

EXERCISE 14.2

PAGE NO: 14.20

1. In Fig. 58, line n is a transversal to line I and m. Identify the following:

(i) Alternate and corresponding angles in Fig. 58 (i)

(ii) Angles alternate to $\angle d$ and $\angle g$ and angles corresponding to $\angle f$ and $\angle h$ in Fig. 58 (ii) (iii) Angle alternate to $\angle PQR$, angle corresponding to $\angle RQF$ and angle alternate to

∠PQE in Fig. 58 (iii)

(iv) Pairs of interior and exterior angles on the same side of the transversal in Fig. 58 (ii)

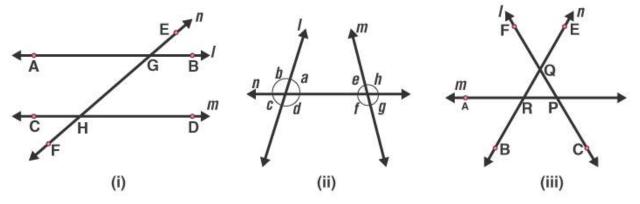


Fig.58

Solution:

(i) A pair of angles in which one arm of both the angles is on the same side of the transversal and their other arms are directed in the same sense is called a pair of corresponding angles.

In Figure (i) Corresponding angles are

∠EGB and ∠GHD

 \angle HGB and \angle FHD

 \angle EGA and \angle GHC

∠AGH and ∠CHF

A pair of angles in which one arm of each of the angle is on opposite sides of the transversal and whose other arms include the one segment is called a pair of alternate angles.

The alternate angles are: ∠EGB and ∠CHF

 \angle HGB and \angle CHG \angle EGA and \angle FHD \angle AGH and \angle GHD

(ii) In Figure (ii) The alternate angle to $\angle d$ is $\angle e$. The alternate angle to $\angle g$ is $\angle b$. The corresponding angle to $\angle f$ is $\angle c$. The corresponding angle to $\angle h$ is $\angle a$.

(iii) In Figure (iii) Angle alternate to \angle PQR is \angle QRA. Angle corresponding to \angle RQF is \angle ARB. Angle alternate to \angle POE is \angle ARB.

(iv) In Figure (ii)
Pair of interior angles are
∠a is ∠e.
∠d is ∠f.
Pair of exterior angles are
∠b is ∠h.
∠c is ∠g.

2. In Fig. 59, AB and CD are parallel lines intersected by a transversal PQ at L and M respectively, If \angle CMQ = 60°, find all other angles in the figure.

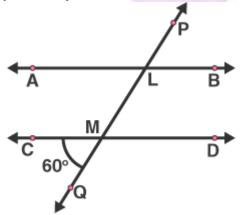


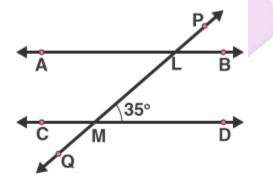
Fig. 59

Solution:

A pair of angles in which one arm of both the angles is on the same side of the transversal and their other arms are directed in the same sense is called a pair of corresponding angles.

Therefore corresponding angles are \angle ALM = \angle CMQ = 60° [given] Vertically opposite angles are $\angle LMD = \angle CMQ = 60^{\circ}$ [given] Vertically opposite angles are $\angle ALM = \angle PLB = 60^{\circ}$ Here, $\angle CMQ + \angle QMD = 180^{\circ}$ are the linear pair On rearranging we get $\angle QMD = 180^{\circ} - 60^{\circ}$ $= 120^{\circ}$ Corresponding angles are $\angle QMD = \angle MLB = 120^{\circ}$ Vertically opposite angles $\angle QMD = \angle CML = 120^{\circ}$ Vertically opposite angles \angle MLB = \angle ALP = 120°

3. In Fig. 60, AB and CD are parallel lines intersected by a transversal by a transversal PQ at L and M respectively. If $\angle LMD = 35^{\circ}$ find $\angle ALM$ and $\angle PLA$.



