

EXERCISE 15.2

PAGE NO: 15.12

1. Two angles of a triangle are of measures 105° and 30°. Find the measure of the third angle.

Solution:

Given two angles of a triangle are of measures 105° and 30° Let the required third angle be x We know that sum of all the angles of a triangle = 180° $105^{\circ} + 30^{\circ} + x = 180^{\circ}$ $135^{\circ} + x = 180^{\circ}$ $x = 180^{\circ} - 135^{\circ}$ $x = 45^{\circ}$ Therefore the third angle is 45°

2. One of the angles of a triangle is 130°, and the other two angles are equal. What is the measure of each of these equal angles?

Solution:

Given one of the angles of a triangle is 130° Also given that remaining two angles are equal So let the second and third angle be x We know that sum of all the angles of a triangle = 180° $130^{\circ} + x + x = 180^{\circ}$ $130^{\circ} + 2x = 180^{\circ}$ $2x = 180^{\circ} - 130^{\circ}$ $2x = 50^{\circ}$ x = 50/2 $x = 25^{\circ}$ Therefore the two other angles are 25° each

3. The three angles of a triangle are equal to one another. What is the measure of each of the angles?

Solution:

Given that three angles of a triangle are equal to one another

So let the each angle be x We know that sum of all the angles of a triangle = 180° $x + x + x = 180^{\circ}$ $3x = 180^{\circ}$ x = 180/3 $x = 60^{\circ}$ Therefore angle is 60° each

4. If the angles of a triangle are in the ratio 1: 2: 3, determine three angles.

Solution:

Given angles of the triangle are in the ratio 1: 2: 3 So take first angle as x, second angle as 2x and third angle as 3x We know that sum of all the angles of a triangle = 180° $x + 2x + 3x = 180^{\circ}$ $6x = 180^{\circ}$ x = 180/6 $x = 30^{\circ}$ $2x = 30^{\circ} \times 2 = 60^{\circ}$ $3x = 30^{\circ} \times 3 = 90^{\circ}$ Therefore the first angle is 30° , second angle is 60° and third angle is 90° .

5. The angles of a triangle are $(x - 40)^{\circ}$, $(x - 20)^{\circ}$ and $(1/2 - 10)^{\circ}$. Find the value of x.

Solution:

Given the angles of a triangle are $(x - 40)^{\circ}$, $(x - 20)^{\circ}$ and $(1/2 - 10)^{\circ}$. We know that sum of all the angles of a triangle = 180° $(x - 40)^{\circ} + (x - 20)^{\circ} + (1/2 - 10)^{\circ} = 180^{\circ}$ $x + x + (1/2) - 40^{\circ} - 20^{\circ} - 10^{\circ} = 180^{\circ}$ $x + x + (1/2) - 70^{\circ} = 180^{\circ}$ $(5x/2) = 180^{\circ} + 70^{\circ}$ $(5x/2) = 250^{\circ}$ $x = (2/5) \times 250^{\circ}$ $x = 100^{\circ}$ Hence the value of x is 100°

6. The angles of a triangle are arranged in ascending order of magnitude. If the

difference between two consecutive angles is 10°. Find the three angles.

Solution:

Given that angles of a triangle are arranged in ascending order of magnitude Also given that difference between two consecutive angles is 10° Let the first angle be x Second angle be x + 10° Third angle be x + 10° + 10° We know that sum of all the angles of a triangle = 180° x + x + 10° + x + 10° + 10° = 180° 3x + 30 = 1803x + 30 = 1803x = 150x = 150/3x = 50° First angle is 50° Second angle x + 10° = 50 + 10 = 60° Third angle x + 10° + 10° = 50 + 10 + 10 = 70°

7. Two angles of a triangle are equal and the third angle is greater than each of those angles by 30°. Determine all the angles of the triangle

Solution:

Given that two angles of a triangle are equal Let the first and second angle be x Also given that third angle is greater than each of those angles by 30° Therefore the third angle is greater than the first and second by $30^{\circ} = x + 30^{\circ}$ The first and the second angles are equal We know that sum of all the angles of a triangle = 180° $x + x + x + 30^{\circ} = 180^{\circ}$ 3x + 30 = 1803x = 180 - 303x = 150x = 150/3 $x = 50^{\circ}$ Third angle = $x + 30^{\circ} = 50^{\circ} + 30^{\circ} = 80^{\circ}$ The first and the second angle is 50° and the third angle is 80° .

