1. Write down each pair of adjacent angles shown in fig. 13.

Fig 13

Solution:

The angles that have common vertex and a common arm are known as adjacent angles Therefore the adjacent angles in given figure are:
$\angle D O C$ and $\angle B O C$
$\angle C O B$ and $\angle B O A$
2. In Fig. 14, name all the pairs of adjacent angles.

Fig 14

Solution:

The angles that have common vertex and a common arm are known as adjacent angles.
In fig (i), the adjacent angles are
$\angle E B A$ and $\angle A B C$
$\angle A C B$ and $\angle B C F$
$\angle B A C$ and $\angle C A D$
In fig (ii), the adjacent angles are
$\angle B A D$ and $\angle D A C$
$\angle B D A$ and $\angle C D A$
3. In fig. 15, write down
(i) Each linear pair
(ii) Each pair of vertically opposite angles.

Fig 15

Solution:

(i) The two adjacent angles are said to form a linear pair of angles if their non - common arms are two opposite rays.
$\angle 1$ and $\angle 3$
$\angle 1$ and $\angle 2$
$\angle 4$ and $\angle 3$
$\angle 4$ and $\angle 2$
$\angle 5$ and $\angle 6$
$\angle 5$ and $\angle 7$
$\angle 6$ and $\angle 8$
$\angle 7$ and $\angle 8$
(ii) The two angles formed by two intersecting lines and have no common arms are called vertically opposite angles.
$\angle 1$ and $\angle 4$
$\angle 2$ and $\angle 3$
$\angle 5$ and $\angle 8$
$\angle 6$ and $\angle 7$
4. Are the angles 1 and $\mathbf{2}$ given in Fig. 16 adjacent angles?

Fig 16

Solution:

No, because they don't have common vertex.

5. Find the complement of each of the following angles:

(i) 35°
(ii) 72°
(iii) 45°
(iv) 85°

Solution:

(i) The two angles are said to be complementary angles if the sum of those angles is 90° Complementary angle for given angle is
$90^{\circ}-35^{\circ}=55^{\circ}$
(ii) The two angles are said to be complementary angles if the sum of those angles is 90° Complementary angle for given angle is
$90^{\circ}-72^{\circ}=18^{\circ}$
(iii) The two angles are said to be complementary angles if the sum of those angles is 90° Complementary angle for given angle is
$90^{\circ}-45^{\circ}=45^{\circ}$
(iv) The two angles are said to be complementary angles if the sum of those angles is 90° Complementary angle for given angle is
$90^{\circ}-85^{\circ}=5^{\circ}$
6. Find the supplement of each of the following angles:
(i) 70°
(ii) 120°
(iii) 135°
(iv) 90°

Solution:

(i) The two angles are said to be supplementary angles if the sum of those angles is 180° Therefore supplementary angle for the given angle is

$$
180^{\circ}-70^{\circ}=110^{\circ}
$$

(ii) The two angles are said to be supplementary angles if the sum of those angles is 180° Therefore supplementary angle for the given angle is

$$
180^{\circ}-120^{\circ}=60^{\circ}
$$

(iii) The two angles are said to be supplementary angles if the sum of those angles is 180°
Therefore supplementary angle for the given angle is

$$
180^{\circ}-135^{\circ}=45^{\circ}
$$

(iv) The two angles are said to be supplementary angles if the sum of those angles is 180°
Therefore supplementary angle for the given angle is

$$
180^{\circ}-90^{\circ}=90^{\circ}
$$

7. Identify the complementary and supplementary pairs of angles from the following pairs:
(i) $25^{\circ}, 65^{\circ}$
(ii) $120^{\circ}, 60^{\circ}$
(iii) $63^{\circ}, 27^{\circ}$
(iv) $100^{\circ}, 80^{\circ}$

Solution:

(i) $25^{\circ}+65^{\circ}=90^{\circ}$ so, this is a complementary pair of angle.
(ii) $120^{\circ}+60^{\circ}=180^{\circ}$ so, this is a supplementary pair of angle.
(iii) $63^{\circ}+27^{\circ}=90^{\circ}$ so, this is a complementary pair of angle.
(iv) $100^{\circ}+80^{\circ}=180^{\circ}$ so, this is a supplementary pair of angle.
8. Can two obtuse angles be supplementary, if both of them be
(i) Obtuse?
(ii) Right?

(iii) Acute?

Solution:

(i) No, two obtuse angles cannot be supplementary

Because, the sum of two angles is greater than 90° so their sum will be greater than 180°
(ii) Yes, two right angles can be supplementary

Because, $90^{\circ}+90^{\circ}=180^{\circ}$
(iii) No, two acute angle cannot be supplementary

Because, the sum of two angles is less than 90° so their sum will also be less than 90°
9. Name the four pairs of supplementary angles shown in Fig.17.

Fig 17

Solution:

The two angles are said to be supplementary angles if the sum of those angles is 180°
The supplementary angles are
$\angle A O C$ and $\angle C O B$
$\angle B O C$ and $\angle D O B$
$\angle B O D$ and $\angle D O A$
$\angle A O C$ and $\angle D O A$
10. In Fig. 18, A, B, C are collinear points and $\angle D B A=\angle E B A$.
(i) Name two linear pairs.
(ii) Name two pairs of supplementary angles.

Fig 18

Solution:

(i) Two adjacent angles are said to be form a linear pair of angles, if their non-common arms are two opposite rays.
Therefore linear pairs are
$\angle A B D$ and $\angle D B C$
$\angle A B E$ and $\angle E B C$
(ii) We know that every linear pair forms supplementary angles, these angles are $\angle A B D$ and $\angle D B C$
$\angle A B E$ and $\angle E B C$
11. If two supplementary angles have equal measure, what is the measure of each angle?

Solution:

Let p and q be the two supplementary angles that are equal
The two angles are said to be supplementary angles if the sum of those angles is 180°
$\angle p=\angle q$
So,
$\angle p+\angle q=180^{\circ}$
$\angle p+\angle p=180^{\circ}$
$2 \angle p=180^{\circ}$
$\angle p=180^{\circ} / 2$
$\angle \mathrm{p}=90^{\circ}$
Therefore, $\angle \mathrm{p}=\angle \mathrm{q}=90^{\circ}$
12. If the complement of an angle is 28°, then find the supplement of the angle.