Solution: Given that, $\angle LMD = 35^{\circ}$ From the figure we can write $\angle LMD$ and $\angle LMC$ is a linear pair $\angle LMD + \angle LMC = 180^{\circ}$ [sum of angles in linear pair = 180°]


```
On rearranging, we get

\angle LMC = 180^{\circ} - 35^{\circ}

= 145^{\circ}

So, \angle LMC = \angle PLA = 145^{\circ}

And, \angle LMC = \angle MLB = 145^{\circ}

\angle MLB and \angle ALM is a linear pair

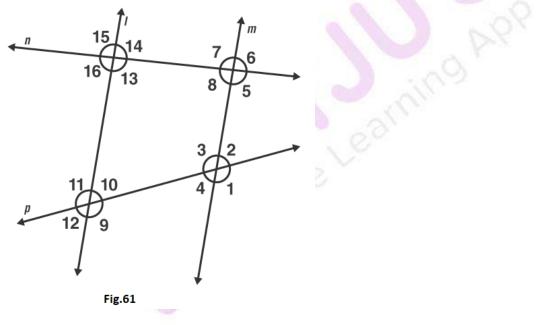
\angle MLB + \angle ALM = 180^{\circ} [sum of angles in linear pair = 180^{\circ}]

\angle ALM = 180^{\circ} - 145^{\circ}

\angle ALM = 35^{\circ}

Therefore, \angle ALM = 35^{\circ}, \angle PLA = 145^{\circ}.
```

4. The line n is transversal to line I and m in Fig. 61. Identify the angle alternate to $\angle 13$, angle corresponding to $\angle 15$, and angle alternate to $\angle 15$.



Solution:

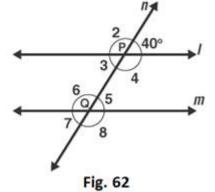
Given that, I || m

From the figure the angle alternate to $\angle 13$ is $\angle 7$

From the figure the angle corresponding to $\angle 15$ is $\angle 7$ [A pair of angles in which one arm of both the angles is on the same side of the transversal and their other arms are directed in the same sense is called a pair of corresponding angles.] Again from the figure angle alternate to $\angle 15$ is $\angle 5$

5. In Fig. 62, line I || m and n is transversal. If $\angle 1 = 40^{\circ}$, find all the angles and check

that all corresponding angles and alternate angles are equal.

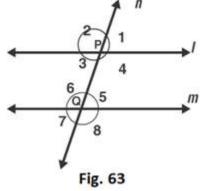


Solution:

Given that, $\angle 1 = 40^{\circ}$ $\angle 1$ and $\angle 2$ is a linear pair [from the figure] $\angle 1 + \angle 2 = 180^{\circ}$ $\angle 2 = 180^{\circ} - 40^{\circ}$ $\angle 2 = 140^{\circ}$ Again from the figure we can say that $\angle 2$ and $\angle 6$ is a corresponding angle pair So, $\angle 6 = 140^{\circ}$ $\angle 6$ and $\angle 5$ is a linear pair [from the figure] $\angle 6 + \angle 5 = 180^{\circ}$ $\angle 5 = 180^{\circ} - 140^{\circ}$ $\angle 5 = 40^{\circ}$ From the figure we can write as $\angle 3$ and $\angle 5$ are alternate interior angles So, $\angle 5 = \angle 3 = 40^{\circ}$ $\angle 3$ and $\angle 4$ is a linear pair $\angle 3 + \angle 4 = 180^{\circ}$ $\angle 4 = 180^{\circ} - 40^{\circ}$ $\angle 4 = 140^{\circ}$ Now, $\angle 4$ and $\angle 6$ are a pair of interior angles So, $\angle 4 = \angle 6 = 140^{\circ}$ $\angle 3$ and $\angle 7$ are a pair of corresponding angles So, $\angle 3 = \angle 7 = 40^{\circ}$ Therefore, $\angle 7 = 40^{\circ}$ $\angle 4$ and $\angle 8$ are a pair of corresponding angles So, $\angle 4 = \angle 8 = 140^{\circ}$

Therefore, $\angle 8 = 140^{\circ}$ Therefore, $\angle 1 = 40^{\circ}$, $\angle 2 = 140^{\circ}$, $\angle 3 = 40^{\circ}$, $\angle 4 = 140^{\circ}$, $\angle 5 = 40^{\circ}$, $\angle 6 = 140^{\circ}$, $\angle 7 = 40^{\circ}$ and $\angle 8 = 140^{\circ}$

6. In Fig.63, line I || m and a transversal n cuts them P and Q respectively. If $\angle 1 = 75^{\circ}$, find all other angles.



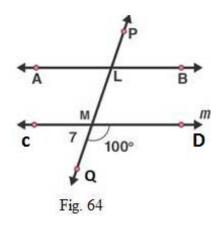
Solution:

Given that, $| \| m \text{ and } \angle 1 = 75^{\circ}$ $\angle 1 = \angle 3 \text{ are vertically opposite angles}$ We know that, from the figure $\angle 1 + \angle 2 = 180^{\circ}$ is a linear pair $\angle 2 = 180^{\circ} - 75^{\circ}$ $\angle 2 = 105^{\circ}$ Here, $\angle 1 = \angle 5 = 75^{\circ}$ are corresponding angles $\angle 5 = \angle 7 = 75^{\circ}$ are vertically opposite angles. $\angle 2 = \angle 6 = 105^{\circ}$ are vertically opposite angles $\angle 6 = \angle 8 = 105^{\circ}$ are vertically opposite angles $\angle 2 = \angle 4 = 105^{\circ}$ are vertically opposite angles So, $\angle 1 = 75^{\circ}$, $\angle 2 = 105^{\circ}$, $\angle 3 = 75^{\circ}$, $\angle 4 = 105^{\circ}$, $\angle 5 = 75^{\circ}$, $\angle 6 = 105^{\circ}$, $\angle 7 = 75^{\circ}$ and $\angle 8 = 105^{\circ}$

7. In Fig. 64, AB || CD and a transversal PQ cuts at L and M respectively. If \angle QMD = 100°, find all the other angles.

B BYJU'S

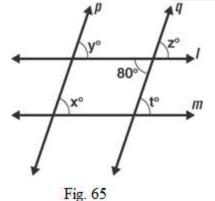
RD Sharma Solutions for Class 7 Maths Chapter 14 Lines and Angles



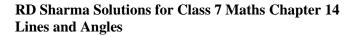
Solution:

Given that, AB || CD and \angle QMD = 100° We know that, from the figure \angle QMD + \angle QMC = 180° is a linear pair, \angle QMC = 180° - \angle QMD \angle QMC = 180° - 100° \angle QMC = 80° Corresponding angles are \angle DMQ = \angle BLM = 100° \angle CMQ = \angle ALM = 80° Vertically Opposite angles are \angle DMQ = \angle CML = 100° \angle BLM = \angle PLA = 100° \angle CMQ = \angle DML = 80°

8. In Fig. 65, I || m and p || q. Find the values of x, y, z, t.



Solution: Given that one of the angle is 80°



 $\angle z$ and 80° are vertically opposite angles Therefore $\angle z = 80^{\circ}$ $\angle z$ and $\angle t$ are corresponding angles $\angle z = \angle t$ Therefore, $\angle t = 80^{\circ}$ $\angle z$ and $\angle y$ are corresponding angles $\angle z = \angle y$ Therefore, $\angle y = 80^{\circ}$ $\angle x$ and $\angle y$ are corresponding angles $\angle y = \angle x$ Therefore, $\angle x = 80^{\circ}$

9. In Fig. 66, line I \parallel m, $\angle 1 = 120^{\circ}$ and $\angle 2 = 100^{\circ}$, find out $\angle 3$ and $\angle 4$.

