EXERCISE 17.1

1. Draw an $\angle B A C$ of measure 50° such that $A B=5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$. Through C draw a line parallel to $A B$ and through B draw a line parallel to $A C$, intersecting each other at D. Measure BD and CD

Solution:

Steps of construction:

1. Draw angle $B A C=50^{\circ}$ such that $A B=5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$.

Cut an arc through C at an angle of $50^{\circ 5}$
2. Draw a straight line passing through C and the arc. This line will be parallel to $A B$ since $\angle C A B=\angle R C A=50^{\circ}$
3. