituting the formula, we get

$$
\begin{aligned}
& \tan ^{-1} \frac{\frac{x}{y}-\left(\frac{x-y}{x+y}\right)}{1+\frac{x}{y} \times\left(\frac{x-y}{x+y}\right)} \\
= & \tan ^{-1} \frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)} \\
= & \tan ^{-1} \frac{x^{2}+y^{2}}{x^{2}+y^{2}} \\
= & \tan ^{-1} 1 \\
= & \frac{\pi}{4}
\end{aligned}
$$

So,
$\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x-y}{x+y}\right)=\frac{\pi}{4}$

1. Evaluate: $\operatorname{Cos}\left(\sin ^{-1} 3 / 5+\sin ^{-1} 5 / 13\right)$

Solution:

Given $\operatorname{Cos}\left(\sin ^{-1} 3 / 5+\sin ^{-1} 5 / 13\right)$
We know that,
$\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left\lfloor x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right\rfloor$
By substituting this formula we get,

$$
\begin{aligned}
& =\cos \left(\sin ^{-1}\left[\frac{3}{5} \sqrt{1-\left(\frac{5}{13}\right)^{2}}+\frac{5}{13} \sqrt{1-\left(\frac{3}{5}\right)^{2}}\right]\right) \\
& =\cos \left(\sin ^{-1}\left[\frac{3}{5} \times \frac{12}{13}+\frac{5}{13} \times \frac{4}{5}\right]\right) \\
& =\cos \left(\sin ^{-1}\left[\frac{56}{65}\right]\right)
\end{aligned}
$$

Again, we know that
$\sin ^{-1} x=\cos ^{-1} \sqrt{1-x^{2}}$
Now substituting, we get
$=\cos \left(\cos ^{-1} \sqrt{1-\left(\frac{56}{65}\right)^{2}}\right)$
$=\cos \left(\cos ^{-1} \sqrt{\left(\frac{33}{65}\right)^{2}}\right)=\cos \left(\cos ^{-1}\left(\frac{33}{65}\right)\right)$
$=\frac{33}{65}$
Hence, $\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right)=\frac{33}{65}$

1. If $\cos ^{-1}(x / 2)+\cos ^{-1}(y / 3)=\alpha$, then prove that $9 x^{2}-12 x y \cos \alpha+4 y^{2}=36 \sin ^{2} \alpha$

Solution:

Given $\cos ^{-1}(x / 2)+\cos ^{-1}(y / 3)=\alpha$
We know that,

$$
\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left[x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right]
$$

Now by substituting, we get

$$
\begin{aligned}
& \Rightarrow \cos ^{-1}\left[\frac{x}{2} \times \frac{y}{3}-\sqrt{1-\left(\frac{x}{2}\right)^{2}} \sqrt{1-\left(\frac{y}{3}\right)^{2}}\right]=\alpha \\
& \Rightarrow\left[\frac{x y}{6}-\frac{\sqrt{4-x^{2}}}{2} \times \frac{\sqrt{9-y^{2}}}{3}\right]=\cos \alpha \\
& \Rightarrow x y-\sqrt{4-x^{2}} \times \sqrt{9-y^{2}}=6 \cos \alpha \\
& \Rightarrow x y-6 \cos \alpha=\sqrt{4-x^{2}} \sqrt{9-y^{2}}
\end{aligned}
$$

On squaring both the sides we get

$$
\begin{aligned}
& \Rightarrow(x y-6 \cos \alpha)^{2}=\left(4-x^{2}\right)\left(9-y^{2}\right) \\
& \Rightarrow x^{2} y^{2}+36 \cos ^{2} \alpha-12 x y \cos \alpha=36-9 x^{2}-4 y^{2}+x^{2} y^{2} \\
& \Rightarrow 9 x^{2}+4 y^{2}-36+36 \cos ^{2} \alpha-12 x y \cos \alpha=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 9 x^{2}+4 y^{2}-12 x y \cos \alpha-36\left(1-\cos ^{2} \alpha\right)=0 \\
& \Rightarrow 9 x^{2}+4 y^{2}-12 x y \cos \alpha-36 \sin ^{2} \alpha=0 \\
& \Rightarrow 9 x^{2}+4 y^{2}-12 x y \cos \alpha=36 \sin ^{2} \alpha
\end{aligned}
$$