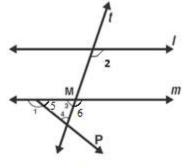


Fig. 66

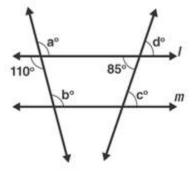
Solution:

Given that, $\angle 1 = 120^{\circ}$ and $\angle 2 = 100^{\circ}$ From the figure $\angle 1$ and $\angle 5$ is a linear pair $\angle 1 + \angle 5 = 180^{\circ}$ $\angle 5 = 180^{\circ} - 120^{\circ}$ $\angle 5 = 60^{\circ}$ Therefore, $\angle 5 = 60^{\circ}$ $\angle 2$ and $\angle 6$ are corresponding angles $\angle 2 = \angle 6 = 100^{\circ}$ Therefore, $\angle 6 = 100^{\circ}$ $\angle 6$ and $\angle 3$ is a linear pair $\angle 6 + \angle 3 = 180^{\circ}$ $\angle 3 = 180^{\circ} - 100^{\circ}$ $\angle 3 = 80^{\circ}$ Therefore, $\angle 3 = 80^{\circ}$

RD Sharma Solutions for Class 7 Maths Chapter 14 Lines and Angles

By, angles of sum property $\angle 3 + \angle 5 + \angle 4 = 180^{\circ}$ $\angle 4 = 180^{\circ} - 80^{\circ} - 60^{\circ}$ $\angle 4 = 40^{\circ}$ Therefore, $\angle 4 = 40^{\circ}$

10. In Fig. 67, I || m. Find the values of a, b, c, d. Give reasons.



Solution:

Given I || m From the figure vertically opposite angles, $\angle a = 110^{\circ}$ Corresponding angles, $\angle a = \angle b$ Therefore, $\angle b = 110^{\circ}$ Vertically opposite angle, $\angle d = 85^{\circ}$ Corresponding angles, $\angle d = \angle c$ Therefore, $\angle c = 85^{\circ}$ Hence, $\angle a = 110^{\circ}$, $\angle b = 110^{\circ}$, $\angle c = 85^{\circ}$, $\angle d = 85^{\circ}$

11. In Fig. 68, AB || CD and $\angle 1$ and $\angle 2$ are in the ratio of 3: 2. Determine all angles from 1 to 8.

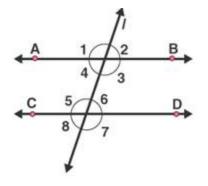


Fig. 68

Solution:

Given $\angle 1$ and $\angle 2$ are in the ratio 3: 2 Let us take the angles as 3x, 2x $\angle 1$ and $\angle 2$ are linear pair [from the figure] $3x + 2x = 180^{\circ}$ $5x = 180^{\circ}$ $x = 180^{\circ}/5$ $x = 36^{\circ}$ Therefore, $\angle 1 = 3x = 3(36) = 108^{\circ}$ $\angle 2 = 2x = 2(36) = 72^{\circ}$ $\angle 1$ and $\angle 5$ are corresponding angles Therefore $\angle 1 = \angle 5$ Hence, $\angle 5 = 108^{\circ}$ $\angle 2$ and $\angle 6$ are corresponding angles So ∠2 = ∠6 Therefore, $\angle 6 = 72^{\circ}$ $\angle 4$ and $\angle 6$ are alternate pair of angles $\angle 4 = \angle 6 = 72^{\circ}$ Therefore, $\angle 4 = 72^{\circ}$ $\angle 3$ and $\angle 5$ are alternate pair of angles $\angle 3 = \angle 5 = 108^{\circ}$ Therefore, $\angle 3 = 108^{\circ}$ $\angle 2$ and $\angle 8$ are alternate exterior of angles $\angle 2 = \angle 8 = 72^{\circ}$ Therefore, $\angle 8 = 72^{\circ}$ $\angle 1$ and $\angle 7$ are alternate exterior of angles

 $\angle 1 = \angle 7 = 108^{\circ}$ Therefore, $\angle 7 = 108^{\circ}$ Hence, $\angle 1 = 108^{\circ}$, $\angle 2 = 72^{\circ}$, $\angle 3 = 108^{\circ}$, $\angle 4 = 72^{\circ}$, $\angle 5 = 108^{\circ}$, $\angle 6 = 72^{\circ}$, $\angle 7 = 108^{\circ}$, $\angle 8 = 72^{\circ}$

12. In Fig. 69, I, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find $\angle 1$, $\angle 2$ and $\angle 3$.

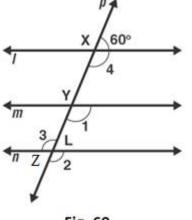


Fig. 69

Solution:

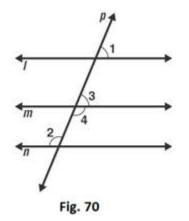
Given I, m and n are parallel lines intersected by transversal p at X, Y and Z Therefore linear pair,

 $\angle 4 + 60^{\circ} = 180^{\circ}$ $\angle 4 = 180^{\circ} - 60^{\circ}$ $\angle 4 = 120^{\circ}$ From the figure, $\angle 4 \text{ and } \angle 1 \text{ are corresponding angles}$ $\angle 4 = \angle 1$ Therefore, $\angle 1 = 120^{\circ}$ $\angle 1 \text{ and } \angle 2 \text{ are corresponding angles}$ $\angle 2 = \angle 1$ Therefore, $\angle 2 = 120^{\circ}$ $\angle 2 \text{ and } \angle 3 \text{ are vertically opposite angles}$ $\angle 2 = \angle 3$ Therefore, $\angle 3 = 120^{\circ}$

13. In Fig. 70, if I \parallel m \parallel n and $\angle 1 = 60^{\circ}$, find $\angle 2$

B BYJU'S

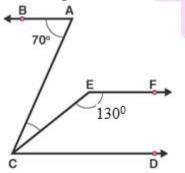
RD Sharma Solutions for Class 7 Maths Chapter 14 Lines and Angles



Solution:

Given that $| \| m \| n$ From the figure Corresponding angles are $\angle 1 = \angle 3$ $\angle 1 = 60^{\circ}$ Therefore, $\angle 3 = 60^{\circ}$ $\angle 3$ and $\angle 4$ are linear pair $\angle 3 + \angle 4 = 180^{\circ}$ $\angle 4 = 180^{\circ} - 60^{\circ}$ $\angle 4 = 120^{\circ}$ $\angle 2$ and $\angle 4$ are alternate interior angles $\angle 4 = \angle 2$ Therefore, $\angle 2 = 120^{\circ}$

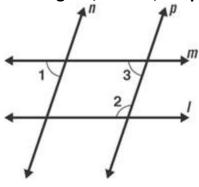
14. In Fig. 71, if AB || CD and CD || EF, find ∠ACE



Solution: Given that, AB || CD and CD || EF Sum of the interior angles,

 $\angle CEF + \angle ECD = 180^{\circ}$ $130^{\circ} + \angle ECD = 180^{\circ}$ $\angle ECD = 180^{\circ} - 130^{\circ}$ $\angle ECD = 50^{\circ}$ We know that alternate angles are equal $\angle BAC = \angle ACD$ $\angle BAC = \angle ACD$ $\angle ACE = 70^{\circ} - 50^{\circ}$ $\angle ACE = 20^{\circ}$ Therefore, $\angle ACE = 20^{\circ}$

15. In Fig. 72, if I || m, n || p and ∠1 = 85°, find ∠2.



Solution:

Given that, $\angle 1 = 85^{\circ}$ $\angle 1$ and $\angle 3$ are corresponding angles So, $\angle 1 = \angle 3$ $\angle 3 = 85^{\circ}$ Sum of the interior angles is 180° $\angle 3 + \angle 2 = 180^{\circ}$ $\angle 2 = 180^{\circ} - 85^{\circ}$ $\angle 2 = 95^{\circ}$

16. In Fig. 73, a transversal n cuts two lines I and m. If $\angle 1 = 70^{\circ}$ and $\angle 7 = 80^{\circ}$, is I || m?

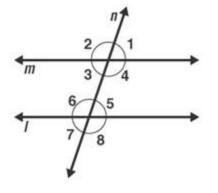


Fig. 73

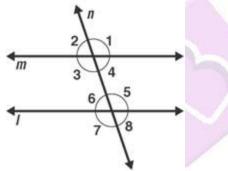
Solution:

Given $\angle 1 = 70^{\circ}$ and $\angle 7 = 80^{\circ}$

We know that if the alternate exterior angles of the two lines are equal, then the lines are parallel.

Here, $\angle 1$ and $\angle 7$ are alternate exterior angles, but they are not equal $\angle 1 \neq \angle 7$

17. In Fig. 74, a transversal n cuts two lines I and m such that $\angle 2 = 65^{\circ}$ and $\angle 8 = 65^{\circ}$. Are the lines parallel?



