1. Explain the concept of congruence of figures with the help of certain examples.

Solution:

Congruent objects or figures are exact copies of each other or we can say mirror images of each other. The relation of two objects being congruent is called congruence. Consider Ball 1 and Ball 2. These two balls are congruent.

Ball 1

Ball 2

Now consider the two stars below. Star A and Star B are exactly the same in size, colour and shape. These are congruent stars

Star A
Star B
2. Fill in the blanks:
(i) Two line segments are congruent if \qquad
(ii) Two angles are congruent if \qquad
(iii) Two square are congruent if \qquad
(iv) Two rectangles are congruent if \qquad
(v) Two circles are congruent if \qquad

Solution:

(i) They are of equal lengths
(ii) Their measures are the same or equal.
(iii) Their sides are equal or they have the same side length
(iv) Their dimensions are same that is lengths are equal and their breadths are also equal.
(v) They have same radii

3. In Fig. $6, \angle P O Q \cong \angle R O S$, can we say that $\angle P O R \cong \angle Q O S$

Fig. 6

Solution:

Given that
$\angle P O Q \cong \angle R O S$
Also $\angle R O Q \cong \angle R O Q$
Therefore adding $\angle R O Q$ to both sides of $\angle P O Q \cong \angle R O S$,
We get, $\angle P O Q+\angle R O Q \cong \angle R O Q+\angle R O S$
Therefore, $\angle P O R \cong \angle Q O S$
4. In fig. $7, a=b=c$, name the angle which is congruent to $\angle A O C$

${ }^{\mathrm{H}} \mathrm{B}, 7$

Solution:

From the figure we have
$\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COD}$
Therefore, $\angle \mathrm{AOB}=\angle \mathrm{COD}$
Also, $\angle \mathrm{AOB}+\angle \mathrm{BOC}=\angle \mathrm{BOC}+\angle \mathrm{COD}$
$\angle A O C=\angle B O D$
Hence, $\angle \mathrm{BOD} \cong \angle \mathrm{AOC}$
5. Is it correct to say that any two right angles are congruent? Give reasons to justify your answer.

Solution:

Two right angles are congruent to each other because they both measure 90°.
We know that two angles are congruent if they have the same measure.
6. In fig. $8, \angle A O C \cong \angle P Y R$ and $\angle B O C \cong \angle Q Y R$. Name the angle which is congruent to $\angle A O B$.

Solution:

Given that $\angle A O C \cong \angle P Y R$
Also given that $\angle B O C \cong \angle Q Y R$

Now, $\angle A O C=\angle A O B+\angle B O C$ and $\angle P Y R=\angle P Y Q+\angle Q Y R$
By putting the value of $\angle A O C$ and $\angle P Y R$ in $\angle A O C \cong \angle P Y R$
We get, $\angle A O B+\angle B O C \cong \angle P Y Q+\angle Q Y R$
$\angle A O B \cong \angle P Y Q(\angle B O C \cong \angle Q Y R)$
Hence, $\angle A O B \cong \angle P Y Q$
7. Which of the following statements are true and which are false;
(i) All squares are congruent.
(ii) If two squares have equal areas, they are congruent.
(iii) If two rectangles have equal areas, they are congruent.
(iv) If two triangles have equal areas, they are congruent.

Solution:

(i) False.

Explanation:

All the sides of a square are of equal length. However, different squares can have sides of different lengths. Hence all squares are not congruent.
(ii) True.

Explanation:

Two squares that have the same area will have sides of the same lengths. Hence they will be congruent.
(iii) False

Explanation:

Area of a rectangle $=$ length \times breadth
Two rectangles can have the same area. However, the lengths of their sides can vary and hence they are not congruent.
(iv) False

Explanation:

Area of a triangle $=1 / 2 \times$ base \times height
Two triangles can have the same area but the lengths of their sides can vary and hence they cannot be congruent.

