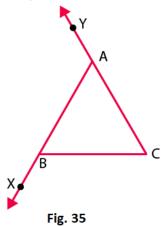


#### **EXERCISE 15.3**

PAGE NO: 15.19

- 1. In Fig. 35, ∠CBX is an exterior angle of ΔABC at B. Name
- (i) The interior adjacent angle
- (ii) The interior opposite angles to exterior ∠CBX

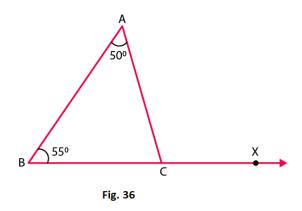
Also, name the interior opposite angles to an exterior angle at A.



#### **Solution:**

- (i) The interior adjacent angle is ∠ABC
- (ii) The interior opposite angles to exterior  $\angle$ CBX is  $\angle$ BAC and  $\angle$ ACB Also the interior angles opposite to exterior  $\angle$ BAY are  $\angle$ ABC and  $\angle$ ACB

### 2. In the fig. 36, two of the angles are indicated. What are the measures of $\angle$ ACX and $\angle$ ACB?



#### **Solution:**

Given that in  $\triangle$ ABC,  $\angle$ A = 50° and  $\angle$ B = 55° We know that the sum of angles in a triangle is 180°



Therefore we have

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$50^{\circ} + 55^{\circ} + \angle C = 180^{\circ}$$

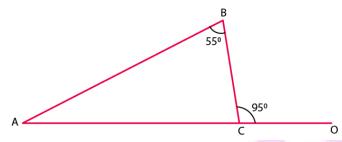
$$\angle C = 75^{\circ}$$

$$\angle ACB = 75^{\circ}$$

$$\angle ACX = 180^{\circ} - \angle ACB = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

3. In a triangle, an exterior angle at a vertex is 95° and its one of the interior opposite angles is 55°. Find all the angles of the triangle.

#### **Solution:**



We know that the sum of interior opposite angles is equal to the exterior angle.

Hence, for the given triangle, we can say that:

$$\angle ABC + \angle BAC = \angle BCO$$

$$55^{\circ} + \angle BAC = 95^{\circ}$$

$$\angle$$
BAC= 95°- 55°

$$\angle BAC = 40^{\circ}$$

We also know that the sum of all angles of a triangle is 180°.

Hence, for the given  $\triangle ABC$ , we can say that:

$$\angle ABC + \angle BAC + \angle BCA = 180^{\circ}$$

$$55^{\circ} + 40^{\circ} + \angle BCA = 180^{\circ}$$

$$\angle$$
BCA =  $180^{\circ} - 95^{\circ}$ 

$$\angle$$
BCA = 85 $^{\circ}$ 

4. One of the exterior angles of a triangle is 80°, and the interior opposite angles are equal to each other. What is the measure of each of these two angles?

#### **Solution:**

Let us assume that A and B are the two interior opposite angles.

We know that  $\angle A$  is equal to  $\angle B$ .



We also know that the sum of interior opposite angles is equal to the exterior angle.

Therefore from the figure we have,

$$\angle A + \angle B = 80^{\circ}$$

$$\angle A + \angle A = 80^{\circ}$$
 (because  $\angle A = \angle B$ )

$$2\angle A = 80^{\circ}$$

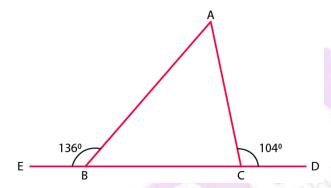
$$\angle A = 80/2 = 40^{\circ}$$

$$\angle A = \angle B = 40^{\circ}$$

Thus, each of the required angles is of 40°.

### 5. The exterior angles, obtained on producing the base of a triangle both ways are 104° and 136°. Find all the angles of the triangle.

#### **Solution:**



In the given figure, ∠ABE and ∠ABC form a linear pair.

$$\angle ABE + \angle ABC = 180^{\circ}$$

$$\angle ABC = 180^{\circ} - 136^{\circ}$$

$$\angle ABC = 44^{\circ}$$

We can also see that ∠ACD and ∠ACB form a linear pair.

$$\angle ACD + \angle ACB = 180^{\circ}$$

$$\angle ACB = 180^{\circ} - 104^{\circ}$$

$$\angle ACB = 76^{\circ}$$

We know that the sum of interior opposite angles is equal to the exterior angle.

