

EXERCISE 14.1

PAGE NO: 14.6

1. Write down each pair of adjacent angles shown in fig. 13.

Solution:

The angles that have common vertex and a common arm are known as adjacent angles Therefore the adjacent angles in given figure are:

 $\angle DOC$ and $\angle BOC$

 $\angle COB$ and $\angle BOA$

2. In Fig. 14, name all the pairs of adjacent angles.

Fig 14

Solution:

The angles that have common vertex and a common arm are known as adjacent angles. In fig (i), the adjacent angles are \angle EBA and \angle ABC \angle ACB and \angle BCF \angle BAC and \angle CAD In fig (ii), the adjacent angles are

 \angle BAD and \angle DAC \angle BDA and \angle CDA

- 3. In fig. 15, write down
- (i) Each linear pair
- (ii) Each pair of vertically opposite angles.

Solution:

(i) The two adjacent angles are said to form a linear pair of angles if their non – common arms are two opposite rays.

 $\angle 1$ and $\angle 3$

- $\angle 1$ and $\angle 2$
- $\angle 4$ and $\angle 3$
- $\angle 4$ and $\angle 2$
- $\angle 5$ and $\angle 6$
- $\angle 5$ and $\angle 7$
- $\angle 6$ and $\angle 8$
- ∠7 and ∠8

(ii) The two angles formed by two intersecting lines and have no common arms are called vertically opposite angles.

- $\angle 1$ and $\angle 4$
- $\angle 2$ and $\angle 3$
- ∠5 and ∠8
- ∠6 and ∠7

4. Are the angles 1 and 2 given in Fig. 16 adjacent angles?

Fig 16

Solution:

No, because they don't have common vertex.

5. Find the complement of each of the following angles:

(i) 35°

(ii) 72°

(iii) 45°

(iv) 85°

Solution:

(i) The two angles are said to be complementary angles if the sum of those angles is 90° Complementary angle for given angle is $90^{\circ} - 35^{\circ} = 55^{\circ}$

(ii) The two angles are said to be complementary angles if the sum of those angles is 90° Complementary angle for given angle is $90^{\circ} - 72^{\circ} = 18^{\circ}$

(iii) The two angles are said to be complementary angles if the sum of those angles is 90° Complementary angle for given angle is $90^{\circ} - 45^{\circ} = 45^{\circ}$

(iv) The two angles are said to be complementary angles if the sum of those angles is 90° Complementary angle for given angle is $90^{\circ} - 85^{\circ} = 5^{\circ}$

6. Find the supplement of each of the following angles:

(i) 70° (ii) 120° (iii) 135° (iv) 90°

Solution:

(i) The two angles are said to be supplementary angles if the sum of those angles is 180° Therefore supplementary angle for the given angle is $180^{\circ} - 70^{\circ} = 110^{\circ}$

(ii) The two angles are said to be supplementary angles if the sum of those angles is 180° Therefore supplementary angle for the given angle is $180^{\circ} - 120^{\circ} = 60^{\circ}$

(iii) The two angles are said to be supplementary angles if the sum of those angles is 180°

Therefore supplementary angle for the given angle is $180^{\circ} - 135^{\circ} = 45^{\circ}$

(iv) The two angles are said to be supplementary angles if the sum of those angles is 180°

Therefore supplementary angle for the given angle is $180^{\circ} - 90^{\circ} = 90^{\circ}$

7. Identify the complementary and supplementary pairs of angles from the following pairs:

(i) 25°, 65° (ii) 120°, 60° (iii) 63°, 27° (iv) 100°, 80°

Solution:

- (i) $25^{\circ} + 65^{\circ} = 90^{\circ}$ so, this is a complementary pair of angle.
- (ii) $120^{\circ} + 60^{\circ} = 180^{\circ}$ so, this is a supplementary pair of angle.
- (iii) $63^{\circ} + 27^{\circ} = 90^{\circ}$ so, this is a complementary pair of angle.
- (iv) $100^{\circ} + 80^{\circ} = 180^{\circ}$ so, this is a supplementary pair of angle.