8. If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right triangle.

Solution:

Given that one angle of a triangle is equal to the sum of the other two Let the measure of angles be x, y, z Therefore we can write above statement as x = y + z $x + y + z = 180^{\circ}$ Substituting the above value we get $x + x = 180^{\circ}$ $2x = 180^{\circ}$ x = 180/2 $x = 90^{\circ}$ If one angle is 90° then the given triangle is a right angled triangle

9. If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

Solution:

Given that each angle of a triangle is less than the sum of the other two Let the measure of angles be x, y and z From the above statement we can write as

x > y + z y < x + z z < x + y Therefore triangle is an acute triangle

10. In each of the following, the measures of three angles are given. State in which cases the angles can possibly be those of a triangle:

(i) 63°, 37°, 80°
(ii) 45°, 61°, 73°
(iii) 59°, 72°, 61°
(iv) 45°, 45°, 90°
(v) 30°, 20°, 125°

(i) $63^{\circ} + 37^{\circ} + 80^{\circ} = 180^{\circ}$ Angles form a triangle

(ii) 45°, 61°, 73° is not equal to 180° Therefore not a triangle

(iii) 59°, 72°, 61° is not equal to 180° Therefore not a triangle

(iv) 45° + 45° + 90° = 180° Angles form a triangle

(v) 30° , 20° , 125° is not equal to 180° Therefore not a triangle

11. The angles of a triangle are in the ratio 3: 4: 5. Find the smallest angle

Solution:

Given that angles of a triangle are in the ratio: 3: 4: 5 Therefore let the measure of the angles be 3x, 4x, 5x We know that sum of the angles of a triangle = 180° $3x + 4x + 5x = 180^{\circ}$ $12x = 180^{\circ}$ x = 180/12 $x = 15^{\circ}$ Smallest angle = 3x $= 3 \times 15^{\circ}$ $= 45^{\circ}$ Therefore smallest angle = 45°

12. Two acute angles of a right triangle are equal. Find the two angles.

Solution:

Given that acute angles of a right angled triangle are equal We know that Right triangle: whose one of the angle is a right angle Let the measure of angle be x, x, 90° $x + x + 90^{\circ} = 180^{\circ}$

 $2x = 90^{\circ}$ x = 90/2 $x = 45^{\circ}$ The two angles are 45° and 45°

13. One angle of a triangle is greater than the sum of the other two. What can you say about the measure of this angle? What type of a triangle is this?

Solution:

Given one angle of a triangle is greater than the sum of the other two Let the measure of the angles be x, y, z From the question we can write as x > y + z or y > x + z or z > x + yx or y or $z > 90^{\circ}$ which is obtuse Therefore triangle is an obtuse angle

14. In the six cornered figure, (fig. 20), AC, AD and AE are joined. Find \angle FAB + \angle ABC + \angle BCD + \angle CDE + \angle DEF + \angle EFA.

Solution:

We know that sum of the angles of a triangle is 180° Therefore in $\triangle ABC$, we have $\angle CAB + \angle ABC + \angle BCA = 180^{\circ}$ (i) In $\triangle ACD$, we have $\angle DAC + \angle ACD + \angle CDA = 180^{\circ}$ (ii) In $\triangle ADE$, we have $\angle EAD + \angle ADE + \angle DEA = 180^{\circ}$ (iii)

In $\triangle AEF$, we have $\angle FAE + \angle AEF + \angle EFA = 180^{\circ}$ (iv) Adding (i), (ii), (iii), (iv) we get $\angle CAB + \angle ABC + \angle BCA + \angle DAC + \angle ACD + \angle CDA + \angle EAD + \angle ADE + \angle DEA + \angle FAE + \angle AEF$ $+\angle EFA = 720^{\circ}$ Therefore $\angle FAB + \angle ABC + \angle BCD + \angle CDE + \angle DEF + \angle EFA = 720^{\circ}$

15. Find x, y, z (whichever is required) from the figures (Fig. 21) given below:

Solution:

(i) In $\triangle ABC$ and $\triangle ADE$ we have, $\angle ADE = \angle ABC$ [corresponding angles] $x = 40^{\circ}$ $\angle AED = \angle ACB$ (corresponding angles) $y = 30^{\circ}$ We know that the sum of all the three angles of a triangle is equal to 180° $x + y + z = 180^{\circ}$ (Angles of $\triangle ADE$) Which means: $40^{\circ} + 30^{\circ} + z = 180^{\circ}$ $z = 180^{\circ} - 70^{\circ}$ $z = 110^{\circ}$ Therefore, we can conclude that the three angles of the given triangle are 40° , 30° and 110°

(ii) We can see that in $\triangle ADC$, $\angle ADC$ is equal to 90°.