Therefore, we can write as

$$\angle BAC + \angle ABC = 104^{\circ}$$

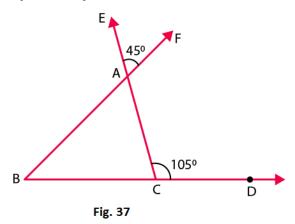
$$\angle BAC = 104^{\circ} - 44^{\circ} = 60^{\circ}$$

Thus,

$$\angle$$
ACE = 76° and  $\angle$ BAC = 60°



## 6. In Fig. 37, the sides BC, CA and BA of a $\triangle$ ABC have been produced to D, E and F respectively. If $\triangle$ ACD = 105° and $\triangle$ EAF = 45°; find all the angles of the $\triangle$ ABC.



#### **Solution:**

In a  $\triangle$ ABC,  $\angle$ BAC and  $\angle$ EAF are vertically opposite angles.

Hence, we can write as

 $\angle BAC = \angle EAF = 45^{\circ}$ 

Considering the exterior angle property, we have

 $\angle BAC + \angle ABC = \angle ACD = 105^{\circ}$ 

On rearranging we get

 $\angle ABC = 105^{\circ} - 45^{\circ} = 60^{\circ}$ 

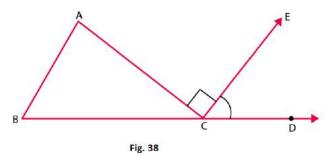
We know that the sum of angles in a triangle is 180°

 $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ 

 $\angle ACB = 75^{\circ}$ 

Therefore, the angles are 45°, 60° and 75°.

### 7. In Fig. 38, AC perpendicular to CE and C $\angle$ A: $\angle$ B: $\angle$ C= 3: 2: 1. Find the value of $\angle$ ECD.



#### **Solution:**

In the given triangle, the angles are in the ratio 3: 2: 1.

Let the angles of the triangle be 3x, 2x and x.

We know that sum of angles in a triangle is 180°



$$3x + 2x + x = 180^{\circ}$$
  
 $6x = 180^{\circ}$   
 $x = 30^{\circ}$   
Also,  $\angle ACB + \angle ACE + \angle ECD = 180^{\circ}$   
 $x + 90^{\circ} + \angle ECD = 180^{\circ}$  ( $\angle ACE = 90^{\circ}$ )  
We know that  $x = 30^{\circ}$   
Therefore  
 $\angle ECD = 60^{\circ}$ 

# 8. A student when asked to measure two exterior angles of $\triangle$ ABC observed that the exterior angles at A and B are of $103^{\circ}$ and $74^{\circ}$ respectively. Is this possible? Why or why not?

#### **Solution:**

We know that sum of internal and external angle is equal to 180°

Internal angle at A + External angle at A = 180°

Internal angle at  $A + 103^{\circ} = 180^{\circ}$ 

Internal angle at  $A = 77^{\circ}$ 

Internal angle at B + External angle at B = 180°

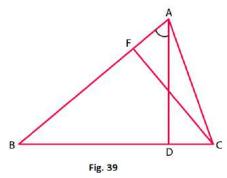
Internal angle at B +  $74^{\circ}$  =  $180^{\circ}$ 

Internal angle at B = 106°

Sum of internal angles at A and B =  $77^{\circ}$  +  $106^{\circ}$  =  $183^{\circ}$ 

It means that the sum of internal angles at A and B is greater than 180°, which cannot be possible.

# 9. In Fig.39, AD and CF are respectively perpendiculars to sides BC and AB of $\triangle$ ABC. If $\angle$ FCD = 50°, find $\angle$ BAD



#### **Solution:**

We know that the sum of all angles of a triangle is  $180^{\circ}$  Therefore, for the given  $\triangle FCB$ , we have



$$\angle$$
FCB +  $\angle$ CBF +  $\angle$ BFC =  $180^{\circ}$ 

$$50^{\circ} + \angle CBF + 90^{\circ} = 180^{\circ}$$

$$\angle CBF = 180^{\circ} - 50^{\circ} - 90^{\circ} = 40^{\circ}$$

Using the above steps for  $\triangle ABD$ , we can say that:

$$\angle ABD + \angle BDA + \angle BAD = 180^{\circ}$$

$$\angle BAD = 180^{\circ} - 90^{\circ} - 40^{\circ} = 50^{\circ}$$

### 10. In Fig.40, measures of some angles are indicated. Find the value of x.

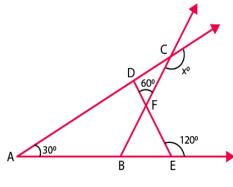


Fig. 40

#### **Solution:**

We know that the sum of the angles of a triangle is 180°

From the figure we have,

$$\angle$$
AED + 120° = 180° (Linear pair)

$$\angle AED = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

We know that the sum of all angles of a triangle is 180°.

Therefore, for  $\triangle ADE$ , we have

$$\angle ADE + \angle AED + \angle DAE = 180^{\circ}$$

$$60^{\circ} + \angle ADE + 30^{\circ} = 180^{\circ}$$

$$\angle ADE = 180^{\circ} - 60^{\circ} - 30^{\circ} = 90^{\circ}$$

From the given figure, we have

$$\angle$$
FDC + 90° = 180° (Linear pair)

$$\angle$$
FDC =  $180^{\circ} - 90^{\circ} = 90^{\circ}$ 

Using the same steps for  $\triangle CDF$ , we get

$$\angle$$
CDF +  $\angle$ DCF +  $\angle$ DFC =  $180^{\circ}$ 

$$90^{\circ} + \angle DCF + 60^{\circ} = 180^{\circ}$$

$$\angle DCF = 180^{\circ} - 60^{\circ} - 90^{\circ} = 30^{\circ}$$

Again from the figure we have

$$\angle DCF + x = 180^{\circ}$$
 (Linear pair)

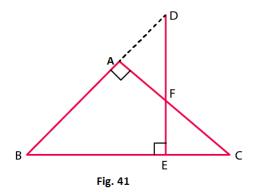
$$30^{\circ} + x = 180^{\circ}$$



$$x = 180^{\circ} - 30^{\circ} = 150^{\circ}$$

### 11. In Fig. 41, ABC is a right triangle right angled at A. D lies on BA produced and DE perpendicular to BC intersecting AC at F. If $\angle$ AFE = 130°, find

- (i) ∠BDE
- (ii) ∠BCA
- (iii) ∠ABC



#### **Solution:**

(i) Here,

$$\angle BAF + \angle FAD = 180^{\circ}$$
 (Linear pair)

$$\angle FAD = 180^{\circ} - \angle BAF = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

Also from the figure,

$$\angle AFE = \angle ADF + \angle FAD$$
 (Exterior angle property)

$$\angle ADF + 90^{\circ} = 130^{\circ}$$

$$\angle ADF = 130^{\circ} - 90^{\circ} = 40^{\circ}$$

$$\angle BDE = 40^{\circ}$$

(ii) We know that the sum of all the angles of a triangle is 180°.

Therefore, for  $\triangle BDE$ , we have

$$\angle BDE + \angle BED + \angle DBE = 180^{\circ}$$

$$\angle DBE = 180^{\circ} - \angle BDE - \angle BED$$

$$\angle DBE = 180^{\circ} - 40^{\circ} - 90^{\circ} = 50^{\circ}$$
 .... Equation (i)

Again from the figure we have,

$$\angle$$
FAD =  $\angle$ ABC +  $\angle$ ACB (Exterior angle property)

$$90^{\circ} = 50^{\circ} + \angle ACB$$

$$\angle ACB = 90^{\circ} - 50^{\circ} = 40^{\circ}$$

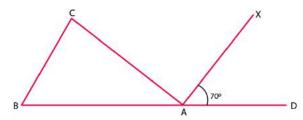
(iii) From equation we have

$$\angle ABC = \angle DBE = 50^{\circ}$$



### 12. ABC is a triangle in which $\angle B = \angle C$ and ray AX bisects the exterior angle DAC. If $\angle DAX = 70^{\circ}$ . Find $\angle ACB$ .

#### **Solution:**



Given that ABC is a triangle in which  $\angle B = \angle C$ 

Also given that AX bisects the exterior angle DAC

 $\angle CAX = \angle DAX$  (AX bisects  $\angle CAD$ )

 $\angle CAX = 70^{\circ} [given]$ 

 $\angle CAX + \angle DAX + \angle CAB = 180^{\circ}$ 

 $70^{\circ} + 70^{\circ} + \angle CAB = 180^{\circ}$ 

 $\angle CAB = 180^{\circ} - 140^{\circ}$ 

 $\angle CAB = 40^{\circ}$ 

 $\angle$ ACB +  $\angle$ CBA +  $\angle$ CAB = 180° (Sum of the angles of  $\triangle$ ABC)

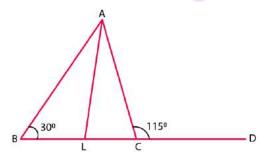
 $\angle ACB + \angle ACB + 40^{\circ} = 180^{\circ} (\angle C = \angle B)$ 

 $2\angle ACB = 180^{\circ} - 40^{\circ}$ 

 $\angle ACB = 140/2$ 

 $\angle ACB = 70^{\circ}$ 

# 13. The side BC of $\triangle$ ABC is produced to a point D. The bisector of $\angle$ A meets side BC in L. If $\angle$ ABC= 30° and $\angle$ ACD = 115°, find $\angle$ ALC



#### **Solution:**

Given that  $\angle ABC = 30^{\circ}$  and  $\angle ACD = 115^{\circ}$ 

From the figure, we have



∠ACD and ∠ACL make a linear pair.

 $\angle ACD + \angle ACB = 180^{\circ}$ 

 $115^{\circ} + \angle ACB = 180^{\circ}$ 

 $\angle ACB = 180^{\circ} - 115^{\circ}$ 

 $\angle ACB = 65^{\circ}$ 

We know that the sum of all angles of a triangle is 180°.

Therefore, for △ ABC, we have

 $\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$ 

 $30^{\circ} + \angle BAC + 65^{\circ} = 180^{\circ}$ 

 $\angle BAC = 85^{\circ}$ 

 $\angle$ LAC =  $\angle$ BAC/2 = 85/2

Using the same steps for  $\triangle ALC$ , we get

 $\angle$ ALC +  $\angle$ LAC +  $\angle$ ACL = 180°

 $\angle ALC + 85/2 + 65^{\circ} = 180^{\circ}$ 

We know that  $\angle ACL = \angle ACB$ 

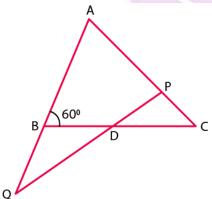
 $\angle$ ALC = 180 $^{\circ}$  - 85/2 - 65 $^{\circ}$ 

∠ALC = 72 ½°

14. D is a point on the side BC of  $\triangle$ ABC. A line PDQ through D, meets side AC in P and AB produced at Q. If  $\angle$ A = 80°,  $\angle$ ABC = 60° and  $\angle$ PDC = 15°, find

- (i) ∠AQD
- (ii) ∠APD

#### **Solution:**



From the figure we have

∠ABD and ∠QBD form a linear pair.

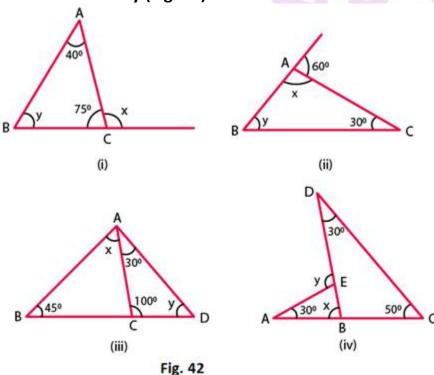
 $\angle$ ABC +  $\angle$ QBC =180 $^{\circ}$ 

 $60^{\circ} + \angle QBC = 180^{\circ}$ 



 $\angle$ QBC = 120°  $\angle$ PDC =  $\angle$ BDQ (Vertically opposite angles)  $\angle$ BDQ = 15° (i) In  $\triangle$ QBD:  $\angle$ QBD +  $\angle$ QDB +  $\angle$ BQD = 180° (Sum of angles of  $\triangle$ QBD) 120°+ 15° +  $\angle$ BQD = 180°  $\angle$ BQD = 180° – 135°  $\angle$ BQD = 45°  $\angle$ AQD =  $\angle$ BQD = 45° (ii) In  $\triangle$ AQP:  $\angle$ QAP +  $\angle$ AQP +  $\angle$ APQ = 180° (Sum of angles of  $\triangle$ AQP) 80° + 45° +  $\angle$ APQ = 180°  $\angle$ APQ = 55°  $\angle$ APD =  $\angle$ APQ = 55°

## 15. Explain the concept of interior and exterior angles and in each of the figures given below. Find x and y (Fig. 42)



#### **Solution:**

The interior angles of a triangle are the three angle elements inside the triangle. The exterior angles are formed by extending the sides of a triangle, and if the side of a



triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

Using these definitions, we will obtain the values of x and y.