Hence, proved.
2. Solve the equation: $\cos ^{-1}(a / x)-\cos ^{-1}(b / x)=\cos ^{-1}(1 / b)-\cos ^{-1}(1 / a)$

Solution:

Given $\cos ^{-1}(a / x)-\cos ^{-1}(b / x)=\cos ^{-1}(1 / b)-\cos ^{-1}(1 / a)$

$$
\Rightarrow \cos ^{-1} \frac{a}{x}+\cos ^{-1} \frac{1}{a}=\cos ^{-1} \frac{1}{b}+\cos ^{-1} \frac{b}{x}
$$

We know that,

$$
\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left[x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right]
$$

By substituting this formula we get,

$$
\begin{aligned}
& \Rightarrow \cos ^{-1}\left[\frac{1}{x}-\sqrt{1-\left(\frac{a}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{a}\right)^{2}}\right]=\cos ^{-1}\left[\frac{1}{x}-\sqrt{1-\left(\frac{b}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{b}\right)^{2}}\right] \\
& \Rightarrow \frac{1}{x}-\sqrt{1-\left(\frac{a}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{a}\right)^{2}}=\frac{1}{x}-\sqrt{1-\left(\frac{b}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{b}\right)^{2}} \\
& \Rightarrow \sqrt{1-\left(\frac{a}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{a}\right)^{2}}=\sqrt{1-\left(\frac{b}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{b}\right)^{2}}
\end{aligned}
$$

Squaring on both the sides, we get

$$
\Rightarrow\left(1-\left(\frac{a}{x}\right)^{2}\right)\left(1-\left(\frac{1}{a}\right)^{2}\right)=\left(1-\left(\frac{b}{x}\right)^{2}\right)\left(1-\left(\frac{1}{b}\right)^{2}\right)
$$

$$
\begin{aligned}
& \Rightarrow 1-\left(\frac{a}{x}\right)^{2}-\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{x}\right)^{2}=1-\left(\frac{b}{x}\right)^{2}-\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{x}\right)^{2} \\
& \Rightarrow\left(\frac{b}{x}\right)^{2}-\left(\frac{a}{x}\right)^{2}=\left(\frac{1}{a}\right)^{2}-\left(\frac{1}{b}\right)^{2}
\end{aligned}
$$

On simplifying, we get

$$
\begin{aligned}
& \Rightarrow\left(b^{2}-a^{2}\right) a^{2} b^{2}=x^{2}\left(b^{2}-a^{2}\right) \\
& \Rightarrow x^{2}=a^{2} b^{2} \\
& \Rightarrow x=a b
\end{aligned}
$$

1. Evaluate the following:

(i) $\tan \left\{2 \tan ^{-1}(1 / 5)-\pi / 4\right\}$
(ii) $\operatorname{Tan}\left\{1 / 2 \sin ^{-1}(3 / 4)\right\}$
(iii) $\operatorname{Sin}\left\{1 / 2 \cos ^{-1}(4 / 5)\right\}$
(iv) $\operatorname{Sin}\left(2 \tan ^{-1} 2 / 3\right)+\cos \left(\tan ^{-1} \sqrt{ } 3\right)$

Solution:

(i) Given $\tan \left\{2 \tan ^{-1}(1 / 5)-\pi / 4\right\}$

We know that,

$$
2 \tan ^{-1}(x)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right), \text { if }|x|<1
$$

And ${ }^{\frac{\pi}{4}}$ can be written as $\tan ^{-1}(1)$
Now substituting these values we get,

$$
\begin{aligned}
& =\tan \left\{\tan ^{-1}\left(\frac{2 \times \frac{1}{5}}{1-\frac{1}{25}}\right)-\tan ^{-1} 1\right\} \\
& =\tan \left\{\tan ^{-1}\left(\frac{5}{12}\right)-\tan ^{-1} 1\right\}
\end{aligned}
$$

Again we know that,

$$
\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}
$$

Now substituting this formula, we get

$$
=\tan \left\{\tan ^{-1}\left(\frac{\frac{5}{12}-1}{1+\frac{5}{12}}\right)\right\}
$$

$$
\begin{aligned}
& =\tan \left\{\tan ^{-1}\left(\frac{-7}{17}\right)\right\} \\
& =-\frac{7}{17}
\end{aligned}
$$