 $(\triangle ADC is a right triangle)$ We also know that the sum of all the angles of a triangle is equal to 180° . Which means: $45^{\circ} + 90^{\circ} + y = 180^{\circ}$ (Sum of the angles of $\triangle ADC$) $135^{\circ} + y = 180^{\circ}$ $v = 180^{\circ} - 135^{\circ}$. $y = 45^{\circ}$. We can also say that in \triangle ABC, \angle ABC + \angle ACB + \angle BAC is equal to 180°. (Sum of the angles of $\triangle ABC$) $40^{\circ} + y + (x + 45^{\circ}) = 180^{\circ}$ $40^{\circ} + 45^{\circ} + x + 45^{\circ} = 180^{\circ} (y = 45^{\circ})$ $x = 180^{\circ} - 130^{\circ}$ $x = 50^{\circ}$ Therefore, we can say that the required angles are 45° and 50° . (iii) We know that the sum of all the angles of a triangle is equal to 180° . Therefore, for $\triangle ABD$: $\angle ABD + \angle ADB + \angle BAD = 180^{\circ}$ (Sum of the angles of $\triangle ABD$) $50^{\circ} + x + 50^{\circ} = 180^{\circ}$ $100^{\circ} + x = 180^{\circ}$ $x = 180^{\circ} - 100^{\circ}$ $x = 80^{\circ}$ For \triangle ABC: $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ (Sum of the angles of $\triangle ABC$) $50^{\circ} + z + (50^{\circ} + 30^{\circ}) = 180^{\circ}$ $50^{\circ} + z + 50^{\circ} + 30^{\circ} = 180^{\circ}$ $z = 180^{\circ} - 130^{\circ}$ $z = 50^{\circ}$ Using the same argument for \triangle ADC: $\angle ADC + \angle ACD + \angle DAC = 180^{\circ}$ (Sum of the angles of $\triangle ADC$) $y + z + 30^{\circ} = 180^{\circ}$ $y + 50^{\circ} + 30^{\circ} = 180^{\circ} (z = 50^{\circ})$ $v = 180^{\circ} - 80^{\circ}$ $v = 100^{\circ}$ Therefore, we can conclude that the required angles are 80° , 50° and 100° .

(iv) In \triangle ABC and \triangle ADE we have: \angle ADE = \angle ABC (Corresponding angles)

 $y = 50^{\circ}$

```
Also, \angle AED = \angle ACB (Corresponding angles)

z = 40^{\circ}

We know that the sum of all the three angles of a triangle is equal to 180^{\circ}.

We can write as x + 50^{\circ} + 40^{\circ} = 180^{\circ} (Angles of \triangle ADE)

x = 180^{\circ} - 90^{\circ}

x = 90^{\circ}

Therefore, we can conclude that the required angles are 50^{\circ}, 40^{\circ} and 90^{\circ}.
```

16. If one angle of a triangle is 60° and the other two angles are in the ratio 1: 2, find the angles.

Solution:

Given that one of the angles of the given triangle is 60° .

Also given that the other two angles of the triangle are in the ratio 1: 2.

Let one of the other two angles be x.

Therefore, the second one will be 2x.

We know that the sum of all the three angles of a triangle is equal to 180°.

 $60^{\circ} + x + 2x = 180^{\circ}$ $3x = 180^{\circ} - 60^{\circ}$ $3x = 120^{\circ}$ $x = 120^{\circ}/3$ $x = 40^{\circ}$ $2x = 2 \times 40^{\circ}$ $2x = 80^{\circ}$

Hence, we can conclude that the required angles are 40° and 80°.