1. In the following pairs of triangle (Fig. 12 to 15), the lengths of the sides are indicated along sides. By applying SSS condition, determine which are congruent. State the result in symbolic form.
(i)

Fig. 12
(ii)

Fig. 13
(iii)

Fig. 14
(iv)

Fig. 15

Solution:

(i) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
$\mathrm{AB}=\mathrm{DE}=4.5 \mathrm{~cm}$ (Side)
$B C=E F=6 \mathrm{~cm}$ (Side) and
$\mathrm{AC}=\mathrm{DF}=4 \mathrm{~cm}$ (Side)
SSS criterion is two triangles are congruent, if the three sides of triangle are respectively equal to the three sides of the other triangle.
Therefore, by SSS criterion of congruence, $\triangle A B C \cong \triangle D E F$
(ii) In $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ADB}$
$A C=A D=5.5 \mathrm{~cm}$ (Side)
$B C=B D=5 \mathrm{~cm}$ (Side) and
$A B=A B=6 \mathrm{~cm}$ (Side)
SSS criterion is two triangles are congruent, if the three sides of triangle are respectively equal to the three sides of the other triangle.
Therefore, by SSS criterion of congruence, $\triangle A C B \cong \triangle A D B$
(iii) In $\triangle A B D$ and $\triangle F E C$,
$\mathrm{AB}=\mathrm{FE}=5 \mathrm{~cm}$ (Side)
$A D=F C=10.5 \mathrm{~cm}$ (Side)
$B D=C E=7 \mathrm{~cm}$ (Side)
SSS criterion is two triangles are congruent, if the three sides of triangle are respectively equal to the three sides of the other triangle.
Therefore, by SSS criterion of congruence, $\triangle \mathrm{ABD} \cong \triangle \mathrm{FEC}$
(iv) In $\triangle A B O$ and $\triangle D O C$,
$A B=D C=4 \mathrm{~cm}$ (Side)
$A O=O C=2 \mathrm{~cm}$ (Side)
$\mathrm{BO}=\mathrm{OD}=3.5 \mathrm{~cm}$ (Side)
SSS criterion is two triangles are congruent, if the three sides of triangle are respectively equal to the three sides of the other triangle.
Therefore, by SSS criterion of congruence, $\triangle A B O \cong \triangle O D C$
2. In fig.16, $A D=D C$ and $A B=B C$
(i) Is $\triangle A B D \cong \triangle C B D$?
(ii) State the three parts of matching pairs you have used to answer (i).

Solution:

(i) Yes $\triangle \mathrm{ABD} \cong \triangle C B D$ by the SSS criterion.

SSS criterion is two triangles are congruent, if the three sides of triangle are respectively equal to the three sides of the other triangle.
Hence $\triangle \mathrm{ABD} \cong \triangle C B D$
(ii) We have used the three conditions in the SSS criterion as follows:
$A D=D C$
$A B=B C$ and
$D B=B D$
3. In Fig. 17, $A B=D C$ and $B C=A D$.
(i) Is $\triangle A B C \cong \triangle C D A$?
(ii) What congruence condition have you used?
(iii) You have used some fact, not given in the question, what is that?

Solution:

(i) From the figure we have $A B=D C$
$B C=A D$

And $\mathrm{AC}=\mathrm{CA}$
SSS criterion is two triangles are congruent, if the three sides of triangle are respectively equal to the three sides of the other triangle.
Therefore by SSS criterion $\triangle A B C \cong \triangle C D A$
(ii) We have used Side Side Side congruence condition with one side common in both the triangles.
(iii)Yes, we have used the fact that $A C=C A$.
4. In $\triangle P Q R \cong \triangle E F D$,
(i) Which side of $\triangle P Q R$ equals $E D$?
(ii) Which angle of $\triangle P Q R$ equals angle E ?

Solution:

(i) $\mathrm{PR}=\mathrm{ED}$

Since the corresponding sides of congruent triangles are equal.
(ii) $\angle \mathrm{QPR}=\angle \mathrm{FED}$

Since the corresponding angles of congruent triangles are equal.
5. Triangles $A B C$ and $P Q R$ are both isosceles with $A B=A C$ and $P Q=P R$ respectively. If also, $A B=P Q$ and $B C=Q R$, are the two triangles congruent? Which condition do you use?
It $\angle B=50^{\circ}$, what is the measure of $\angle R$?