Solution:

Given complement of an angle is 28°
Here, let x be the complement of the given angle 28°
Therefore, $\angle x+28^{\circ}=90^{\circ}$
$\angle x=90^{\circ}-28^{\circ}$
$=62^{\circ}$
So, the supplement of the angle $=180^{\circ}-62^{\circ}$
$=118^{\circ}$
13. In Fig. 19, name each linear pair and each pair of vertically opposite angles:

Fig 19

Solution:

Two adjacent angles are said to be linear pair of angles, if their non-common arms are two opposite rays.
Therefore linear pairs are listed below:
$\angle 1$ and $\angle 2$
$\angle 2$ and $\angle 3$
$\angle 3$ and $\angle 4$
$\angle 1$ and $\angle 4$
$\angle 5$ and $\angle 6$
$\angle 6$ and $\angle 7$
$\angle 7$ and $\angle 8$
$\angle 8$ and $\angle 5$
$\angle 9$ and $\angle 10$
$\angle 10$ and $\angle 11$
$\angle 11$ and $\angle 12$
$\angle 12$ and $\angle 9$

The two angles are said to be vertically opposite angles if the two intersecting lines have no common arms.
Therefore supplement of the angle are listed below:
$\angle 1$ and $\angle 3$
$\angle 4$ and $\angle 2$
$\angle 5$ and $\angle 7$
$\angle 6$ and $\angle 8$
$\angle 9$ and $\angle 11$
$\angle 10$ and $\angle 12$
14. In Fig. 20, OE is the bisector of $\angle \mathrm{BOD}$. If $\angle 1=70^{\circ}$, find the magnitude of $\angle 2, \angle 3$ and $\angle 4$.

Fig 20

Solution:

Given, $\angle 1=70^{\circ}$
$\angle 3=2(\angle 1)$
$=2\left(70^{\circ}\right)$
$\angle 3=140^{\circ}$
As, $O E$ is the angle bisector,
$\angle D O B=2(\angle 1)$
$=2\left(70^{\circ}\right)$
$=140^{\circ}$
$\angle D O B+\angle A O C+\angle C O B+\angle A O D=360^{\circ}$ [sum of the angle of circle $=$
$\left.360^{\circ}\right] 140^{\circ}+140^{\circ}+2(\angle C O B)=360^{\circ}$
Since, $\angle C O B=\angle A O D$
$2(\angle C O B)=360^{\circ}-280^{\circ}$
$2(\angle C O B)=80^{\circ}$
$\angle C O B=80^{\circ} / 2$
$\angle C O B=40^{\circ}$
Therefore, $\angle C O B=\angle A O D=40^{\circ}$
The angles are, $\angle 1=70^{\circ}, \angle 2=40^{\circ}, \angle 3=140^{\circ}$ and $\angle 4=40^{\circ}$
15. One of the angles forming a linear pair is a right angle. What can you say about its other angle?

Solution:

Given one of the angle of a linear pair is the right angle that is 90°
We know that linear pair angle is 180°
Therefore, the other angle is

$$
180^{\circ}-90^{\circ}=90^{\circ}
$$

16. One of the angles forming a linear pair is an obtuse angle. What kind of angle is the other?

Solution:

Given one of the angles of a linear pair is obtuse, then the other angle should be acute, because only then their sum will be 180°.
17. One of the angles forming a linear pair is an acute angle. What kind of angle is the other?

Solution:

Given one of the Angles of a linear pair is acute, then the other angle should be obtuse, only then their sum will be 180°.

18. Can two acute angles form a linear pair?

Solution:

No, two acute angles cannot form a linear pair because their sum is always less than 180°.
19. If the supplement of an angle is 65°, then find its complement.

Solution:

Let x be the required angle
So, $x+65^{\circ}=180^{\circ}$
$\mathrm{x}=180^{\circ}-65^{\circ}$
$x=115^{\circ}$
The two angles are said to be complementary angles if the sum of those angles is 90° here it is more than 90° therefore the complement of the angle cannot be determined.
20. Find the value of x in each of the following figures.

Fig 21

Solution:

(i) We know that $\angle B O A+\angle B O C=180^{\circ}$
[Linear pair: The two adjacent angles are said to form a linear pair of angles if their noncommon arms are two opposite rays and sum of the angle is 180°]
$60^{\circ}+\mathrm{x}^{\circ}=180^{\circ}$
$x^{\circ}=180^{\circ}-60^{\circ}$
$x^{\circ}=120^{\circ}$
(ii) We know that $\angle P O Q+\angle Q O R=180^{\circ}$
[Linear pair: The two adjacent angles are said to form a linear pair of angles if their noncommon arms are two opposite rays and sum of the angle is 180°]
$3 \mathrm{x}^{\circ}+2 \mathrm{x}^{\circ}=180^{\circ}$
$5 x^{\circ}=180^{\circ}$
$\mathrm{x}^{\mathrm{o}}=180^{\circ} / 5$
$x^{\circ}=36^{\circ}$
(iii) We know that $\angle \mathrm{LOP}+\angle \mathrm{PON}+\angle \mathrm{NOM}=180^{\circ}$
[Linear pair: The two adjacent angles are said to form a linear pair of angles if their noncommon arms are two opposite rays and sum of the angle is 180°]

Since, $35^{\circ}+x^{\circ}+60^{\circ}=180^{\circ}$
$\mathrm{x}^{\circ}=180^{\circ}-35^{\circ}-60^{\circ}$
$x^{\circ}=180^{\circ}-95^{\circ}$
$x^{\circ}=85^{\circ}$
(iv) We know that $\angle D O C+\angle D O E+\angle E O A+\angle A O B+\angle B O C=360^{\circ}$
$83^{\circ}+92^{\circ}+47^{\circ}+75^{\circ}+x^{\circ}=360^{\circ}$
$x^{\circ}+297^{\circ}=360^{\circ}$
$x^{\circ}=360^{\circ}-297^{\circ}$
$x^{\circ}=63^{\circ}$
(v) We know that $\angle \mathrm{ROS}+\angle \mathrm{ROQ}+\angle \mathrm{QOP}+\angle \mathrm{POS}=360^{\circ}$
$3 x^{\circ}+2 x^{\circ}+x^{\circ}+2 x^{\circ}=360^{\circ}$
$8 x^{\circ}=360^{\circ}$
$x^{\circ}=360^{\circ} / 8$
$x^{0}=45^{\circ}$
(vi) Linear pair: The two adjacent angles are said to form a linear pair of angles if their non-common arms are two opposite rays and sum of the angle is 180°
Therefore $3 x^{\circ}=105^{\circ}$
$\mathrm{x}^{\mathrm{o}}=105^{\circ} / 3$
$x^{\circ}=35^{\circ}$