(ii) Given $\tan \left\{1 / 2 \sin ^{-1}(3 / 4)\right\}$

Let $\frac{1}{2} \sin ^{-1} \frac{3}{4}=\mathrm{t}$
Therefore,
$\Rightarrow \sin ^{-1} \frac{3}{4}=2 \mathrm{t}$
$\Rightarrow \sin 2 t=\frac{3}{4}$
Now, by Pythagoras theorem, we have

$$
\begin{aligned}
& \Rightarrow \sin 2 \mathrm{t}=\frac{3}{4}=\frac{\text { perpendicular }}{\text { hypotenuse }} \\
& \Rightarrow \cos 2 \mathrm{t}=\frac{\sqrt{4^{2}-3^{2}}}{4}=\frac{\text { Base }}{\text { hypotenuse }} \\
& \Rightarrow \cos 2 \mathrm{t}=\frac{\sqrt{7}}{4}
\end{aligned}
$$

By considering, given question

$$
\begin{aligned}
& \tan \left\{\frac{1}{2} \sin ^{-1} \frac{3}{4}\right\} \\
& =\tan (\mathrm{t})
\end{aligned}
$$

We know that,

$$
\tan (x)=\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}
$$

$$
=\sqrt{\frac{1-\cos 2 t}{1+\cos 2 t}}
$$

$=\sqrt{\frac{1-\frac{\sqrt{7}}{4}}{1+\frac{\sqrt{7}}{4}}}$
$=\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}$
Now by rationalizing the denominator, we get

$$
\begin{aligned}
& =\sqrt{\frac{(4-\sqrt{7})(4-\sqrt{7})}{(4+\sqrt{7})(4-\sqrt{7})}} \\
& =\sqrt{\frac{(4-\sqrt{7})^{2}}{9}} \\
& =\frac{4-\sqrt{7}}{3}
\end{aligned}
$$

Hence

$$
\tan \left\{\frac{1}{2} \sin ^{-1} \frac{3}{4}\right\}=\frac{4-\sqrt{7}}{3}
$$

(iii) Given $\sin \left\{1 / 2 \cos ^{-1}(4 / 5)\right\}$

We know that

$$
\cos ^{-1} x=2 \sin ^{-1}\left(\pm \sqrt{\frac{1-x}{2}}\right)
$$

Now by substituting this formula we get,

$$
\begin{aligned}
& \sin \left(\frac{1}{2} 2 \sin ^{-1}\left(\pm \sqrt{\frac{1-\frac{4}{5}}{2}}\right)\right) \\
& =\sin \left(\sin ^{-1}\left(\pm \sqrt{\frac{1}{2 \times 5}}\right)\right) \\
& =\sin \left(\sin ^{-1}\left(\pm \frac{1}{\sqrt{10}}\right)\right)
\end{aligned}
$$

As we know that

$$
\sin \left(\sin ^{-1} x\right)=x \text { as } n \in[-1,1]
$$

$$
= \pm \frac{1}{\sqrt{10}}
$$

Hence, $\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)= \pm \frac{1}{\sqrt{10}}$
(iv) Given $\operatorname{Sin}\left(2 \tan ^{-1} 2 / 3\right)+\cos \left(\tan ^{-1} \mathrm{~V} 3\right)$

We know that

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=2 \tan ^{-1}(x) \\
& \cos ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)=\tan ^{-1}(x)
\end{aligned}
$$

Now by substituting these formulae we get,
$=\sin \left(\sin ^{-1}\left(\frac{2 \times \frac{2}{3}}{1+\frac{2}{9}}\right)\right)+\cos \left(\cos ^{-1}\left(\frac{1}{\sqrt{1+3}}\right)\right)$

$$
\begin{aligned}
& =\sin \left(\sin ^{-1}\left(\frac{12}{13}\right)\right)+\cos \left(\cos ^{-1}\left(\frac{1}{2}\right)\right) \\
& =\frac{12}{13}+\frac{1}{2}
\end{aligned}
$$