Solution:

Given that $A B=A C$ in isosceles $\triangle A B C$
And $P Q=P R$ in isosceles $\triangle P Q R$.
Also given that $A B=P Q$ and $Q R=B C$.

Therefore, $A C=P R(A B=A C, P Q=P R$ and $A B=P Q)$
Hence, $\triangle A B C \cong \triangle P Q R$
Now
$\angle A B C=\angle P Q R$ (Since triangles are congruent)
However, $\triangle P Q R$ is isosceles.
Therefore, $\angle P R Q=\angle P Q R=\angle A B C=50^{\circ}$
6. ABC and DBC are both isosceles triangles on a common base BC such that A and D lie on the same side of $B C$. Are triangles ADB and ADC congruent? Which condition do you use? If $\angle B A C=40^{\circ}$ and $\angle B D C=100^{\circ}$, then find $\angle A D B$.

Solution:

Given ABC and DBC are both isosceles triangles on a common base BC
$\angle B A D=\angle C A D$ (corresponding parts of congruent triangles)
$\angle B A D+\angle C A D=40^{\circ} / 2$
$\angle B A D=40^{\circ} / 2=20^{\circ}$
$\angle A B C+\angle B C A+\angle B A C=180^{\circ}$ (Angle sum property)
Since $\triangle A B C$ is an isosceles triangle,
$\angle A B C=\angle B C A$
$\angle A B C+\angle A B C+40^{\circ}=180^{\circ}$
$2 \angle A B C=180^{\circ}-40^{\circ}=140^{\circ}$
$\angle A B C=140^{\circ} / 2=70^{\circ}$
$\angle D B C+\angle B C D+\angle B D C=180^{\circ}$ (Angle sum property)
Since $\triangle \mathrm{DBC}$ is an isosceles triangle, $\angle \mathrm{DBC}=\angle \mathrm{BCD}$
$\angle D B C+\angle D B C+100^{\circ}=180^{\circ}$
$2 \angle D B C=180^{\circ}-100^{\circ}=80^{\circ}$
$\angle D B C=80^{\circ} / 2=40^{\circ}$
In $\triangle B A D$,
$\angle A B D+\angle B A D+\angle A D B=180^{\circ}$ (Angle sum property)
$30^{\circ}+20^{\circ}+\angle A D B=180^{\circ}(\angle A B D=\angle A B C-\angle D B C)$,
$\angle A D B=180^{\circ}-20^{\circ}-30^{\circ}$
$\angle A D B=130^{\circ}$
7. $\triangle A B C$ and $\triangle A B D$ are on a common base $A B$, and $A C=B D$ and $B C=A D$ as shown in Fig. 18. Which of the following statements is true?
(i) $\triangle A B C \cong \triangle A B D$
(ii) $\triangle A B C \cong \triangle A D B$
(iii) $\triangle A B C \cong \triangle B A D$

Solution:

In $\triangle A B C$ and $\triangle B A D$ we have,
$A C=B D$ (given)
$B C=A D$ (given)
And $A B=B A$ (corresponding parts of congruent triangles)
Therefore by SSS criterion of congruency, $\triangle A B C \cong \triangle B A D$
Therefore option (iii) is true.
8. In Fig. 19, $\triangle A B C$ is isosceles with $A B=A C, D$ is the mid-point of base $B C$.
(i) Is $\triangle A D B \cong \triangle A D C$?
(ii) State the three pairs of matching parts you use to arrive at your answer.

Solution:

(i) Given that $A B=A C$.

Also since D is the midpoint of $B C, B D=D C$
Also, AD = DA
Therefore by SSS condition, $\triangle A D B \cong \triangle A D C$
(ii)We have used $A B, A C$; $B D, D C$ and $A D, D A$
9. In fig. $20, \triangle A B C$ is isosceles with $A B=A C$. State if $\triangle A B C \cong \triangle A C B$. If yes, state three
relations that you use to arrive at your answer.