Fig 22

Solution:

Given from the figure $22, \angle 1=\angle 3$ are the vertically opposite angles
Therefore, $\angle 3=65^{\circ}$
Here, $\angle 1+\angle 2=180^{\circ}$ are the linear pair [The two adjacent angles are said to form a
linear pair of angles if their non-common arms are two opposite rays and sum of the angle is 180°]
Therefore, $\angle 2=180^{\circ}-65^{\circ}$
$=115^{\circ}$
$\angle 2=\angle 4$ are the vertically opposite angles [from the figure]
Therefore, $\angle 2=\angle 4=115^{\circ}$
And $\angle 3=65^{\circ}$
22. In Fig. 23, $O A$ and $O B$ are opposite rays:
(i) If $x=25^{\circ}$, what is the value of y ?
(ii) If $y=35^{\circ}$, what is the value of x ?

Fig 23

Solution:

(i) $\angle A O C+\angle B O C=180^{\circ}$ [The two adjacent angles are said to form a linear pair of angles if their non-common arms are two opposite rays and sum of the angle is 180°]
$2 y+5^{0}+3 x=180^{\circ}$
$3 x+2 y=175^{\circ}$
Given If $x=25^{\circ}$, then
$3\left(25^{\circ}\right)+2 y=175^{\circ}$
$75^{\circ}+2 y=175^{\circ}$
$2 y=175^{\circ}-75^{\circ}$
$2 y=100^{\circ}$
$y=100^{\circ} / 2$
$y=50^{\circ}$
(ii) $\angle A O C+\angle B O C=180^{\circ}$ [The two adjacent angles are said to form a linear pair of angles if their non-common arms are two opposite rays and sum of the angle is 180°]
$2 y+5+3 x=180^{\circ}$
$3 x+2 y=175^{\circ}$
Given If $y=35^{\circ}$, then
$3 x+2\left(35^{\circ}\right)=175^{\circ}$
$3 x+70^{\circ}=175^{\circ}$
$3 x=175^{\circ}-70^{\circ}$
$3 x=105^{\circ}$
$\mathrm{x}=105^{\circ} / 3$
$x=35^{\circ}$
23. In Fig. 24, write all pairs of adjacent angles and all the liner pairs.

Fig 24

Solution:

Pairs of adjacent angles are:
$\angle D O A$ and $\angle D O C$
$\angle B O C$ and $\angle C O D$
$\angle A O D$ and $\angle B O D$
$\angle A O C$ and $\angle B O C$
Linear pairs: [The two adjacent angles are said to form a linear pair of angles if their non-common arms are two opposite rays and sum of the angle is 180°]
$\angle A O D$ and $\angle B O D$
$\angle A O C$ and $\angle B O C$
24. In Fig. 25, find $\angle x$. Further find $\angle B O C, \angle C O D$ and $\angle A O D$.

Fig 25

Solution:

$(x+10)^{\circ}+x^{\circ}+(x+20)^{\circ}=180^{\circ}$ [linear pair]
On rearranging we get
$3 x^{\circ}+30^{\circ}=180^{\circ}$
$3 x^{\circ}=180^{\circ}-30^{\circ}$
$3 x^{\circ}=150^{\circ}$
$x^{\circ}=150^{\circ} / 3$
$x^{\circ}=50^{\circ}$
Also given that
$\angle B O C=(x+20)^{\circ}$
$=(50+20)^{\circ}$
$=70^{\circ}$
$\angle C O D=50^{\circ}$
$\angle A O D=(x+10)^{\circ}$
$=(50+10)^{\circ}$
$=60^{\circ}$
25. How many pairs of adjacent angles are formed when two lines intersect in a point?

Solution:

If the two lines intersect at a point, then four adjacent pairs are formed and those are
linear.
26. How many pairs of adjacent angles, in all, can you name in Fig. 26?

Fig 26

Solution:

There are 10 adjacent pairs formed in the given figure, they are $\angle E O D$ and $\angle D O C$
$\angle C O D$ and $\angle B O C$
$\angle C O B$ and $\angle B O A$
$\angle A O B$ and $\angle B O D$
$\angle B O C$ and $\angle C O E$
$\angle C O D$ and $\angle C O A$
$\angle D O E$ and $\angle D O B$
$\angle E O D$ and $\angle D O A$
$\angle E O C$ and $\angle A O C$
$\angle A O B$ and $\angle B O E$
27. In Fig. 27, determine the value of x.

Solution:

From the figure we can write as $\angle C O B+\angle A O B=180^{\circ}$ [linear pair]
$3 x^{\circ}+3 x^{\circ}=180^{\circ}$
$6 x^{\circ}=180^{\circ}$
$x^{\circ}=180^{\circ} / 6$
$x^{\circ}=30^{\circ}$
28. In Fig.28, AOC is a line, find x.

Fig 28

Solution:

From the figure we can write as
$\angle A O B+\angle B O C=180^{\circ}$ [linear pair]
Linear pair
$2 x+70^{\circ}=180^{\circ}$
$2 x=180^{\circ}-70^{\circ}$
$2 x=110^{\circ}$
$\mathrm{x}=110^{\circ} / 2$
$x=55^{\circ}$
29. In Fig. 29, POS is a line, find x.

Fig 29

Solution:

From the figure we can write as angles of a straight line,
$\angle Q O P+\angle Q O R+\angle R O S=180^{\circ}$
$60^{\circ}+4 x+40^{\circ}=180^{\circ}$
On rearranging we get, $100^{\circ}+4 x=180^{\circ}$
$4 \mathrm{x}=180^{\circ}-100^{\circ}$
$4 \mathrm{x}=80^{\circ}$
$x=80^{\circ} / 4$
$x=20^{\circ}$
30. In Fig. 30, lines I_{1} and I_{2} intersect at 0 , forming angles as shown in the figure. If $x=$ 45°, find the values of y, z and u.