8. Can two obtuse angles be supplementary, if both of them be

- (i) Obtuse?
- (ii) Right?

(iii) Acute?

Solution:

(i) No, two obtuse angles cannot be supplementary Because, the sum of two angles is greater than 90° so their sum will be greater than 180°

(ii) Yes, two right angles can be supplementary Because, $90^{\circ} + 90^{\circ} = 180^{\circ}$

(iii) No, two acute angle cannot be supplementary Because, the sum of two angles is less than 90° so their sum will also be less than 90°

9. Name the four pairs of supplementary angles shown in Fig.17.

Solution:

The two angles are said to be supplementary angles if the sum of those angles is 180°. The supplementary angles are

 $\angle AOC$ and $\angle COB$ $\angle BOC$ and $\angle DOB$ $\angle BOD$ and $\angle DOA$ $\angle AOC$ and $\angle DOA$

.....

10. In Fig. 18, A, B, C are collinear points and \angle DBA = \angle EBA.

(i) Name two linear pairs.

(ii) Name two pairs of supplementary angles.

Fig 18

Solution:

(i) Two adjacent angles are said to be form a linear pair of angles, if their non-common arms are two opposite rays.

Therefore linear pairs are ∠ABD and ∠DBC

 $\angle ABE$ and $\angle EBC$

(ii) We know that every linear pair forms supplementary angles, these angles are ∠ABD and ∠DBC
 ∠ABE and ∠EBC

11. If two supplementary angles have equal measure, what is the measure of each angle?

Solution:

Let p and q be the two supplementary angles that are equal The two angles are said to be supplementary angles if the sum of those angles is 180°

 $\angle p = \angle q$ So, $\angle p + \angle q = 180^{\circ}$ $\angle p + \angle p = 180^{\circ}$ $2\angle p = 180^{\circ}$ $\angle p = 180^{\circ}/2$ $\angle p = 90^{\circ}$ Therefore, $\angle p = \angle q = 90^{\circ}$

12. If the complement of an angle is 28°, then find the supplement of the angle.

Solution:

Given complement of an angle is 28° Here, let x be the complement of the given angle 28° Therefore, $\angle x + 28^{\circ} = 90^{\circ}$ $\angle x = 90^{\circ} - 28^{\circ}$ $= 62^{\circ}$ So, the supplement of the angle = $180^{\circ} - 62^{\circ}$ $= 118^{\circ}$

13. In Fig. 19, name each linear pair and each pair of vertically opposite angles:

Solution:

Two adjacent angles are said to be linear pair of angles, if their non-common arms are two opposite rays.

Therefore linear pairs are listed below:

- $\angle 1$ and $\angle 2$
- $\angle 2$ and $\angle 3$
- $\angle 3$ and $\angle 4$
- $\angle 1$ and $\angle 4$
- $\angle 5$ and $\angle 6$
- ∠6 and ∠7
- $\angle 7$ and $\angle 8$
- $\angle 8$ and $\angle 5$
- $\angle 9$ and $\angle 10$
- ∠10 and ∠11
- ∠11 and ∠12
- $\angle 12$ and $\angle 9$

The two angles are said to be vertically opposite angles if the two intersecting lines have no common arms.

Therefore supplement of the angle are listed below:

- $\angle 1$ and $\angle 3$
- $\angle 4$ and $\angle 2$
- ∠5 and ∠7
- ∠6 and ∠8
- ∠9 and ∠11
- ∠10 and ∠12

14. In Fig. 20, OE is the bisector of \angle BOD. If $\angle 1 = 70^{\circ}$, find the magnitude of $\angle 2$, $\angle 3$ and $\angle 4$.

 $2(\angle COB) = 80^{\circ}$ $\angle COB = 80^{\circ}/2$ $\angle COB = 40^{\circ}$ Therefore, $\angle COB = \angle AOD = 40^{\circ}$ The angles are, $\angle 1 = 70^{\circ}$, $\angle 2 = 40^{\circ}$, $\angle 3 = 140^{\circ}$ and $\angle 4 = 40^{\circ}$

15. One of the angles forming a linear pair is a right angle. What can you say about its other angle?

Solution:

Given one of the angle of a linear pair is the right angle that is 90° We know that linear pair angle is 180° Therefore, the other angle is $180^{\circ} - 90^{\circ} = 90^{\circ}$

16. One of the angles forming a linear pair is an obtuse angle. What kind of angle is the other?

Solution:

Given one of the angles of a linear pair is obtuse, then the other angle should be acute, because only then their sum will be 180°.