Solution:

Given that $\triangle A B C$ is isosceles with $A B=A C$
SSS criterion is two triangles are congruent, if the three sides of triangle are respectively equal to the three sides of the other triangle.
$\Delta A B C \cong \triangle A C B b y$ SSS condition.
Since, $A B C$ is an isosceles triangle, $A B=A C$ and $B C=C B$
10. Triangles $A B C$ and $D B C$ have side $B C$ common, $A B=B D$ and $A C=C D$. Are the two triangles congruent? State in symbolic form, which congruence do you use?
Does $\angle A B D$ equal $\angle A C D$? Why or why not?

Solution:

Yes, the two triangles are congruent because given that $A B C$ and $D B C$ have side $B C$ common, $\mathrm{AB}=\mathrm{BD}$ and $\mathrm{AC}=\mathrm{CD}$
Also from the above data we can say
By SSS criterion of congruency, $\triangle A B C \cong \triangle D B C$
No, $\angle A B D$ and $\angle A C D$ are not equal because $A B$ not equal to $A C$

1. By applying SAS congruence condition, state which of the following pairs (Fig. 28) of triangle are congruent. State the result in symbolic form

(i)

(iii)

(ii)

(iv)

Solution:

(i) From the figure we have $\mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD}$ and $\angle A O B=\angle C O D$ which are vertically opposite angles.
Therefore by SAS condition, $\triangle A O B \cong \triangle C O D$
(ii) From the figure we have $\mathrm{BD}=\mathrm{DC}$
$\angle A D B=\angle A D C=90^{\circ}$ and $A D=D A$
Therefore, by SAS condition, $\triangle A D B \cong \triangle A D C$.
(iii) From the figure we have $A B=D C$
$\angle A B D=\angle C D B$ and $B D=D B$
Therefore, by SAS condition, $\triangle A B D \cong \triangle C B D$
(iv) We have $\mathrm{BC}=\mathrm{QR}$
$A B C=P Q R=90^{\circ}$
And $A B=P Q$

Therefore, by SAS condition, $\triangle A B C \cong \triangle P Q R$.
2. State the condition by which the following pairs of triangles are congruent.

Solution:

(i) $A B=A D$
$B C=C D$ and $A C=C A$
Therefore by SSS condition, $\triangle \mathrm{ABC} \cong \triangle A D C$
(ii) $A C=B D$
$A D=B C$ and $A B=B A$
Therefore, by SSS condition, $\triangle A B D \cong \triangle B A C$
(iii) $A B=A D$
$\angle B A C=\angle D A C$ and $A C=C A$
Therefore by SAS condition, $\triangle \mathrm{BAC} \cong \triangle \mathrm{DAC}$
(iv) $A D=B C$
$\angle D A C=\angle B C A$ and $A C=C A$
Therefore, by SAS condition, $\triangle A B C \cong \triangle A D C$
3. In fig. 30, line segments $A B$ and $C D$ bisect each other at O. Which of the following statements is true?
(i) $\triangle A O C \cong \triangle D O B$
(ii) $\triangle A O C \cong \triangle B O D$
(iii) $\triangle A O C \cong \triangle O D B$

State the three pairs of matching parts, you have used to arrive at the answer.

Solution:

From the figure we have,
$A O=O B$
And, $C O=O D$
Also, $A O C=B O D$
Therefore, by $S A S$ condition, $\triangle A O C \cong \triangle B O D$
Hence, (ii) statement is true.
4. Line-segments $A B$ and $C D$ bisect each other at O. $A C$ and $B D$ are joined forming triangles AOC and BOD. State the three equality relations between the parts of the two triangles that are given or otherwise known. Are the two triangles congruent? State in symbolic form, which congruence condition do you use?

Solution:

We have $A O=O B$ and $C O=O D$
Since $A B$ and $C D$ bisect each other at 0 .
Also $\angle A O C=\angle B O D$
Since they are opposite angles on the same vertex.