$$
=\frac{37}{26}
$$

Hence,
$\sin \left(2 \tan ^{-1}\left(\frac{2}{3}\right)\right)+\cos \left(\tan ^{-1} \sqrt{3}\right)=\frac{37}{26}$
2. Prove the following results:
(i) $2 \sin ^{-1}(3 / 5)=\tan ^{-1}(24 / 7)$
(ii) $\tan ^{-1} 1 / 4+\tan ^{-1}(2 / 9)=1 / 2 \cos ^{-1}(3 / 5)=1 / 2 \sin ^{-1}(4 / 5)$
(iii) $\tan ^{-1}(2 / 3)=1 / 2 \tan ^{-1}(12 / 5)$
(iv) $\tan ^{-1}(1 / 7)+2 \tan ^{-1}(1 / 3)=\pi / 4$
(v) $\sin ^{-1}(4 / 5)+2 \tan ^{-1}(1 / 3)=\pi / 2$
(vi) $2 \sin ^{-1}(3 / 5)-\tan ^{-1}(17 / 31)=\pi / 4$
(vii) $2 \tan ^{-1}(1 / 5)+\tan ^{-1}(1 / 8)=\tan ^{-1}(4 / 7)$
(viii) $2 \tan ^{-1}(3 / 4)-\tan ^{-1}(17 / 31)=\pi / 4$
(ix) $2 \tan ^{-1}(1 / 2)+\tan ^{-1}(1 / 7)=\tan ^{-1}(31 / 17)$
(x) $4 \tan ^{-1}(1 / 5)-\tan ^{-1}(1 / 239)=\pi / 4$

Solution:

(i) Given $2 \sin ^{-1}(3 / 5)=\tan ^{-1}(24 / 7)$

Consider LHS

$2 \sin ^{-1} \frac{3}{5}$
We know that

$$
\sin ^{-1}(x)=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)
$$

Now by substituting the above formula we get,

$$
\begin{aligned}
& 2 \times \tan ^{-1}\left(\frac{\frac{3}{5}}{\sqrt{1-\frac{9}{25}}}\right) \\
= & 2 \times \tan ^{-1}\left(\frac{\frac{3}{4}}{4}\right) \\
= & 2 \times \tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Again we know that

$$
2 \tan ^{-1}(x)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right), \text { if }|x|<1
$$

Therefore,

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\frac{9}{16}}\right) \\
& =\tan ^{-1}\left(\frac{\frac{3}{2}}{7}\right) \\
& =\tan ^{-1}\left(\frac{24}{7}\right) \\
& = \\
& =\text { RHS }
\end{aligned}
$$

$$
\text { So, } 2 \sin ^{-1} \frac{3}{5}=\tan ^{-1}\left(\frac{24}{7}\right)
$$

Hence, proved.
(ii) Given $\tan ^{-1} 1 / 4+\tan ^{-1}(2 / 9)=1 / 2 \cos ^{-1}(3 / 5)=1 / 2 \sin ^{-1}(4 / 5)$

Consider LHS

$$
=\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)
$$

We know that

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

Now by substituting this formula, we get

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4} \times \frac{2}{9}}\right) \\
& = \\
& \tan ^{-1}\left(\frac{\frac{9+8}{36}}{\frac{36-2}{36}}\right) \\
& =\tan ^{-1}\left(\frac{17}{34}\right) \\
& =\tan ^{-1}\left(\frac{1}{2}\right)
\end{aligned}
$$

Multiplying and dividing by 2

$$
=\frac{1}{2}\left\{2 \tan ^{-1}\left(\frac{1}{2}\right)\right\}
$$

Again we know that

$$
\begin{aligned}
& 2 \tan ^{-1} \mathrm{x}=\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right) \\
& =\frac{1}{2} \cos ^{-1}\left(\frac{1-\frac{1}{4}}{1+\frac{1}{4}}\right) \\
& =\frac{1}{2} \cos ^{-1}\left(\frac{\frac{3}{4}}{\frac{4}{5}}\right) \\
& =\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right) \\
& =\text { RHS }
\end{aligned}
$$

So,

$$
\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)
$$

Now,
$=\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)$
We know that,

$$
=\cos ^{-1} x=\sin ^{-1} \sqrt{1-x^{2}}
$$

By substituting this, we get
$={ }^{\frac{1}{2} \sin ^{-1} \sqrt{1-\frac{9}{25}}}$
$={ }^{\frac{1}{2}} \sin ^{-1} \sqrt{\frac{16}{25}}$
$=2 \sin ^{-1} \frac{4}{5}$
$=$ RHS
So, $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)=\frac{1}{2} \sin ^{-1} \frac{4}{5}$
Hence, proved.
(iii) Given $\tan ^{-1}(2 / 3)=1 / 2 \tan ^{-1}(12 / 5)$