17. If one angle of a triangle is 100° and the other two angles are in the ratio 2: 3. Find the angles.

Solution:

Given that one of the angles of the given triangle is 100° . Also given that the other two angles are in the ratio 2: 3. Let one of the other two angle be 2x. Therefore, the second angle will be 3x. We know that the sum of all three angles of a triangle is 180° . $100^{\circ} + 2x + 3x = 180^{\circ}$

 $5x = 180^{\circ} - 100^{\circ}$ $5x = 80^{\circ}$ x = 80/5 x = 16 $2x = 2 \times 16$ $2x = 32^{\circ}$ $3x = 3 \times 16$ $3x = 48^{\circ}$

Thus, the required angles are 32° and 48°.

18. In $\triangle ABC$, if $3 \angle A = 4 \angle B = 6 \angle C$, calculate the angles.

Solution:

We know that for the given triangle, $3 \angle A = 6 \angle C$ $\angle A = 2 \angle C \dots$ (i) We also know that for the same triangle, $4 \angle B = 6 \angle C$ $\angle B = (6/4) \angle C$ (ii) We know that the sum of all three angles of a triangle is 180° . Therefore, we can say that: $\angle A + \angle B + \angle C = 180^{\circ}$ (Angles of $\triangle ABC$)..... (iii) On putting the values of $\angle A$ and $\angle B$ in equation (iii), we get: $2\angle C + (6/4) \angle C + \angle C = 180^{\circ}$ $(18/4) \angle C = 180^{\circ}$ $\angle C = 40^{\circ}$ From equation (i), we have: $\angle A = 2 \angle C = 2 \times 40$ $\angle A = 80^{\circ}$ From equation (ii), we have: $\angle B = (6/4) \angle C = (6/4) \times 40^{\circ}$ $\angle B = 60^{\circ}$ $\angle A = 80^{\circ}, \angle B = 60^{\circ}, \angle C = 40^{\circ}$ Therefore, the three angles of the given triangle are 80° , 60° , and 40° .

19. Is it possible to have a triangle, in which

- (i) Two of the angles are right?
- (ii) Two of the angles are obtuse?
- (iii) Two of the angles are acute?

(iv) Each angle is less than 60°?

(v) Each angle is greater than 60°?

(vi) Each angle is equal to 60°?

Solution:

(i) No, because if there are two right angles in a triangle, then the third angle of the triangle must be zero, which is not possible.

(ii) No, because as we know that the sum of all three angles of a triangle is always 180°. If there are two obtuse angles, then their sum will be more than 180°, which is not possible in case of a triangle.

(iii) Yes, in right triangles and acute triangles, it is possible to have two acute angles.

(iv) No, because if each angle is less than 60° , then the sum of all three angles will be less than 180° , which is not possible in case of a triangle.

(v) No, because if each angle is greater than 60° , then the sum of all three angles will be greater than 180° , which is not possible.

(vi) Yes, if each angle of the triangle is equal to 60[°], then the sum of all three angles will be 180[°], which is possible in case of a triangle.

20. In \triangle ABC, $\angle A = 100^{\circ}$, AD bisects $\angle A$ and AD \perp BC. Find $\angle B$

Given that in $\triangle ABC$, $\angle A = 100^{\circ}$ Also given that AD \perp BC Consider $\triangle ABD$ $\angle BAD = 100/2$ (AD bisects $\angle A$) $\angle BAD = 50^{\circ}$

 $\angle ADB = 90^{\circ}$ (AD perpendicular to BC) We know that the sum of all three angles of a triangle is 180° . Thus, $\angle ABD + \angle BAD + \angle ADB = 180^{\circ}$ (Sum of angles of $\triangle ABD$) Or, $\angle ABD + 50^{\circ} + 90^{\circ} = 180^{\circ}$ $\angle ABD = 180^{\circ} - 140^{\circ}$ $\angle ABD = 40^{\circ}$

21. In $\triangle ABC$, $\angle A = 50^{\circ}$, $\angle B = 70^{\circ}$ and bisector of $\angle C$ meets AB in D. Find the angles of the triangles ADC and BDC

Solution:

We know that the sum of all three angles of a triangle is equal to 180° . Therefore, for the given $\triangle ABC$, we can say that: $\angle A + \angle B + \angle C = 180^{\circ}$ (Sum of angles of $\triangle ABC$) $50^{\circ} + 70^{\circ} + \angle C = 180^{\circ}$ $\angle C = 180^{\circ} - 120^{\circ}$ $\angle C = 60^{\circ}$ $\angle ACD = \angle BCD = 2 \angle C$ (CD bisects $\angle C$ and meets AB in D.) $\angle ACD = \angle BCD = 60/2 = 30^{\circ}$ Using the same logic for the given $\triangle ACD$, we can say that: $\angle DAC + \angle ACD + \angle ADC = 180^{\circ}$ $50^{\circ} + 30^{\circ} + \angle ADC = 180^{\circ}$ $\angle ADC = 180^{\circ} - 80^{\circ}$ $\angle ADC = 100^{\circ}$ If we use the same logic for the given $\triangle BCD$, we can say that $\angle DBC + \angle BCD + \angle BDC = 180^{\circ}$ $70^{\circ} + 30^{\circ} + \angle BDC = 180^{\circ}$

 $\angle BDC = 180^{\circ} - 100^{\circ}$ $\angle BDC = 80^{\circ}$ Thus, For $\triangle ADC: \angle A = 50^{\circ}, \angle D = 100^{\circ} \angle C = 30^{\circ}$ $\triangle BDC: \angle B = 70^{\circ}, \angle D = 80^{\circ} \angle C = 30^{\circ}$

22. In $\triangle ABC$, $\angle A = 60^{\circ}$, $\angle B = 80^{\circ}$, and the bisectors of $\angle B$ and $\angle C$, meet at O. Find (i) $\angle C$ (ii) $\angle BOC$

Solution:

(i) We know that the sum of all three angles of a triangle is 180° . Hence, for $\triangle ABC$, we can say that: $\angle A + \angle B + \angle C = 180^{\circ}$ (Sum of angles of $\triangle ABC$) $60^{\circ} + 80^{\circ} + \angle C = 180^{\circ}$. $\angle C = 180^{\circ} - 140^{\circ}$ $\angle C = 40^{\circ}$.

```
(ii)For \triangle OBC,

\angle OBC = \angle B/2 = 80/2 (OB bisects \angle B)

\angle OBC = 40^{\circ}

\angle OCB = \angle C/2 = 40/2 (OC bisects \angle C)

\angle OCB = 20^{\circ}

If we apply the above logic to this triangle, we can say that:

\angle OCB + \angle OBC + \angle BOC = 180^{\circ} (Sum of angles of \triangle OBC)

20^{\circ} + 40^{\circ} + \angle BOC = 180^{\circ}

\angle BOC = 180^{\circ} - 60^{\circ}

\angle BOC = 120^{\circ}
```


23. The bisectors of the acute angles of a right triangle meet at O. Find the angle at O between the two bisectors.

Solution:

Given bisectors of the acute angles of a right triangle meet at O We know that the sum of all three angles of a triangle is 180° . Hence, for $\triangle ABC$, we can say that: $\angle A + \angle B + \angle C = 180^{\circ}$ $\angle A + 90^\circ + \angle C = 180^\circ$ $\angle A + \angle C = 180^{\circ} - 90^{\circ}$ $\angle A + \angle C = 90^{\circ}$ For $\triangle OAC$: $\angle OAC = \angle A/2$ (OA bisects $\angle A$) $\angle OCA = \angle C/2$ (OC bisects $\angle C$) On applying the above logic to $\triangle OAC$, we get $\angle AOC + \angle OAC + \angle OCA = 180^{\circ}$ (Sum of angles of $\triangle AOC$) $\angle AOC + \angle A/2 + \angle C/2 = 180^{\circ}$ $\angle AOC + (\angle A + \angle C)/2 = 180^{\circ}$ $\angle AOC + 90/2 = 180^{\circ}$ $\angle AOC = 180^{\circ} - 45^{\circ}$ $\angle AOC = 135^{\circ}$

24. In $\triangle ABC$, $\angle A = 50^{\circ}$ and BC is produced to a point D. The bisectors of $\angle ABC$ and $\angle ACD$ meet at E. Find $\angle E$.

In the given triangle,

 $\angle ACD = \angle A + \angle B$. (Exterior angle is equal to the sum of two opposite interior angles.) We know that the sum of all three angles of a triangle is 180°.