Therefore by SAS congruence condition, $\triangle A O C \cong \triangle B O D$
5. $\triangle A B C$ is isosceles with $A B=A C$. Line segment $A D$ bisects $\angle A$ and meets the base $B C$ in D.
(i) Is $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$?
(ii) State the three pairs of matching parts used to answer (i).
(iii) Is it true to say that $B D=D C$?

Solution:

(i) We have $A B=A C$ (Given)
$\angle B A D=\angle C A D(A D$ bisects $\angle B A C)$
Therefore by SAS condition of congruence, $\triangle A D B \cong \triangle A D C$
(ii) We have used $A B, A C ; \angle B A D=\angle C A D ; A D, D A$.
(iii) Now, $\triangle A D B \cong \triangle A D C$

Therefore by corresponding parts of congruent triangles
$B D=D C$.
6. In Fig. 31, $A B=A D$ and $\angle B A C=\angle D A C$.
(i) State in symbolic form the congruence of two triangles ABC and ADC that is true.
(ii) Complete each of the following, so as to make it true:
(a) $\angle A B C=$
(b) $\angle A C D=$
(c) Line segment AC bisects \qquad And \qquad

Fig. 31

Solution:

i) $A B=A D$ (given)
$\angle B A C=\angle D A C$ (given)
$\mathrm{AC}=\mathrm{CA}$ (common)
Therefore by SAS condition of congruency, $\triangle A B C \cong \triangle A D C$
ii) $\angle A B C=\angle A D C$ (corresponding parts of congruent triangles)
$\angle A C D=\angle A C B$ (corresponding parts of congruent triangles)
Line segment $A C$ bisects $\angle A$ and $\angle C$.
7. In fig. 32, $A B|\mid D C$ and $A B=D C$.
(i) Is $\triangle A C D \cong \triangle C A B$?
(ii) State the three pairs of matching parts used to answer (i).
(iii) Which angle is equal to $\angle C A D$?
(iv) Does it follow from (iii) that $A D$ || $B C$?

Solution:

(i) Yes by SAS condition of congruency, $\triangle A C D \cong \triangle C A B$.
(ii) We have used $A B=D C, A C=C A$ and $\angle D C A=\angle B A C$.
(iii) $\angle C A D=\angle A C B$ since the two triangles are congruent.
(iv) Yes this follows from AD parallel to $B C$ as alternate angles are equal. If alternate angles are equal then the lines are parallel

1. Which of the following pairs of triangle are congruent by ASA condition?

Solution:

(i) We have,

Since $\angle \mathrm{ABO}=\angle \mathrm{CDO}=45^{\circ}$ and both are alternate angles, AB parallel to $\mathrm{DC}, \angle \mathrm{BAO}=$ $\angle D C O$ (alternate angle, $A B$ parallel to $C D$ and $A C$ is a transversal line) $\angle A B O=\angle C D O=45^{\circ}$ (given in the figure) Also, $A B=D C$ (Given in the figure)