Fig 30

Solution:

Given that, $\angle x=45^{\circ}$
From the figure we can write as
$\angle x=\angle z=45^{\circ}$
Also from the figure, we have
$\angle y=\angle u$
From the property of linear pair we can write as
$\angle x+\angle y+\angle z+\angle u=360^{\circ}$
$45^{\circ}+45^{\circ}+\angle y+\angle u=360^{\circ}$
$90^{\circ}+\angle y+\angle u=360^{\circ}$
$\angle y+\angle u=360^{\circ}-90^{\circ}$
$\angle \mathrm{y}+\angle \mathrm{u}=270^{\circ}$ (vertically opposite angles $\angle \mathrm{y}=\angle \mathrm{u}$)
$2 \angle y=270^{\circ}$
$\angle y=135^{\circ}$
Therefore, $\angle \mathrm{y}=\angle \mathrm{u}=135^{\circ}$

So, $\angle x=45^{\circ}, \angle y=135^{\circ}, \angle z=45^{\circ}$ and $\angle u=135^{\circ}$
31. In Fig. 31, three coplanar lines intersect at a point O, forming angles as shown in the figure. Find the values of x, y, z and u

Fig 31

Solution:

Given that, $\angle x+\angle y+\angle z+\angle u+50^{\circ}+90^{\circ}=360^{\circ}$
Linear pair, $\angle x+50^{\circ}+90^{\circ}=180^{\circ}$
$\angle x+140^{\circ}=180^{\circ}$
On rearranging we get
$\angle x=180^{\circ}-140^{\circ}$
$\angle x=40^{\circ}$
From the figure we can write as
$\angle x=\angle u=40^{\circ}$ are vertically opposite angles
$\angle z=90^{\circ}$ is a vertically opposite angle
$\angle y=50^{\circ}$ is a vertically opposite angle
Therefore, $\angle x=40^{\circ}, \angle y=50^{\circ}, \angle z=90^{\circ}$ and $\angle u=40^{\circ}$
32. In Fig. 32, find the values of x, y and z.

Fig 32

Solution:
$\angle y=25^{\circ}$ vertically opposite angle
From the figure we can write as
$\angle x=\angle z$ are vertically opposite angles

$$
\begin{aligned}
& \angle x+\angle y+\angle z+25^{\circ}=360^{\circ} \\
& \angle x+\angle z+25^{\circ}+25^{\circ}=360^{\circ}
\end{aligned}
$$

On rearranging we get,

$$
\begin{aligned}
& \angle x+\angle z+50^{\circ}=360^{\circ} \\
& \angle x+\angle z=360^{\circ}-50^{\circ}[\angle x=\angle z] \\
& 2 \angle x=310^{\circ} \\
& \angle x=155^{\circ}
\end{aligned}
$$

And, $\angle x=\angle z=155^{\circ}$
Therefore, $\angle x=155^{\circ}, \angle y=25^{\circ}$ and $\angle z=155^{\circ}$

1. In Fig. 58, line \mathbf{n} is a transversal to line I and m. Identify the following:
(i) Alternate and corresponding angles in Fig. 58 (i)
(ii) Angles alternate to $\angle \mathrm{d}$ and $\angle \mathrm{g}$ and angles corresponding to $\angle \mathrm{f}$ and $\angle \mathrm{h}$ in Fig. 58 (ii)
(iii) Angle alternate to $\angle P Q R$, angle corresponding to \angle RQF and angle alternate to $\angle P Q E$ in Fig. 58 (iii)
(iv) Pairs of interior and exterior angles on the same side of the transversal in Fig. 58
(ii)

Fig. 58

Solution:

(i) A pair of angles in which one arm of both the angles is on the same side of the transversal and their other arms are directed in the same sense is called a pair of corresponding angles.
In Figure (i) Corresponding angles are
$\angle E G B$ and $\angle G H D$
$\angle H G B$ and $\angle F H D$
$\angle E G A$ and $\angle G H C$
$\angle A G H$ and $\angle C H F$
A pair of angles in which one arm of each of the angle is on opposite sides of the transversal and whose other arms include the one segment is called a pair of alternate angles.
The alternate angles are:
$\angle E G B$ and $\angle C H F$
$\angle \mathrm{HGB}$ and $\angle \mathrm{CHG}$
$\angle E G A$ and $\angle F H D$
$\angle A G H$ and $\angle G H D$
(ii) In Figure (ii)

The alternate angle to $\angle \mathrm{d}$ is $\angle \mathrm{e}$.
The alternate angle to $\angle \mathrm{g}$ is $\angle \mathrm{b}$.
The corresponding angle to $\angle \mathrm{f}$ is $\angle \mathrm{c}$.
The corresponding angle to $\angle h$ is $\angle a$.
(iii) In Figure (iii)

Angle alternate to $\angle P Q R$ is $\angle Q R A$.
Angle corresponding to $\angle R Q F$ is $\angle A R B$.
Angle alternate to $\angle P O E$ is $\angle A R B$.
(iv) In Figure (ii)

Pair of interior angles are
$\angle a$ is $\angle e$.
$\angle d$ is $\angle \mathrm{f}$.
Pair of exterior angles are
$\angle b$ is $\angle h$.
$\angle \mathrm{c}$ is $\angle \mathrm{g}$.
2. In Fig. 59, $A B$ and $C D$ are parallel lines intersected by a transversal $P Q$ at L and M respectively, If $\angle C M Q=60^{\circ}$, find all other angles in the figure.

Fig. 59

Solution:

A pair of angles in which one arm of both the angles is on the same side of the transversal and their other arms are directed in the same sense is called a pair of corresponding angles.
Therefore corresponding angles are
$\angle A L M=\angle C M Q=60^{\circ}$ [given]
Vertically opposite angles are
$\angle \mathrm{LMD}=\angle \mathrm{CMQ}=60^{\circ}$ [given]
Vertically opposite angles are
$\angle A L M=\angle P L B=60^{\circ}$
Here, $\angle C M Q+\angle Q M D=180^{\circ}$ are the linear pair
On rearranging we get
$\angle Q M D=180^{\circ}-60^{\circ}$
$=120^{\circ}$
Corresponding angles are
$\angle \mathrm{QMD}=\angle \mathrm{MLB}=120^{\circ}$
Vertically opposite angles
$\angle Q M D=\angle C M L=120^{\circ}$
Vertically opposite angles
$\angle \mathrm{MLB}=\angle \mathrm{ALP}=120^{\circ}$
3. In Fig. 60, $A B$ and $C D$ are parallel lines intersected by a transversal by a transversal $P Q$ at L and M respectively. If $\angle L M D=35^{\circ}$ find $\angle A L M$ and $\angle P L A$.