Therefore, for the given triangle, we know that the sum of the angles = 180°

 $\angle ABC + \angle BCA + \angle CAB = 180^{\circ}$ $\angle A + \angle B + \angle BCA = 180^{\circ}$ $\angle BCA = 180^{\circ} - (\angle A + \angle B)$ But we know that EC bisects ∠ACD Therefore \angle ECA = \angle ACD/2 $\angle ECA = (\angle A + \angle B)/2$ $[\angle ACD = (\angle A + \angle B)]$ But EB bisects ∠ABC $\angle EBC = \angle ABC/2 = \angle B/2$ $\angle EBC = \angle ECA + \angle BCA$ $\angle EBC = (\angle A + \angle B)/2 + 180^{\circ} - (\angle A + \angle B)$ If we use same steps for \triangle EBC, then we get, $\angle B/2 + (\angle A + \angle B)/2 + 180^{\circ} - (\angle A + \angle B) + \angle BEC = 180^{\circ}$ $\angle BEC = \angle A + \angle B - (\angle A + \angle B)/2 - \angle B/2$ $\angle BEC = \angle A/2$ $\angle BEC = 50^{\circ}/2$ = 25°

25. In $\triangle ABC$, $\angle B = 60^{\circ}$, $\angle C = 40^{\circ}$, AL \perp BC and AD bisects $\angle A$ such that L and D lie on side BC. Find $\angle LAD$

C D We know that the sum of all angles of a triangle is 180° Consider $\triangle ABC$, we can write as $\angle A + \angle B + \angle C = 180^{\circ}$ $\angle A + 60^{\circ} + 40^{\circ} = 180^{\circ}$ $\angle A = 80^{\circ}$ But we know that $\angle DAC$ bisects $\angle A$ $\angle DAC = \angle A/2$ $\angle DAC = 80^{\circ}/2$ If we apply same steps for the \triangle ADC, we get We know that the sum of all angles of a triangle is 180° $\angle ADC + \angle DCA + \angle DAC = 180^{\circ}$ $\angle ADC + 40^{\circ} + 40^{\circ} = 180^{\circ}$ $\angle ADC = 180^{\circ} - 80^{\circ} = 100^{\circ}$ We know that exterior angle is equal to the sum of two interior opposite angles Therefore we have $\angle ADC = \angle ALD + \angle LAD$ But here AL perpendicular to BC $100^{\circ} = 90^{\circ} + \angle LAD$ $\angle LAD = 10^{\circ}$

26. Line segments AB and CD intersect at O such that AC || DB. It \angle CAB = 35° and \angle CDB = 55°. Find \angle BOD.

We know that AC parallel to BD and AB cuts AC and BD at A and B, respectively. $\angle CAB = \angle DBA$ (Alternate interior angles) $\angle DBA = 35^{\circ}$ We also know that the sum of all three angles of a triangle is 180° . Hence, for $\triangle OBD$, we can say that: $\angle DBO + \angle ODB + \angle BOD = 180^{\circ}$ $35^{\circ} + 55^{\circ} + \angle BOD = 180^{\circ}$ ($\angle DBO = \angle DBA$ and $\angle ODB = \angle CDB$) $\angle BOD = 180^{\circ} - 90^{\circ}$ $\angle BOD = 90^{\circ}$

27. In Fig. 22, \triangle ABC is right angled at A, Q and R are points on line BC and P is a point such that QP || AC and RP || AB. Find \angle P

Solution:

In the given triangle, AC parallel to QP and BR cuts AC and QP at C and Q, respectively. \angle QCA = \angle CQP (Alternate interior angles)

Because RP parallel to AB and BR cuts AB and RP at B and R, respectively,

 $\angle ABC = \angle PRQ$ (alternate interior angles).

We know that the sum of all three angles of a triangle is 180°.

Hence, for $\triangle ABC$, we can say that:

 $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$

 $\angle ABC + \angle ACB + 90^\circ = 180^\circ$ (Right angled at A)

 $\angle ABC + \angle ACB = 90^{\circ}$

Using the same logic for \triangle PQR, we can say that: \angle PQR + \angle PRQ + \angle QPR = 180° \angle ABC + \angle ACB + \angle QPR = 180° (\angle ACB = \angle PQR and \angle ABC = \angle PRQ) Or, 90° + \angle QPR = 180° (\angle ABC+ \angle ACB = 90°) \angle QPR = 90°