17. One of the angles forming a linear pair is an acute angle. What kind of angle is the other?

Solution:

Given one of the Angles of a linear pair is acute, then the other angle should be obtuse, only then their sum will be 180°.

18. Can two acute angles form a linear pair?

Solution:

No, two acute angles cannot form a linear pair because their sum is always less than 180°.

19. If the supplement of an angle is 65°, then find its complement.

Solution:

Let x be the required angle So, $x + 65^{\circ} = 180^{\circ}$ $x = 180^{\circ} - 65^{\circ}$ $x = 115^{\circ}$

The two angles are said to be complementary angles if the sum of those angles is 90° here it is more than 90° therefore the complement of the angle cannot be determined.

20. Find the value of x in each of the following figures.

Solution:

(i) We know that $\angle BOA + \angle BOC = 180^{\circ}$ [Linear pair: The two adjacent angles are said to form a linear pair of angles if their noncommon arms are two opposite rays and sum of the angle is 180°] $60^{\circ} + x^{\circ} = 180^{\circ}$ $x^{\circ} = 180^{\circ} - 60^{\circ}$

 $x^{o} = 120^{o}$

```
(ii) We know that \angle POQ + \angle QOR = 180^{\circ}

[Linear pair: The two adjacent angles are said to form a linear pair of angles if their non-

common arms are two opposite rays and sum of the angle is 180^{\circ}]

3x^{\circ} + 2x^{\circ} = 180^{\circ}

5x^{\circ} = 180^{\circ}

x^{\circ} = 180^{\circ}/5

x^{\circ} = 36^{\circ}

(iii) We know that \angle LOP + \angle PON + \angle NOM = 180^{\circ}

[Linear pair: The two adjacent angles are said to form a linear pair of angles if their non-

common arms are two opposite rays and sum of the angle is 180^{\circ}]

Since, 35^{\circ} + x^{\circ} + 60^{\circ} = 180^{\circ}

x^{\circ} = 180^{\circ} - 35^{\circ} - 60^{\circ}

x^{\circ} = 180^{\circ} - 95^{\circ}

x^{\circ} = 85^{\circ}

(iv) We know that \angle DOC + \angle DOE + \angle EOA + \angle AOB + \angle BOC = 360^{\circ}
```

```
(iv) We know that \angle DOC + \angle DOE + \angle EOA + \angle AOB + \angle BOC = 360^{\circ}

83^{\circ} + 92^{\circ} + 47^{\circ} + 75^{\circ} + x^{\circ} = 360^{\circ}

x^{\circ} + 297^{\circ} = 360^{\circ}

x^{\circ} = 360^{\circ} - 297^{\circ}

x^{\circ} = 63^{\circ}

(v) We know that \angle ROS + \angle ROQ + \angle QOP + \angle POS = 360^{\circ}

3x^{\circ} + 2x^{\circ} + x^{\circ} + 2x^{\circ} = 360^{\circ}

8x^{\circ} = 360^{\circ}

x^{\circ} = 360^{\circ}/8

x^{\circ} = 45^{\circ}
```

(vi) Linear pair: The two adjacent angles are said to form a linear pair of angles if their non-common arms are two opposite rays and sum of the angle is 180° Therefore $3x^{\circ} = 105^{\circ}$ $x^{\circ} = 105^{\circ}/3$ $x^{\circ} = 35^{\circ}$

21. In Fig. 22, it being given that $\angle 1 = 65^{\circ}$, find all other angles.

Fig 22

Solution:

Given from the figure 22, $\angle 1 = \angle 3$ are the vertically opposite angles