Fig. 60

Solution:

Given that, $\angle \mathrm{LMD}=35^{\circ}$
From the figure we can write
$\angle L M D$ and $\angle L M C$ is a linear pair
$\angle L M D+\angle L M C=180^{\circ}$ [sum of angles in linear pair $=180^{\circ}$]

On rearranging, we get
$\angle L M C=180^{\circ}-35^{\circ}$
$=145^{\circ}$
So, $\angle \mathrm{LMC}=\angle \mathrm{PLA}=145^{\circ}$
And, $\angle L M C=\angle M L B=145^{\circ}$
$\angle M L B$ and $\angle A L M$ is a linear pair
$\angle \mathrm{MLB}+\angle A L M=180^{\circ}$ [sum of angles in linear pair $=180^{\circ}$]
$\angle A L M=180^{\circ}-145^{\circ}$
$\angle A L M=35^{\circ}$
Therefore, $\angle A L M=35^{\circ}, \angle P L A=145^{\circ}$.
4. The line n is transversal to line I and m in Fig. 61. Identify the angle alternate to $\angle 13$, angle corresponding to $\angle 15$, and angle alternate to $\angle 15$.

Fig. 61
Solution:
Given that, I || m
From the figure the angle alternate to $\angle 13$ is $\angle 7$
From the figure the angle corresponding to $\angle 15$ is $\angle 7$ [A pair of angles in which one arm of both the angles is on the same side of the transversal and their other arms are directed in the same sense is called a pair of corresponding angles.]
Again from the figure angle alternate to $\angle 15$ is $\angle 5$
5. In Fig. 62, line I \| m and n is transversal. If $\angle 1=40^{\circ}$, find all the angles and check
that all corresponding angles and alternate angles are equal.

Fig. 62

Solution:

Given that, $\angle 1=40^{\circ}$
$\angle 1$ and $\angle 2$ is a linear pair [from the figure]
$\angle 1+\angle 2=180^{\circ}$
$\angle 2=180^{\circ}-40^{\circ}$
$\angle 2=140^{\circ}$
Again from the figure we can say that
$\angle 2$ and $\angle 6$ is a corresponding angle pair
So, $\angle 6=140^{\circ}$
$\angle 6$ and $\angle 5$ is a linear pair [from the figure]
$\angle 6+\angle 5=180^{\circ}$
$\angle 5=180^{\circ}-140^{\circ}$
$\angle 5=40^{\circ}$
From the figure we can write as
$\angle 3$ and $\angle 5$ are alternate interior angles
So, $\angle 5=\angle 3=40^{\circ}$
$\angle 3$ and $\angle 4$ is a linear pair
$\angle 3+\angle 4=180^{\circ}$
$\angle 4=180^{\circ}-40^{\circ}$
$\angle 4=140^{\circ}$
Now, $\angle 4$ and $\angle 6$ are a pair of interior angles
So, $\angle 4=\angle 6=140^{\circ}$
$\angle 3$ and $\angle 7$ are a pair of corresponding angles
So, $\angle 3=\angle 7=40^{\circ}$
Therefore, $\angle 7=40^{\circ}$
$\angle 4$ and $\angle 8$ are a pair of corresponding angles
So, $\angle 4=\angle 8=140^{\circ}$

Therefore, $\angle 8=140^{\circ}$
Therefore, $\angle 1=40^{\circ}, \angle 2=140^{\circ}, \angle 3=40^{\circ}, \angle 4=140^{\circ}, \angle 5=40^{\circ}, \angle 6=140^{\circ}, \angle 7=40^{\circ}$ and $\angle 8=140^{\circ}$
6. In Fig.63, line I || m and a transversal n cuts them P and Q respectively. If $\angle 1=75^{\circ}$, find all other angles.

Fig. 63

Solution:

Given that, I || m and $\angle 1=75^{\circ}$
$\angle 1=\angle 3$ are vertically opposite angles
We know that, from the figure
$\angle 1+\angle 2=180^{\circ}$ is a linear pair
$\angle 2=180^{\circ}-75^{\circ}$
$\angle 2=105^{\circ}$
Here, $\angle 1=\angle 5=75^{\circ}$ are corresponding angles
$\angle 5=\angle 7=75^{\circ}$ are vertically opposite angles.
$\angle 2=\angle 6=105^{\circ}$ are corresponding angles
$\angle 6=\angle 8=105^{\circ}$ are vertically opposite angles
$\angle 2=\angle 4=105^{\circ}$ are vertically opposite angles
So, $\angle 1=75^{\circ}, \angle 2=105^{\circ}, \angle 3=75^{\circ}, \angle 4=105^{\circ}, \angle 5=75^{\circ}, \angle 6=105^{\circ}, \angle 7=75^{\circ}$ and $\angle 8=$ 105°
7. In Fig. 64, $A B$ || CD and a transversal $P Q$ cuts at L and M respectively. If $\angle Q M D=$ 100°, find all the other angles.

Fig. 64

Solution:

Given that, $\mathrm{AB}\left|\mid \mathrm{CD}\right.$ and $\angle \mathrm{QMD}=100^{\circ}$
We know that, from the figure $\angle \mathrm{QMD}+\angle \mathrm{QMC}=180^{\circ}$ is a linear pair,
$\angle Q M C=180^{\circ}-\angle Q M D$
$\angle Q M C=180^{\circ}-100^{\circ}$
$\angle \mathrm{QMC}=80^{\circ}$
Corresponding angles are
$\angle D M Q=\angle B L M=100^{\circ}$
$\angle C M Q=\angle A L M=80^{\circ}$
Vertically Opposite angles are
$\angle \mathrm{DMQ}=\angle \mathrm{CML}=100^{\circ}$
$\angle B L M=\angle P L A=100^{\circ}$
$\angle \mathrm{CMQ}=\angle \mathrm{DML}=80^{\circ}$
$\angle \mathrm{ALM}=\angle \mathrm{PLB}=80^{\circ}$
8. In Fig. 65, I|| m and $p \| q$. Find the values of x, y, z, t.