(i) From the given figure, we have

$$\angle ACB + x = 180^{\circ}$$
 (Linear pair)

$$75^{\circ} + x = 180^{\circ}$$

$$x = 105^{\circ}$$

We know that the sum of all angles of a triangle is 180°

Therefore, for  $\triangle$ ABC, we can say that:

$$\angle$$
BAC+  $\angle$ ABC + $\angle$ ACB = 180°

$$40^{\circ}$$
+ y +75° =  $180^{\circ}$ 

$$y = 65^{\circ}$$

(ii) From the figure, we have

$$x + 80^{\circ} = 180^{\circ}$$
 (Linear pair)

$$x = 100^{\circ}$$

In △ABC, we have

We also know that the sum of angles of a triangle is 180°

$$x + y + 30^{\circ} = 180^{\circ}$$

$$100^{\circ} + 30^{\circ} + y = 180^{\circ}$$

$$y = 50^{\circ}$$

(iii) We know that the sum of all angles of a triangle is 180°.

Therefore, for  $\triangle ACD$ , we have

$$30^{\circ} + 100^{\circ} + y = 180^{\circ}$$

$$y = 50^{\circ}$$

Again from the figure we can write as

$$\angle ACB = 80^{\circ}$$

Using the above rule for  $\triangle ACB$ , we can say that:

$$x + 45^{\circ} + 80^{\circ} = 180^{\circ}$$

$$x = 55^{\circ}$$

(iv) We know that the sum of all angles of a triangle is 180°.

Therefore, for △DBC, we have

$$30^{\circ} + 50^{\circ} + \angle DBC = 180^{\circ}$$



From the figure we can say that  $x + \angle DBC = 180^{\circ}$  is a Linear pair  $x = 80^{\circ}$ From the exterior angle property we have  $y = 30^{\circ} + 80^{\circ} = 110^{\circ}$ 

### 16. Compute the value of x in each of the following figures:

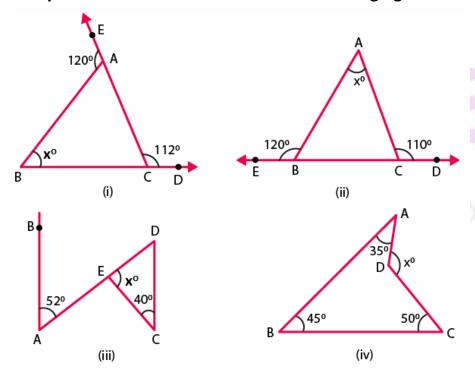


Fig. 43

#### **Solution:**

(i) From the given figure, we can write as

 $\angle$ ACD +  $\angle$ ACB =  $180^{\circ}$  is a linear pair

On rearranging we get

 $\angle ACB = 180^{\circ} - 112^{\circ} = 68^{\circ}$ 

Again from the figure we have,

 $\angle BAE + \angle BAC = 180^{\circ}$  is a linear pair

On rearranging we get,

 $\angle BAC = 180^{\circ} - 120^{\circ} = 60^{\circ}$ 

We know that the sum of all angles of a triangle is 180°.

Therefore, for  $\triangle ABC$ :

 $x + \angle BAC + \angle ACB = 180^{\circ}$ 



$$x = 180^{\circ} - 60^{\circ} - 68^{\circ} = 52^{\circ}$$
  
 $x = 52^{\circ}$ 

(ii) From the given figure, we can write as

$$\angle$$
ABC + 120° = 180° is a linear pair

$$\angle ABC = 60^{\circ}$$

Again from the figure we can write as

$$\angle$$
ACB+ 110° = 180° is a linear pair

$$\angle ACB = 70^{\circ}$$

We know that the sum of all angles of a triangle is 180°.

Therefore, consider  $\triangle ABC$ , we get

$$x + \angle ABC + \angle ACB = 180^{\circ}$$

$$x = 50^{\circ}$$

(iii) From the given figure, we can write as

$$\angle BAD = \angle ADC = 52^{\circ}$$
 are alternate angles

We know that the sum of all the angles of a triangle is 180°.

Therefore, consider  $\triangle$ DEC, we have

$$x + 40^{\circ} + 52^{\circ} = 180^{\circ}$$

$$x = 88^{\circ}$$

(iv) In the given figure, we have a quadrilateral and also we know that sum of all angles in a quadrilateral is  $360^{\circ}$ .

Thus,

$$35^{\circ} + 45^{\circ} + 50^{\circ} + \text{reflex} \angle ADC = 360^{\circ}$$

On rearranging we get,

Reflex 
$$\angle ADC = 230^{\circ}$$

$$230^{\circ} + x = 360^{\circ}$$
 (A complete angle)

$$x = 130^{\circ}$$