Consider LHS

$$
=\tan ^{-1}\left(\frac{2}{3}\right)
$$

Now, Multiplying and dividing by 2, we get
$=\frac{1}{2}\left\{2 \tan ^{-1}\left(\frac{2}{3}\right)\right\}$
We know that

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

By substituting the above formula we get

$$
\text { So, } \tan ^{-1}\left(\frac{2}{3}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{12}{5}\right)
$$

Hence, proved.
(iv) Given $\tan ^{-1}(1 / 7)+2 \tan ^{-1}(1 / 3)=\pi / 4$

Consider LHS

$$
=\tan ^{-1}\left(\frac{1}{7}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)
$$

We know that,

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

By substituting the above formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2 \times \frac{1}{2}}{1-\frac{1}{9}}\right) \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& ={ }^{\frac{1}{2}} \tan ^{-1}\left(\frac{2 \times \frac{2}{3}}{1-\frac{4}{9}}\right) \\
& ={ }^{\frac{1}{2} \tan ^{-1}\left(\frac{\frac{4}{3}}{\frac{5}{9}}\right)} \\
& =\frac{1}{2} \tan ^{-1}\left(\frac{12}{5}\right) \\
& =\text { RHS }
\end{aligned}
$$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{\frac{2}{8}}{9}\right) \\
& =\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Again we know that

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} \\
& =\tan ^{-1}\left(\frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7} \times \frac{3}{4}}\right) \\
& =\tan ^{-1}\left(\frac{\frac{25}{28}}{25}\right) \\
& =\tan ^{-1}(1) \\
& =\frac{\pi}{4} \\
& =\text { RHS }
\end{aligned}
$$

$$
\text { So, } \tan ^{-1}\left(\frac{1}{7}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}
$$

Hence, proved.
(v) Given $\sin ^{-1}(4 / 5)+2 \tan ^{-1}(1 / 3)=\pi / 2$

Consider LHS

$=\sin ^{-1}\left(\frac{4}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)$
We know that,

$$
\begin{aligned}
& \sin ^{-1}(x)=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) \\
& \text { And, } 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
\end{aligned}
$$

Now by substituting the formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\frac{4}{5}}{\sqrt{1-\frac{16}{25}}}\right)+\tan ^{-1}\left(\frac{2 \times \frac{1}{3}}{1-\frac{1}{9}}\right) \\
& = \\
& =\tan ^{-1}\left(\frac{\frac{4}{5}}{\sqrt{\frac{9}{25}}}\right)+\tan ^{-1}\left(\frac{\frac{2}{3}}{\frac{3}{9}}\right) \\
& =\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

We know that,

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} \\
& =\tan ^{-1}\left(\frac{\frac{4}{3}+\frac{3}{4}}{1-\frac{4}{3} \times \frac{3}{4}}\right) \\
& =\tan ^{-1}\left(\frac{\frac{25}{12}}{0}\right) \\
& =\tan ^{-1}(\infty) \\
& =\frac{\pi}{2} \\
& =\text { RHS }
\end{aligned}
$$

So, $\sin ^{-1}\left(\frac{4}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{2}$
Hence Proved
(vi) Given $2 \sin ^{-1}(3 / 5)-\tan ^{-1}(17 / 31)=\pi / 4$

Consider LHS

$$
=2 \sin ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
$$

We know that

$$
\sin ^{-1}(x)=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)
$$

According to the formula we have,
$=2 \tan ^{-1}\left(\frac{\frac{3}{5}}{\sqrt{1-\frac{9}{25}}}\right)-\tan ^{-1}\left(\frac{17}{31}\right)$
$=2 \tan ^{-1}\left(\frac{\frac{3}{5}}{\sqrt{\frac{16}{25}}}\right)-\tan ^{-1}\left(\frac{17}{31}\right)$
$=2 \tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{17}{31}\right)$
Again we know that,
$2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
By substituting this formula, we get
$=\tan ^{-1}\left(\frac{2 \times \frac{3}{\frac{4}{9}}}{1-\frac{9}{16}}\right)-\tan ^{-1}\left(\frac{17}{31}\right)$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{3}{2}}{7}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\
& =\tan ^{-1}\left(\frac{24}{7}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
\end{aligned}
$$