Fig. 65

Solution:

Given that one of the angle is 80°
$\angle z$ and 80° are vertically opposite angles
Therefore $\angle z=80^{\circ}$
$\angle z$ and $\angle t$ are corresponding angles
$\angle z=\angle t$
Therefore, $\angle \mathrm{t}=80^{\circ}$
$\angle z$ and $\angle y$ are corresponding angles
$\angle z=\angle y$
Therefore, $\angle y=80^{\circ}$
$\angle x$ and $\angle y$ are corresponding angles
$\angle y=\angle x$
Therefore, $\angle x=80^{\circ}$
9. In Fig. 66 , line $\mathrm{I} \| \mathrm{m}, \angle 1=120^{\circ}$ and $\angle 2=100^{\circ}$, find out $\angle 3$ and $\angle 4$.

Fig. 66

Solution:

Given that, $\angle 1=120^{\circ}$ and $\angle 2=100^{\circ}$
From the figure $\angle 1$ and $\angle 5$ is a linear pair
$\angle 1+\angle 5=180^{\circ}$
$\angle 5=180^{\circ}-120^{\circ}$
$\angle 5=60^{\circ}$
Therefore, $\angle 5=60^{\circ}$
$\angle 2$ and $\angle 6$ are corresponding angles
$\angle 2=\angle 6=100^{\circ}$
Therefore, $\angle 6=100^{\circ}$
$\angle 6$ and $\angle 3$ is a linear pair
$\angle 6+\angle 3=180^{\circ}$
$\angle 3=180^{\circ}-100^{\circ}$
$\angle 3=80^{\circ}$
Therefore, $\angle 3=80^{\circ}$

By , angles of sum property
$\angle 3+\angle 5+\angle 4=180^{\circ}$
$\angle 4=180^{\circ}-80^{\circ}-60^{\circ}$
$\angle 4=40^{\circ}$
Therefore, $\angle 4=40^{\circ}$
10. In Fig. 67, I || m. Find the values of a, b, c, d. Give reasons.

Fig. 67

Solution:

Given I || m
From the figure vertically opposite angles,
$\angle a=110^{\circ}$
Corresponding angles, $\angle \mathrm{a}=\angle \mathrm{b}$
Therefore, $\angle b=110^{\circ}$
Vertically opposite angle, $\angle \mathrm{d}=85^{\circ}$
Corresponding angles, $\angle d=\angle c$
Therefore, $\angle \mathrm{c}=85^{\circ}$
Hence, $\angle \mathrm{a}=110^{\circ}, \angle \mathrm{b}=110^{\circ}, \angle \mathrm{c}=85^{\circ}, \angle \mathrm{d}=85^{\circ}$
11. In Fig. 68, $A B|\mid C D$ and $\angle 1$ and $\angle 2$ are in the ratio of 3: 2. Determine all angles from 1 to 8.

Fig. 68

Solution:

Given $\angle 1$ and $\angle 2$ are in the ratio 3: 2
Let us take the angles as $3 x, 2 x$
$\angle 1$ and $\angle 2$ are linear pair [from the figure]
$3 x+2 x=180^{\circ}$
$5 x=180^{\circ}$
$x=180^{\circ} / 5$
$x=36^{\circ}$
Therefore, $\angle 1=3 \mathrm{x}=3(36)=108^{\circ}$
$\angle 2=2 x=2(36)=72^{\circ}$
$\angle 1$ and $\angle 5$ are corresponding angles
Therefore $\angle 1=\angle 5$
Hence, $\angle 5=108^{\circ}$
$\angle 2$ and $\angle 6$ are corresponding angles
So $\angle 2=\angle 6$
Therefore, $\angle 6=72^{\circ}$
$\angle 4$ and $\angle 6$ are alternate pair of angles
$\angle 4=\angle 6=72^{\circ}$
Therefore, $\angle 4=72^{\circ}$
$\angle 3$ and $\angle 5$ are alternate pair of angles
$\angle 3=\angle 5=108^{\circ}$
Therefore, $\angle 3=108^{\circ}$
$\angle 2$ and $\angle 8$ are alternate exterior of angles
$\angle 2=\angle 8=72^{\circ}$
Therefore, $\angle 8=72^{\circ}$
$\angle 1$ and $\angle 7$ are alternate exterior of angles
$\angle 1=\angle 7=108^{\circ}$
Therefore, $\angle 7=108^{\circ}$
Hence, $\angle 1=108^{\circ}, \angle 2=72^{\circ}, \angle 3=108^{\circ}, \angle 4=72^{\circ}, \angle 5=108^{\circ}, \angle 6=72^{\circ}, \angle 7=108^{\circ}, \angle 8=$ 72°
12. In Fig. 69, I, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find $\angle 1, \angle 2$ and $\angle 3$.

Fig. 69

Solution:

Given I, m and n are parallel lines intersected by transversal p at X, Y and Z
Therefore linear pair,
$\angle 4+60^{\circ}=180^{\circ}$
$\angle 4=180^{\circ}-60^{\circ}$
$\angle 4=120^{\circ}$
From the figure,
$\angle 4$ and $\angle 1$ are corresponding angles
$\angle 4=\angle 1$
Therefore, $\angle 1=120^{\circ}$
$\angle 1$ and $\angle 2$ are corresponding angles
$\angle 2=\angle 1$
Therefore, $\angle 2=120^{\circ}$
$\angle 2$ and $\angle 3$ are vertically opposite angles
$\angle 2=\angle 3$
Therefore, $\angle 3=120^{\circ}$
13. In Fig. 70, if I||m || n and $\angle 1=60^{\circ}$, find $\angle 2$

Fig. 70

Solution:

Given that I || m || n
From the figure Corresponding angles are
$\angle 1=\angle 3$
$\angle 1=60^{\circ}$
Therefore, $\angle 3=60^{\circ}$
$\angle 3$ and $\angle 4$ are linear pair
$\angle 3+\angle 4=180^{\circ}$
$\angle 4=180^{\circ}-60^{\circ}$
$\angle 4=120^{\circ}$
$\angle 2$ and $\angle 4$ are alternate interior angles
$\angle 4=\angle 2$
Therefore, $\angle 2=120^{\circ}$
14. In Fig. 71, if $A B \| C D$ and $C D \| E F$, find $\angle A C E$

Fig. 71

Solution:

Given that, $A B$ || $C D$ and $C D$ || EF
Sum of the interior angles,
$\angle C E F+\angle E C D=180^{\circ}$
$130^{\circ}+\angle E C D=180^{\circ}$
$\angle E C D=180^{\circ}-130^{\circ}$
$\angle E C D=50^{\circ}$
We know that alternate angles are equal
$\angle B A C=\angle A C D$
$\angle B A C=\angle E C D+\angle A C E$
$\angle A C E=70^{\circ}-50^{\circ}$
$\angle A C E=20^{\circ}$
Therefore, $\angle \mathrm{ACE}=20^{\circ}$
15. In Fig. 72, if I || m, $\mathrm{n}\left|\mid \mathrm{p}\right.$ and $\angle 1=85^{\circ}$, find $\angle 2$.