Solution:

From the figure $\angle 2 = \angle 4$ are vertically opposite angles, $\angle 2 = \angle 4 = 65^{\circ}$ $\angle 8 = \angle 6 = 65^{\circ}$ Therefore, $\angle 4 = \angle 6$ Hence, $| \parallel m$

18. In Fig. 75, Show that AB || EF.

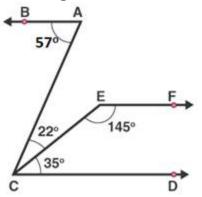
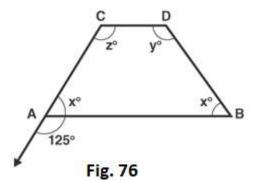


Fig. 75 Solution: We know that, $\angle ACD = \angle ACE + \angle ECD$ $\angle ACD = 22^{\circ} + 35^{\circ}$ $\angle ACD = 57^{\circ} = \angle BAC$ Thus, lines BA and CD are intersected by the line AC such that, $\angle ACD = \angle BAC$ So, the alternate angles are equal Therefore, AB || CD1 Now, $\angle ECD + \angle CEF = 35^{\circ} + 145^{\circ} = 180^{\circ}$ This, shows that sum of the angles of the interior angles on the same side of the transversal CE is 180° So, they are supplementary angles Therefore, EF || CD2 From equation 1 and 2 We conclude that, AB || EF

19. In Fig. 76, AB || CD. Find the values of x, y, z.



Solution:

Given that AB || CD Linear pair, $\angle x + 125^{\circ} = 180^{\circ}$ $\angle x = 180^{\circ} - 125^{\circ}$ $\angle x = 55^{\circ}$ **Corresponding angles** ∠z = 125° Adjacent interior angles $\angle x + \angle z = 180^{\circ}$ $\angle x + 125^{\circ} = 180^{\circ}$ $\angle x = 180^{\circ} - 125^{\circ}$ $\angle x = 55^{\circ}$ Adjacent interior angles $\angle x + \angle y = 180^{\circ}$ $\angle y + 55^{\circ} = 180^{\circ}$ $\angle y = 180^{\circ} - 55^{\circ}$ ∠y = 125°

20. In Fig. 77, find out ∠PXR, if PQ || RS.

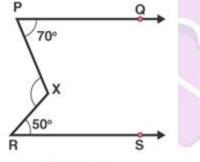


Fig. 77

Solution:

Given PQ || RS We need to find \angle PXR \angle XRS = 50° \angle XPQ = 70° Given, that PQ || RS \angle PXR = \angle XRS + \angle XPQ \angle PXR = 50° + 70° \angle PXR = 120°

RD Sharma Solutions for Class 7 Maths Chapter 14 Lines and Angles

Therefore, $\angle PXR = 120^{\circ}$

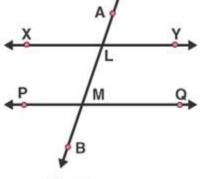
21. In Figure, we have

(i) \angle MLY = 2 \angle LMQ (ii) \angle XLM = (2x - 10)° and \angle LMQ = (x + 30)°, find x.

 $(11) \angle XLIVI = (2X - 10)$ and $\angle LIVIQ = (X + 30)$,

(iii) ∠XLM = ∠PML, find ∠ALY

(iv) $\angle ALY = (2x - 15)^{\circ}$, $\angle LMQ = (x + 40)^{\circ}$, find x.