Again we have,

$$
\begin{aligned}
& \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y} \\
& =\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{11}}{1+\frac{24}{7} \times \frac{17}{31}}\right) \\
& =\tan ^{-1}\left(\frac{\frac{744-119}{217+408}}{217}\right) \\
& =\tan ^{-1}\left(\frac{625}{625}\right) \\
& =\tan ^{-1}(1) \\
& =\frac{\pi}{4}=\text { RHS }
\end{aligned}
$$

$$
\text { So, } 2 \sin ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{17}{31}\right)=\frac{\pi}{4}
$$

Hence the proof.
(vii) Given $2 \tan ^{-1}(1 / 5)+\tan ^{-1}(1 / 8)=\tan ^{-1}(4 / 7)$

Consider LHS

$$
=2 \tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{8}\right)
$$

We know that

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

Now by substituting the formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2 \times \frac{1}{5}}{1-\frac{1}{25}}\right)+\tan ^{-1}\left(\frac{1}{8}\right) \\
= & \tan ^{-1}\left(\frac{\frac{2}{5}}{\frac{5}{24}}\right)+\tan ^{-1}\left(\frac{1}{8}\right) \\
= & \tan ^{-1}\left(\frac{5}{12}\right)+\tan ^{-1}\left(\frac{1}{8}\right) \\
= &
\end{aligned}
$$

Again from the formula we have,

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} \\
& =\tan ^{-1}\left(\frac{\frac{5}{12}+\frac{1}{8}}{1-\frac{5}{12} \times \frac{1}{8}}\right) \\
& =\tan ^{-1}\left(\frac{\frac{10+3}{\frac{24}{96-5}}}{96}\right) \\
& =\tan ^{-1}\left(\frac{13}{24} \times \frac{96}{91}\right) \\
& =\tan ^{-1}\left(\frac{4}{7}\right) \\
& =\text { RHS }
\end{aligned}
$$

$$
\text { So, } 2 \tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\tan ^{-1}\left(\frac{4}{7}\right)
$$

Hence, proved.
(viii) Given $2 \tan ^{-1}(3 / 4)-\tan ^{-1}(17 / 31)=\pi / 4$ Consider LHS

$$
=2 \tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
$$

We know that,

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

Now by substituting the formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\frac{9}{16}}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\
& =\tan ^{-1}\left(\frac{3}{2} \times \frac{16}{7}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\
& =\tan ^{-1}\left(\frac{24}{7}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
\end{aligned}
$$

We know that,

$$
\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}
$$

Again by substituting the formula we get,

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{31}}{1+\frac{24}{7} \times \frac{17}{31}}\right) \\
& =\tan ^{-1}\left(\frac{\frac{744-119}{217}}{\frac{217+408}{217}}\right) \\
& =\tan ^{-1}\left(\frac{625}{625}\right) \\
& =\tan ^{-1}(1) \\
& =\frac{\pi}{4} \\
& =\text { RHS }
\end{aligned}
$$

$$
\text { So, } 2 \tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{17}{31}\right)=\frac{\pi}{4}
$$

Hence, proved.
(ix) Given $2 \tan ^{-1}(1 / 2)+\tan ^{-1}(1 / 7)=\tan ^{-1}(31 / 17)$

Consider LHS

$$
=2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right)
$$

We know that,

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

Now by substituting the formula we get,

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{2 \times \frac{1}{2}}{1-\frac{1}{4}}\right)+\tan ^{-1}\left(\frac{1}{7}\right) \\
& =\tan ^{-1}\left(\frac{\frac{2}{2}}{\frac{2}{4}}\right)+\tan ^{-1}\left(\frac{1}{7}\right) \\
& =\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)
\end{aligned}
$$

Again by using the formula, we can write as

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} \\
& =\tan ^{-1}\left(\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{1}{7} \times \frac{4}{3}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{31}{21}}{\frac{21}{21}}\right) \\
& =\tan ^{-1}\left(\frac{31}{17}\right) \\
& =\text { RHS }
\end{aligned}
$$

So, $2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\tan ^{-1}\left(\frac{31}{17}\right)$
Hence, proved.
(x) Given $4 \tan ^{-1}(1 / 5)-\tan ^{-1}(1 / 239)=\pi / 4$