Therefore, by ASA $\triangle A O B \cong \triangle D O C$
(ii) In $A B C$,

Now AB =AC (Given)
$\angle A B D=\angle A C D=40^{\circ}$ (Angles opposite to equal sides)
$\angle A B D+\angle A C D+\angle B A C=180^{\circ}$ (Angle sum property)
$40^{\circ}+40^{\circ}+\angle B A C=180^{\circ}$
$\angle B A C=180^{\circ}-80^{\circ}=100^{\circ}$
$\angle B A D+\angle D A C=\angle B A C$
$\angle B A D=\angle B A C-\angle D A C=100^{\circ}-50^{\circ}=50^{\circ}$
$\angle B A D=\angle C A D=50^{\circ}$
Therefore, by ASA, $\triangle A B D \cong \triangle A C D$
(iii) $\ln \triangle \mathrm{ABC}$,
$\angle A+\angle B+\angle C=180^{\circ}$ (Angle sum property)
$\angle C=180^{\circ}-\angle A-\angle B$
$\angle C=180^{\circ}-30^{\circ}-90^{\circ}=60^{\circ}$
In PQR,
$\angle P+\angle Q+\angle R=180^{\circ}$ (Angle sum property)
$\angle P=180^{\circ}-\angle R-\angle Q$
$\angle \mathrm{P}=180^{\circ}-60^{\circ}-90^{\circ}=30^{\circ}$
$\angle B A C=\angle Q P R=30^{\circ}$
$\angle B C A=\angle P R Q=60^{\circ}$ and $A C=P R$ (Given)
Therefore, by $A S A, \triangle A B C \cong \triangle P Q R$
(iv) We have only
$B C=Q R$ but none of the angles of $\triangle A B C$ and $\triangle P Q R$ are equal.
Therefore, $\triangle A B C$ is not congruent to $\triangle P Q R$
2. In fig. 37, AD bisects A and $A D \perp B C$.
(i) Is $\triangle A D B \cong \triangle A D C$?
(ii) State the three pairs of matching parts you have used in (i) (iii) Is it true to say that BD = DC?

Solution:

(i) Yes, $\triangle \mathrm{ADB} \cong \triangle A D C$, by ASA criterion of congruency.
(ii) We have used $\angle B A D=\angle C A D \angle A D B=\angle A D C=90^{\circ}$

Since, $A D \perp B C$ and $A D=D A$
$A D B=A D C$
(iii) Yes, $B D=D C$ since, $\triangle A D B \cong \triangle A D C$
3. Draw any triangle ABC. Use ASA condition to construct other triangle congruent to it.

Solution:

We have drawn
$\triangle A B C$ with $\angle A B C=65^{\circ}$ and $\angle A C B=70^{\circ}$
We now construct $\triangle P Q R \cong \triangle A B C$ where $\angle P Q R=65^{\circ}$ and $\angle P R Q=70^{\circ}$
Also we construct $\triangle P Q R$ such that $B C=Q R$
Therefore by ASA the two triangles are congruent
4. In $\triangle A B C$, it is known that $\angle B=C$. Imagine you have another copy of $\triangle A B C$
(i) Is $\triangle A B C \cong \triangle A C B$
(ii) State the three pairs of matching parts you have used to answer (i).
(iii) Is it true to say that $A B=A C$?

Solution:

(i) Yes $\triangle A B C \cong \triangle A C B$
(ii) We have used $\angle A B C=\angle A C B$ and $\angle A C B=\angle A B C$ again.

Also BC = CB
(iii) Yes it is true to say that $A B=A C$ since $\angle A B C=\angle A C B$.
5. In Fig. 38, $A X$ bisects $\angle B A C$ as well as $\angle B D C$. State the three facts needed to ensure that $\triangle A C D \cong \triangle A B D$

Fig. 38

Solution:

As per the given conditions,
$\angle \mathrm{CAD}=\angle \mathrm{BAD}$ and $\angle \mathrm{CDA}=\angle \mathrm{BDA}$ (because AX bisects $\angle \mathrm{BAC}$)
$\mathrm{AD}=\mathrm{DA}$ (common)
Therefore, by $A S A, \triangle A C D \cong \triangle A B D$
6. In Fig. 39, $A O=O B$ and $\angle A=\angle B$.
(i) Is $\triangle A O C \cong \triangle B O D$
(ii) State the matching pair you have used, which is not given in the question.
(iii) Is it true to say that $\angle A C O=\angle B D O$?