Fig. 72

Solution:

Given that, $\angle 1=85^{\circ}$
$\angle 1$ and $\angle 3$ are corresponding angles
So, $\angle 1=\angle 3$
$\angle 3=85^{\circ}$
Sum of the interior angles is 180°
$\angle 3+\angle 2=180^{\circ}$
$\angle 2=180^{\circ}-85^{\circ}$
$\angle 2=95^{\circ}$
16. In Fig. 73, a transversal n cuts two lines I and m . If $\angle 1=70^{\circ}$ and $\angle 7=80^{\circ}$, is $\mathrm{I} \| \mathrm{m}$?

Fig. 73

Solution:

Given $\angle 1=70^{\circ}$ and $\angle 7=80^{\circ}$
We know that if the alternate exterior angles of the two lines are equal, then the lines are parallel.
Here, $\angle 1$ and $\angle 7$ are alternate exterior angles, but they are not equal $\angle 1 \neq \angle 7$
17. In Fig. 74, a transversal n cuts two lines I and m such that $\angle 2=65^{\circ}$ and $\angle 8=65^{\circ}$. Are the lines parallel?

Fig. 74

Solution:

From the figure $\angle 2=\angle 4$ are vertically opposite angles,
$\angle 2=\angle 4=65^{\circ}$
$\angle 8=\angle 6=65^{\circ}$
Therefore, $\angle 4=\angle 6$
Hence, I || m

18. In Fig. 75, Show that AB || EF.

Fig. 75

Solution:

We know that,
$\angle A C D=\angle A C E+\angle E C D$
$\angle A C D=22^{\circ}+35^{\circ}$
$\angle A C D=57^{\circ}=\angle B A C$
Thus, lines $B A$ and $C D$ are intersected by the line $A C$ such that, $\angle A C D=\angle B A C$
So, the alternate angles are equal
Therefore, AB || CD 1
Now,
$\angle E C D+\angle C E F=35^{\circ}+145^{\circ}=180^{\circ}$
This, shows that sum of the angles of the interior angles on the same side of the transversal CE is 180°
So, they are supplementary angles
Therefore, EF || CD \qquad
From equation 1 and 2
We conclude that, $A B$ || EF
19. In Fig. 76, $A B$ || CD. Find the values of x, y, z.

Fig. 76

Solution:

Given that $A B|\mid C D$
Linear pair,
$\angle x+125^{\circ}=180^{\circ}$
$\angle x=180^{\circ}-125^{\circ}$
$\angle x=55^{\circ}$
Corresponding angles
$\angle z=125^{\circ}$
Adjacent interior angles

$$
\begin{aligned}
& \angle x+\angle z=180^{\circ} \\
& \angle x+125^{\circ}=180^{\circ} \\
& \angle x=180^{\circ}-125^{\circ} \\
& \angle x=55^{\circ}
\end{aligned}
$$

Adjacent interior angles

$$
\begin{aligned}
& \angle x+\angle y=180^{\circ} \\
& \angle y+55^{\circ}=180^{\circ} \\
& \angle y=180^{\circ}-55^{\circ} \\
& \angle y=125^{\circ}
\end{aligned}
$$

20. In Fig. 77, find out $\angle P X R$, if $P Q|\mid ~ R S$.

Fig. 77

Solution:

Given PQ || RS
We need to find $\angle P X R$
$\angle X R S=50^{\circ}$
$\angle X P Q=70^{\circ}$
Given, that PQ || RS
$\angle P X R=\angle X R S+\angle X P Q$
$\angle P X R=50^{\circ}+70^{\circ}$
$\angle P X R=120^{\circ}$

Therefore, $\angle P X R=120^{\circ}$

21. In Figure, we have

(i) $\angle M L Y=2 \angle L M Q$
(ii) $\angle X L M=(2 x-10)^{\circ}$ and $\angle L M Q=(x+30)^{\circ}$, find x.
(iii) $\angle X L M=\angle P M L$, find $\angle A L Y$
(iv) $\angle A L Y=(2 x-15)^{\circ}, \angle L M Q=(x+40)^{\circ}$, find x.

Fig. 78

Solution:

(i) $\angle \mathrm{MLY}$ and $\angle \mathrm{LMQ}$ are interior angles
$\angle \mathrm{MLY}+\angle \mathrm{LMQ}=180^{\circ}$
$2 \angle \mathrm{LMQ}+\angle \mathrm{LMQ}=180^{\circ}$
$3 \angle \mathrm{LMQ}=180^{\circ}$
$\angle \mathrm{LMQ}=180^{\circ} / 3$
$\angle \mathrm{LMQ}=60^{\circ}$
(ii) $\angle \mathrm{XLM}=(2 x-10)^{\circ}$ and $\angle \mathrm{LMQ}=(x+30)^{\circ}$, find x.
$\angle X L M=(2 x-10)^{\circ}$ and $\angle \mathrm{LMQ}=(x+30)^{\circ}$
$\angle X L M$ and $\angle L M Q$ are alternate interior angles
$\angle X L M=\angle L M Q$
$(2 x-10)^{\circ}=(x+30)^{\circ}$
$2 x-x=30^{\circ}+10^{\circ}$
$x=40^{\circ}$
Therefore, $x=40^{\circ}$
(iii) $\angle X L M=\angle P M L$, find $\angle A L Y$
$\angle X L M=\angle P M L$

Sum of interior angles is 180 degrees
$\angle X L M+\angle P M L=180^{\circ}$
$\angle X L M+\angle X L M=180^{\circ}$
$2 \angle X L M=180^{\circ}$
$\angle X L M=180^{\circ} / 2$
$\angle X L M=90^{\circ}$
$\angle X L M$ and $\angle A L Y$ are vertically opposite angles
Therefore, $\angle A L Y=90^{\circ}$
(iv) $\angle A L Y=(2 x-15)^{\circ}, \angle L M Q=(x+40)^{\circ}$, find x.
$\angle \mathrm{ALY}$ and $\angle \mathrm{LMQ}$ are corresponding angles
$\angle A L Y=\angle L M Q$
$(2 x-15)^{\circ}=(x+40)^{\circ}$
$2 x-x=40^{\circ}+15^{\circ}$
$\mathrm{x}=55^{\circ}$
Therefore, $x=55^{\circ}$
22. In Fig. 79, $D E \| B C$. Find the values of x and y.