Consider LHS

$$
=4 \tan ^{-1}\left(\frac{1}{5}\right)-\tan ^{-1}\left(\frac{1}{239}\right)
$$

We know that,

$$
4 \tan ^{-1} x=\tan ^{-1}\left(\frac{4 x-4 x^{3}}{1-6 x^{2}+x^{4}}\right)
$$

Now by substituting the formula, we get

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{4 \times \frac{1}{5}-4\left(\frac{1}{5}\right)^{3}}{1-6\left(\frac{1}{5}\right)^{2}+\left(\frac{1}{5}\right)^{4}}\right)-\tan ^{-1}\left(\frac{1}{239}\right) \\
& = \\
& =\tan ^{-1}\left(\frac{120}{119}\right)-\tan ^{-1}\left(\frac{1}{239}\right)
\end{aligned}
$$

Again we know that,

$$
\begin{aligned}
& \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y} \\
& =\tan ^{-1}\left(\frac{\frac{120}{119}-\frac{1}{239}}{1-\frac{120}{119} \times \frac{1}{239}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{120 \times 239-119}{119 \times 239+120}\right) \\
& =\tan ^{-1}\left(\frac{28561}{28561}\right) \\
& =\tan ^{-1}(1) \\
& =\frac{\pi}{4} \\
& =\text { RHS }
\end{aligned}
$$

So,

$$
4 \tan ^{-1}\left(\frac{1}{5}\right)-\tan ^{-1}\left(\frac{1}{239}\right)=\frac{\pi}{4}
$$

Hence, proved.
3. If $\sin ^{-1}\left(2 a / 1+a^{2}\right)-\cos ^{-1}\left(1-b^{2} / 1+b^{2}\right)=\tan ^{-1}\left(2 x / 1-x^{2}\right)$, then prove that $x=(a-b) /$ (1+ab)

Solution:

Given $\sin ^{-1}\left(2 a / 1+a^{2}\right)-\cos ^{-1}\left(1-b^{2} / 1+b^{2}\right)=\tan ^{-1}\left(2 x / 1-x^{2}\right)$
Consider,

$$
\Rightarrow \sin ^{-1}\left(\frac{2 \mathrm{a}}{1+\mathrm{a}^{2}}\right)-\cos ^{-1} \frac{1-\mathrm{b}^{2}}{1+\mathrm{b}^{2}}=\tan ^{-1}\left(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)
$$

We know that,
$2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
$2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
Now by applying these formulae in given equation we get,

$$
\begin{aligned}
& \Rightarrow 2 \tan ^{-1}(a)-2 \tan ^{-1}(b)=2 \tan ^{-1}(x) \\
& \Rightarrow 2\left(\tan ^{-1}(a)-\tan ^{-1}(b)\right)=2 \tan ^{-1}(x) \\
& \Rightarrow \tan ^{-1}(a)-\tan ^{-1}(b)=\tan ^{-1}(x)
\end{aligned}
$$

Again we know that,

$$
\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}
$$

Now by substituting this in above equation we get,

$$
\Rightarrow \tan ^{-1}\left(\frac{\mathrm{a}-\mathrm{b}}{1+\mathrm{ab}}\right)=\tan ^{-1}(\mathrm{x})
$$

On comparing we get,

$$
\Rightarrow x=\frac{\mathrm{a}-\mathrm{b}}{1+\mathrm{ab}}
$$

Hence, proved.

4. Prove that:

(i) $\left.\left.\tan ^{-1}\left\{\left(1-x^{2}\right) / 2 x\right)\right\}+\cot ^{-1}\left\{\left(1-x^{2}\right) / 2 x\right)\right\}=\pi / 2$
(ii) $\left.\sin \left\{\tan ^{-1}\left(1-x^{2}\right) / 2 x\right)+\cos ^{-1}\left(1-x^{2}\right) /\left(1+x^{2}\right)\right\}=1$

Solution:

(i) Given $\left.\left.\tan ^{-1}\left\{\left(1-x^{2}\right) / 2 x\right)\right\}+\cot ^{-1}\left\{\left(1-x^{2}\right) / 2 x\right)\right\}=\pi / 2$