Solution:

(i) \angle MLY and \angle LMQ are interior angles \angle MLY + \angle LMQ = 180° $2\angle$ LMQ + \angle LMQ = 180° $3\angle$ LMQ = 180°/3 \angle LMQ = 60° (ii) \angle XLM = (2x - 10)° and \angle LMQ = (x + 30)°, find x. \angle XLM = (2x - 10)° and \angle LMQ = (x + 30)° \angle XLM and \angle LMQ are alternate interior angles \angle XLM = \angle LMQ (2x - 10)° = (x + 30)°

$$(2x - 10)^{\circ} = (x + 30)^{\circ}$$

 $2x - x = 30^{\circ} + 10^{\circ}$

 $x = 40^{\circ}$

Therefore, x = 40°

```
(iii) \angle XLM = \angle PML, find \angle ALY
\angle XLM = \angle PML
```

RD Sharma Solutions for Class 7 Maths Chapter 14 Lines and Angles

Sum of interior angles is 180 degrees $\angle XLM + \angle PML = 180^{\circ}$ $\angle XLM + \angle XLM = 180^{\circ}$ $2\angle XLM = 180^{\circ}$ $\angle XLM = 180^{\circ}/2$ $\angle XLM = 90^{\circ}$ $\angle XLM$ and $\angle ALY$ are vertically opposite angles Therefore, $\angle ALY = 90^{\circ}$

(iv) $\angle ALY = (2x - 15)^{\circ}$, $\angle LMQ = (x + 40)^{\circ}$, find x. $\angle ALY$ and $\angle LMQ$ are corresponding angles $\angle ALY = \angle LMQ$ $(2x - 15)^{\circ} = (x + 40)^{\circ}$ $2x - x = 40^{\circ} + 15^{\circ}$ $x = 55^{\circ}$ Therefore, $x = 55^{\circ}$

22. In Fig. 79, DE || BC. Find the values of x and y.

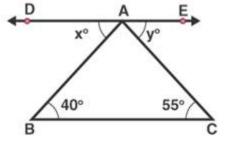


Fig. 79

Solution: We know that, ABC, DAB are alternate interior angles $\angle ABC = \angle DAB$ So, x = 40° And ACB, EAC are alternate interior angles $\angle ACB = \angle EAC$ So, y = 55°

23. In Fig. 80, line AC || line DE and $\angle ABD = 32^{\circ}$, Find out the angles x and y if $\angle E = 122^{\circ}$.

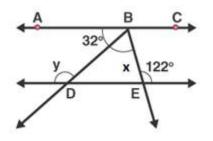
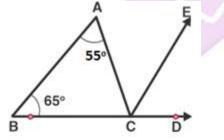


Fig. 80

Solution:

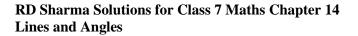
Given line AC || line DE and $\angle ABD = 32^{\circ}$ $\angle BDE = \angle ABD = 32^{\circ} - Alternate interior angles$ $\angle BDE + y = 180^{\circ} - linear pair$ $32^{\circ} + y = 180^{\circ}$ $y = 180^{\circ} - 32^{\circ}$ $y = 148^{\circ}$ $\angle ABE = \angle E = 122^{\circ} - Alternate interior angles$ $\angle ABD + \angle DBE = 122^{\circ}$ $32^{\circ} + x = 122^{\circ}$ $x = 122^{\circ} - 32^{\circ}$ $x = 90^{\circ}$

24. In Fig. 81, side BC of \triangle ABC has been produced to D and CE || BA. If \angle ABC = 65°, \angle BAC = 55°, find \angle ACE, \angle ECD, \angle ACD.



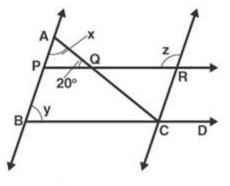
Solution:

Given $\angle ABC = 65^{\circ}$, $\angle BAC = 55^{\circ}$ Corresponding angles, $\angle ABC = \angle ECD = 65^{\circ}$ Alternate interior angles,



 $\angle BAC = \angle ACE = 55^{\circ}$ Now, $\angle ACD = \angle ACE + \angle ECD$ $\angle ACD = 55^{\circ} + 65^{\circ}$ $= 120^{\circ}$

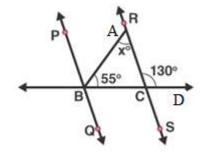
25. In Fig. 82, line CA \perp AB || line CR and line PR || line BD. Find $\angle x$, $\angle y$, $\angle z$.