Fig. 79

Solution:

We know that, $A B C, D A B$ are alternate interior angles
$\angle A B C=\angle D A B$
So, $x=40^{\circ}$
And ACB, EAC are alternate interior angles
$\angle A C B=\angle E A C$
So, $y=55^{\circ}$
23. In Fig. 80, line $A C \|$ line $D E$ and $\angle A B D=32^{\circ}$, Find out the angles x and y if $\angle E=122^{\circ}$.

Fig. 80

Solution:

Given line $A C\left|\mid\right.$ line $D E$ and $\angle A B D=32^{\circ}$
$\angle B D E=\angle A B D=32^{\circ}-$ Alternate interior angles
$\angle B D E+y=180^{\circ}-$ linear pair
$32^{\circ}+y=180^{\circ}$
$y=180^{\circ}-32^{\circ}$
$y=148^{\circ}$
$\angle A B E=\angle E=122^{\circ}-$ Alternate interior angles
$\angle A B D+\angle D B E=122^{\circ}$
$32^{\circ}+\mathrm{x}=122^{\circ}$
$x=122^{\circ}-32^{\circ}$
$x=90^{\circ}$
24. In Fig. 81, side $B C$ of $\triangle A B C$ has been produced to D and $C E \| B A$. If $\angle A B C=65^{\circ}$, $\angle B A C=55^{\circ}$, find $\angle A C E, \angle E C D, \angle A C D$.

Fig. 81

Solution:

Given $\angle A B C=65^{\circ}, \angle B A C=55^{\circ}$
Corresponding angles,
$\angle A B C=\angle E C D=65^{\circ}$
Alternate interior angles,

$$
\begin{aligned}
& \angle B A C=\angle A C E=55^{\circ} \\
& \text { Now, } \angle A C D=\angle A C E+\angle E C D \\
& \angle A C D=55^{\circ}+65^{\circ} \\
& =120^{\circ}
\end{aligned}
$$

25. In Fig. 82, line $C A \perp A B \|$ line $C R$ and line $P R \|$ line $B D$. Find $\angle x, \angle y, \angle z$.

Fig. 82

Solution:

Given that, $C A \perp A B$
$\angle C A B=90^{\circ}$
$\angle A Q P=20^{\circ}$
By , angle of sum property

$$
\text { In } \triangle A B C
$$

$$
\begin{aligned}
& \angle C A B+\angle A Q P+\angle A P Q=180^{\circ} \\
& \angle A P Q=180^{\circ}-90^{\circ}-20^{\circ} \\
& \angle A P Q=70^{\circ}
\end{aligned}
$$

$$
\mathrm{y} \text { and } \angle \mathrm{APQ} \text { are corresponding angles }
$$

$$
y=\angle A P Q=70^{\circ}
$$

$$
\angle A P Q \text { and } \angle z \text { are interior angles }
$$

$$
\angle A P Q+\angle z=180^{\circ}
$$

$$
\angle z=180^{\circ}-70^{\circ}
$$

$$
\angle z=110^{\circ}
$$

26. In Fig. 83, $P Q$ || RS. Find the value of x.

Fig. 83

Solution:

Given, linear pair,
$\angle R C D+\angle R C B=180^{\circ}$
$\angle R C B=180^{\circ}-130^{\circ}$
$=50^{\circ}$
In $\triangle \mathrm{ABC}$,
$\angle B A C+\angle A B C+\angle B C A=180^{\circ}$
By, angle sum property
$\angle B A C=180^{\circ}-55^{\circ}-50^{\circ}$
$\angle B A C=75^{\circ}$
27. In Fig. 84, $A B\left|\mid C D\right.$ and $A E \| C F, \angle F C G=90^{\circ}$ and $\angle B A C=120^{\circ}$. Find the value of x, y and z .

Fig. 84

Solution:

Alternate interior angle
$\angle B A C=\angle A C G=120^{\circ}$
$\angle A C F+\angle F C G=120^{\circ}$
So, $\angle \mathrm{ACF}=120^{\circ}-90^{\circ}$
$=30^{\circ}$
Linear pair,
$\angle D C A+\angle A C G=180^{\circ}$
$\angle x=180^{\circ}-120^{\circ}$
$=60^{\circ}$
$\angle B A C+\angle B A E+\angle E A C=360^{\circ}$
$\angle C A E=360^{\circ}-120^{\circ}-\left(60^{\circ}+30^{\circ}\right)$
$=150^{\circ}$
28. In Fig. 85, $A B$ || $C D$ and $A C|\mid B D$. Find the values of x, y, z.

Fig. 85

Solution:

(i) Since, $A C \| B D$ and $C D \| A B, A B C D$ is a parallelogram

Adjacent angles of parallelogram,
$\angle C A B+\angle A C D=180^{\circ}$
$\angle A C D=180^{\circ}-65^{\circ}$
$=115^{\circ}$
Opposite angles of parallelogram,
$\angle C A B=\angle C D B=65^{\circ}$
$\angle A C D=\angle D B A=115^{\circ}$
(ii) Here,
$A C|\mid B D$ and $C D| \mid A B$
Alternate interior angles,
$\angle C A D=x=40^{\circ}$
$\angle D A B=y=35^{\circ}$
29. In Fig. 86, state which lines are parallel and why?

Fig. 86

Solution:

Let, F be the point of intersection of the line $C D$ and the line passing through point E.
Here, $\angle A C D$ and $\angle C D E$ are alternate and equal angles.
So, $\angle A C D=\angle C D E=100^{\circ}$
Therefore, $\mathrm{AC}|\mid \mathrm{EF}$
30. In Fig. 87, the corresponding arms of $\angle A B C$ and $\angle D E F$ are parallel. If $\angle A B C=75^{\circ}$, find $\angle D E F$.

Fig. 87

Solution:

Let, G be the point of intersection of the lines BC and DE Since, $A B$ || DE and $B C$ || $E F$
The corresponding angles are, $\angle A B C=\angle D G C=\angle D E F=75^{\circ}$