Solution:

We have
$\angle O A C=\angle O B D$,
$A O=O B$
Also, $\angle A O C=\angle B O D$ (Opposite angles on same vertex)
Therefore, by ASA $\triangle A O C \cong \triangle B O D$
(ii) $A C \| B D$
(by C.P.C.T)
(iii) $\angle \mathrm{ACO}=\angle \mathrm{BDO}$ (by C.P.C.T)BOD

1. In each of the following pairs of right triangles, the measures of some parts are indicated alongside. State by the application of RHS congruence condition which are congruent, and also state each result in symbolic form. (Fig. 46)

(v)

- Fig. 46

Solution:

(i) $\angle A D B=\angle B C A=90^{\circ}$
$A D=B C$ and hypotenuse $A B=$ hypotenuse $A B$
Therefore, by RHS $\triangle A D B \cong \triangle A C B$
(ii) $A D=A D$ (Common)

Hypotenuse $A C=$ hypotenuse $A B$ (Given)
$\angle A D B+\angle A D C=180^{\circ}$ (Linear pair)
$\angle \mathrm{ADB}+90^{\circ}=180^{\circ}$
$\angle \mathrm{ADB}=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
Therefore, by RHS $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$
(iii) Hypotenuse $\mathrm{AO}=$ hypotenuse DO
$\mathrm{BO}=\mathrm{CO}$
$\angle B=\angle C=90^{\circ}$
Therefore, by RHS, $\triangle A O B \cong \triangle D O C$
(iv) Hypotenuse AC = Hypotenuse CA
$B C=D C$
$\angle A B C=\angle A D C=90^{\circ}$
Therefore, by RHS, $\triangle A B C \cong \triangle A D C$
(v) $B D=D B$

Hypotenuse $A B=$ Hypotenuse $B C$, as per the given figure,
$\angle B D A+\angle B D C=180^{\circ}$
$\angle B D A+90^{\circ}=180^{\circ}$
$\angle B D A=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle B D A=\angle B D C=90^{\circ}$
Therefore, by RHS, $\triangle A B D \cong \triangle C B D$
2. $\triangle A B C$ is isosceles with $A B=A C$. $A D$ is the altitude from A on $B C$.
(i) Is $\triangle A B D \cong \triangle A C D$?
(ii) State the pairs of matching parts you have used to answer (i).
(iii) Is it true to say that BD = DC?

Solution:

(i) Yes, $\triangle A B D \cong \triangle A C D$ by RHS congruence condition.
(ii) We have used Hypotenuse $A B=$ Hypotenuse $A C$
$A D=D A$
$\angle A D B=\angle A D C=90^{\circ}(A D \perp B C$ at point $D)$
(iii) Yes, it is true to say that $\mathrm{BD}=\mathrm{DC}$ (corresponding parts of congruent triangles)

Since we have already proved that the two triangles are congruent.
3. $\triangle A B C$ is isosceles with $A B=A C$. Also. $A D \perp B C$ meeting $B C$ in D. Are the two triangles $A B D$ and $A C D$ congruent? State in symbolic form. Which congruence condition do you use? Which side of ADC equals $B D$? Which angle of $\triangle A D C$ equals $\angle B$?

Solution:

We have $A B=A C$
AD = DA (common)
And, $\angle A D C=\angle A D B(A D \perp B C$ at point $D)$ \qquad
Therefore, from (i), (ii) and (iii), by RHS congruence condition, $\triangle A B D \cong \triangle A C D$, the triangles are congruent.
Therefore, $B D=C D$.
And $\angle A B D=\angle A C D$ (corresponding parts of congruent triangles)
4. Draw a right triangle ABC. Use RHS condition to construct another triangle congruent to it.

Solution:

Consider

$\triangle \mathrm{ABC}$ with $\angle \mathrm{B}$ as right angle.
We now construct another triangle on base $B C$, such that $\angle C$ is a right angle and $A B=D C$ Also, BC = CB
Therefore by RHS, $\triangle A B C \cong \triangle D C B$
5.In fig. 47, $B D$ and $C E$ are altitudes of $\triangle A B C$ and $B D=C E$.
(i) Is $\triangle B C D \cong \triangle C B E$?
(ii) State the three pairs or matching parts you have used to answer (i)

Solution:

(i) Yes, $\triangle \mathrm{BCD} \cong \triangle \mathrm{CBE}$ by RHS congruence condition.
(ii) We have used hypotenuse $\mathrm{BC}=$ hypotenuse CB
$B D=C E$ (Given in question)
And $\angle B D C=\angle C E B=90^{\circ}$