Solution:

Given that, $CA \perp AB$ $\angle CAB = 90^{\circ}$ $\angle AQP = 20^{\circ}$ By, angle of sum property In $\triangle ABC$ $\angle CAB + \angle AQP + \angle APQ = 180^{\circ}$ $\angle APQ = 180^{\circ} - 90^{\circ} - 20^{\circ}$ $\angle APQ = 70^{\circ}$ $\forall APQ = 70^{\circ}$ $\forall APQ = 70^{\circ}$ $\angle APQ = 180^{\circ} - 70^{\circ}$ $\angle z = 180^{\circ} - 70^{\circ}$

26. In Fig. 83, PQ || RS. Find the value of x.



Solution:

```
Given, linear pair,

\angle RCD + \angle RCB = 180^{\circ}

\angle RCB = 180^{\circ} - 130^{\circ}

= 50^{\circ}

In \triangle ABC,

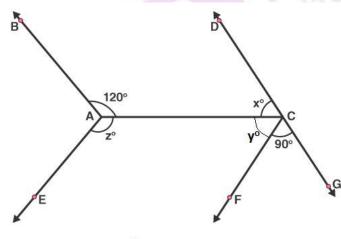
\angle BAC + \angle ABC + \angle BCA = 180^{\circ}

By, angle sum property

\angle BAC = 180^{\circ} - 55^{\circ} - 50^{\circ}

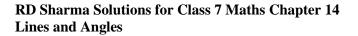
\angle BAC = 75^{\circ}
```

27. In Fig. 84, AB || CD and AE || CF, \angle FCG = 90° and \angle BAC = 120°. Find the value of x, y and z.



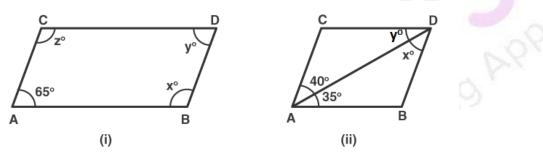
Solution:

Alternate interior angle $\angle BAC = \angle ACG = 120^{\circ}$




```
\angle ACF + \angle FCG = 120^{\circ}
So, \angle ACF = 120^{\circ} - 90^{\circ}
= 30°
Linear pair,
\angle DCA + \angle ACG = 180^{\circ}
\angle x = 180^{\circ} - 120^{\circ}
= 60°
\angle BAC + \angle BAE + \angle EAC = 360^{\circ}
\angle CAE = 360^{\circ} - 120^{\circ} - (60^{\circ} + 30^{\circ})
= 150°
```

28. In Fig. 85, AB || CD and AC || BD. Find the values of x, y, z.

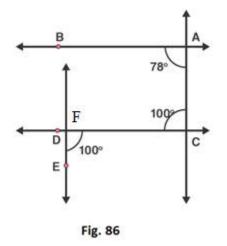


Solution:

(i) Since, AC || BD and CD || AB, ABCD is a parallelogram Adjacent angles of parallelogram, $\angle CAB + \angle ACD = 180^{\circ}$ $\angle ACD = 180^{\circ} - 65^{\circ}$ $= 115^{\circ}$ Opposite angles of parallelogram, $\angle CAB = \angle CDB = 65^{\circ}$ $\angle ACD = \angle DBA = 115^{\circ}$ (ii) Here, AC || BD and CD || AB

Alternate interior angles, $\angle CAD = x = 40^{\circ}$ $\angle DAB = y = 35^{\circ}$

29. In Fig. 86, state which lines are parallel and why?



Solution:

Let, F be the point of intersection of the line CD and the line passing through point E. Here, $\angle ACD$ and $\angle CDE$ are alternate and equal angles. So, $\angle ACD = \angle CDE = 100^{\circ}$ Therefore, AC || EF

30. In Fig. 87, the corresponding arms of $\angle ABC$ and $\angle DEF$ are parallel. If $\angle ABC = 75^{\circ}$, find $\angle DEF$.

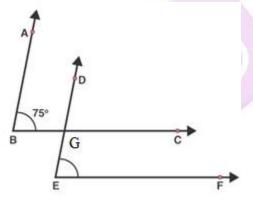


Fig. 87

Solution:

Let, G be the point of intersection of the lines BC and DE Since, AB || DE and BC || EF The corresponding angles are, $\angle ABC = \angle DGC = \angle DEF = 75^{\circ}$