Therefore, $\angle 3 = 65^{\circ}$

Here, $\angle 1 + \angle 2 = 180^{\circ}$ are the linear pair [The two adjacent angles are said to form a linear pair of angles if their non–common arms are two opposite rays and sum of the angle is 180°]

Therefore, $\angle 2 = 180^{\circ} - 65^{\circ}$ = 115° $\angle 2 = \angle 4$ are the vertically opposite angles [from the figure] Therefore, $\angle 2 = \angle 4 = 115^{\circ}$

And $\angle 3 = 65^{\circ}$

22. In Fig. 23, OA and OB are opposite rays:
(i) If x = 25°, what is the value of y?
(ii) If y = 35°, what is the value of x?

Solution:

(i) $\angle AOC + \angle BOC = 180^{\circ}$ [The two adjacent angles are said to form a linear pair of angles if their non–common arms are two opposite rays and sum of the angle is 180°] $2y + 5^{\circ} + 3x = 180^{\circ}$

 $3x + 2y = 175^{\circ}$ Given If x = 25°, then $3(25^{\circ}) + 2y = 175^{\circ}$ $75^{\circ} + 2y = 175^{\circ}$ $2y = 175^{\circ} - 75^{\circ}$ $2y = 100^{\circ}$ $y = 100^{\circ}/2$ $y = 50^{\circ}$

(ii) $\angle AOC + \angle BOC = 180^{\circ}$ [The two adjacent angles are said to form a linear pair of angles if their non-common arms are two opposite rays and sum of the angle is 180°]

 $2y + 5 + 3x = 180^{\circ}$ $3x + 2y = 175^{\circ}$ Given If $y = 35^{\circ}$, then $3x + 2(35^{\circ}) = 175^{\circ}$ $3x + 70^{\circ} = 175^{\circ}$ $3x = 175^{\circ} - 70^{\circ}$ $3x = 105^{\circ}$ $x = 105^{\circ}/3$ $x = 35^{\circ}$

23. In Fig. 24, write all pairs of adjacent angles and all the liner pairs.

Solution:

Pairs of adjacent angles are: ∠DOA and ∠DOC ∠BOC and ∠COD ∠AOD and ∠BOD

∠AOC and ∠BOC

Linear pairs: [The two adjacent angles are said to form a linear pair of angles if their non-common arms are two opposite rays and sum of the angle is 180°] $\angle AOD$ and $\angle BOD$ $\angle AOC$ and $\angle BOC$

24. In Fig. 25, find $\angle x$. Further find $\angle BOC$, $\angle COD$ and $\angle AOD$.

Solution:

 $(x + 10)^{\circ} + x^{\circ} + (x + 20)^{\circ} = 180^{\circ}$ [linear pair] On rearranging we get $3x^{\circ} + 30^{\circ} = 180^{\circ}$ $3x^{\circ} = 180^{\circ} - 30^{\circ}$ $3x^{\circ} = 150^{\circ}/3$ $x^{\circ} = 150^{\circ}/3$ $x^{\circ} = 50^{\circ}$ Also given that $\angle BOC = (x + 20)^{\circ}$ $= (50 + 20)^{\circ}$ $= 70^{\circ}$ $\angle COD = 50^{\circ}$ $\angle AOD = (x + 10)^{\circ}$ $= (50 + 10)^{\circ}$ $= 60^{\circ}$

25. How many pairs of adjacent angles are formed when two lines intersect in a point?

Solution:

If the two lines intersect at a point, then four adjacent pairs are formed and those are

linear.

26. How many pairs of adjacent angles, in all, can you name in Fig. 26?

Solution:

There are 10 adjacent pairs formed in the given figure, they are

 \angle EOD and \angle DOC \angle COD and \angle BOC \angle COB and \angle BOA \angle AOB and \angle BOD \angle BOC and \angle COE \angle COD and \angle COA \angle DOE and \angle DOB \angle EOD and \angle DOA \angle EOC and \angle AOC \angle AOB and \angle BOE

27. In Fig. 27, determine the value of x.

Solution:

From the figure we can write as $\angle COB + \angle AOB = 180^{\circ}$ [linear pair] $3x^{\circ} + 3x^{\circ} = 180^{\circ}$