Consider LHS

$$
=\tan ^{-1} \frac{1-x^{2}}{2 x}+\cot ^{-1} \frac{1-x^{2}}{2 x}
$$

We know that,

$$
\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right)
$$

Now by applying the above formula we get,

$$
=\tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

Again we know

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

By substituting this we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\left(\frac{1-x^{2}}{2 x}\right)+\left(\frac{2 x}{1-x^{2}}\right)}{1-\left(\frac{1-x^{2}}{2 x}\right) \times\left(\frac{2 x}{1-x^{2}}\right)}\right) \\
& =\tan ^{-1}\left(\frac{\frac{1+x^{4}-2 x^{2}+4 x^{2}}{2 x\left(1 x^{2}\right)}}{\frac{2 x\left(1-x^{2}\right)-2 x\left(1-x^{2}\right)}{2 x\left(1-x^{2}\right)}}\right) \\
& =\tan ^{-1}\left(\frac{1+x^{4}+2 x^{2}}{0}\right) \\
& =\tan ^{-1}(\infty) \\
& =\frac{\pi}{2}=\text { RHS }
\end{aligned}
$$

$$
\tan ^{-1} \frac{1-x^{2}}{2 x}+\cot ^{-1} \frac{1-x^{2}}{2 x}=\frac{\pi}{2}
$$

Hence, proved.
(ii) Given $\left.\sin \left\{\tan ^{-1}\left(1-x^{2}\right) / 2 x\right)+\cos ^{-1}\left(1-x^{2}\right) /\left(1+x^{2}\right)\right\}$

Consider LHS

$$
=\sin \left(\tan ^{-1} \frac{1-x^{2}}{2 x}+\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}\right)
$$

We know that,

$$
2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
$$

Now by applying the formula in above question we get,

$$
=\sin \left(\tan ^{-1} \frac{1-x^{2}}{2 x}+2 \tan ^{-1} x\right)
$$

Again, we have

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

Now by substituting the formula we get,

$$
=\sin \left(\tan ^{-1} \frac{1-\mathrm{x}^{2}}{2 \mathrm{x}}+\tan ^{-1}\left(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)\right)
$$

Again we know that,

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

Now by applying the formula,

$$
\begin{aligned}
& \sin \left(\tan ^{-1}\left(\frac{\frac{1-x^{2}}{2 x}+\left(\frac{2 x}{1-x^{2}}\right)}{1-\frac{1-x^{2}}{2 x} \times\left(\frac{2 x}{1-x^{2}}\right)}\right)\right) \\
= & \sin \left(\tan ^{-1}\left(\frac{\frac{1+x^{4}-2 x^{2}+4 x^{2}}{2 x\left(1-x^{2}\right)}}{\frac{2 x\left(1-x^{2}\right)-2 x\left(1-x^{2}\right)}{2 x\left(1-x^{2}\right)}}\right)\right) \\
= & \sin \left(\tan ^{-1}\left(\frac{\frac{1+x^{4}-2 x^{2}+4 x^{2}}{2 x\left(1-x^{2}\right)}}{0}\right)\right) \\
= & \sin \left(\tan ^{-1}(\infty)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sin \left(\frac{\pi}{2}\right) \\
& =1 \\
& =\text { RHS }
\end{aligned}
$$

So,

$$
\sin ^{-1}\left(\tan ^{-1} \frac{1-x^{2}}{2 x}+\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}\right)=1
$$

Hence, proved.

5. If $\sin ^{-1}\left(2 a / 1+a^{2}\right)+\sin ^{-1}\left(2 b / 1+b^{2}\right)=2 \tan ^{-1} x$, prove that $x=(a+b / 1-a b)$

Solution:

Given $\sin ^{-1}\left(2 a / 1+a^{2}\right)+\sin ^{-1}\left(2 b / 1+b^{2}\right)=2 \tan ^{-1} x$
Consider

$$
\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)+\sin ^{-1} \frac{2 b}{1+b^{2}}=2 \tan ^{-1}(x)
$$

We know that,

$$
2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)
$$

Now by applying the above formula we get,

$$
\begin{aligned}
& \Rightarrow 2 \tan ^{-1}(a)+2 \tan ^{-1}(b)=2 \tan ^{-1}(x) \\
& \Rightarrow 2\left(\tan ^{-1}(a)+\tan ^{-1}(b)\right)=2 \tan ^{-1}(x) \\
& \Rightarrow \tan ^{-1}(a)+\tan ^{-1}(b)=\tan ^{-1}(x)
\end{aligned}
$$

Again we have,

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

Now by substituting, we get

$$
\Rightarrow \tan ^{-1}\left(\frac{a+b}{1-a b}\right)=\tan ^{-1}(x)
$$

On comparing we get,

$$
\Rightarrow \mathrm{x}=\frac{\mathrm{a}+\mathrm{b}}{1-\mathrm{ab}}
$$

Hence, proved.