 $6x^{\circ} = 180^{\circ}$ $x^{o} = 180^{o}/6$ $x^{\circ} = 30^{\circ}$

28. In Fig.28, AOC is a line, find x.

Fig 28

Solution:

From the figure we can write as $\angle AOB + \angle BOC = 180^{\circ}$ [linear pair] Linear pair $2x + 70^{\circ} = 180^{\circ}$ $2x = 180^{\circ} - 70^{\circ}$ $2x = 110^{\circ}$ $x = 110^{\circ}/2$ x = 55°

29. In Fig. 29, POS is a line, find x.

Solution:

From the figure we can write as angles of a straight line, $\angle QOP + \angle QOR + \angle ROS = 180^{\circ}$ $60^{\circ} + 4x + 40^{\circ} = 180^{\circ}$ On rearranging we get, $100^{\circ} + 4x = 180^{\circ}$ $4x = 180^{\circ} - 100^{\circ}$ $4x = 80^{\circ}$ $x = 80^{\circ}/4$ $x = 20^{\circ}$

30. In Fig. 30, lines l_1 and l_2 intersect at O, forming angles as shown in the figure. If $x = 45^\circ$, find the values of y, z and u.

Solution:

Given that, $\angle x = 45^{\circ}$ From the figure we can write as $\angle x = \angle z = 45^{\circ}$ Also from the figure, we have $\angle y = \angle u$ From the property of linear pair we can write as $\angle x + \angle y + \angle z + \angle u = 360^{\circ}$ $45^{\circ} + 45^{\circ} + \angle y + \angle u = 360^{\circ}$ $90^{\circ} + \angle y + \angle u = 360^{\circ}$ $\angle y + \angle u = 360^{\circ} - 90^{\circ}$ $\angle y + \angle u = 270^{\circ}$ (vertically opposite angles $\angle y = \angle u$) $2\angle y = 270^{\circ}$ $\angle y = 135^{\circ}$ Therefore, $\angle y = \angle u = 135^{\circ}$

So, $\angle x = 45^{\circ}$, $\angle y = 135^{\circ}$, $\angle z = 45^{\circ}$ and $\angle u = 135^{\circ}$

31. In Fig. 31, three coplanar lines intersect at a point O, forming angles as shown in the figure. Find the values of x, y, z and u

Solution:

Given that, $\angle x + \angle y + \angle z + \angle u + 50^{\circ} + 90^{\circ} = 360^{\circ}$ Linear pair, $\angle x + 50^{\circ} + 90^{\circ} = 180^{\circ}$ $\angle x + 140^{\circ} = 180^{\circ}$ On rearranging we get $\angle x = 180^{\circ} - 140^{\circ}$ $\angle x = 40^{\circ}$ From the figure we can write as $\angle x = \angle u = 40^{\circ}$ are vertically opposite angles $\angle z = 90^{\circ}$ is a vertically opposite angle $\angle y = 50^{\circ}$ is a vertically opposite angle Therefore, $\angle x = 40^{\circ}$, $\angle y = 50^{\circ}$, $\angle z = 90^{\circ}$ and $\angle u = 40^{\circ}$

32. In Fig. 32, find the values of x, y and z.

Fig 32

Solution:

 $\angle y = 25^{\circ}$ vertically opposite angle From the figure we can write as $\angle x = \angle z$ are vertically opposite angles $\angle x + \angle y + \angle z + 25^{\circ} = 360^{\circ}$ $\angle x + \angle z + 25^{\circ} + 25^{\circ} = 360^{\circ}$ On rearranging we get, $\angle x + \angle z + 50^{\circ} = 360^{\circ}$ $\angle x + \angle z = 360^{\circ} - 50^{\circ} [\angle x = \angle z]$ $2\angle x = 310^{\circ}$ $\angle x = 155^{\circ}$ And, $\angle x = \angle z = 155^{\circ}$ Therefore, $\angle x = 155^{\circ}$, $\angle y = 25^{\circ}$ and $\angle z = 155^{\circ}$

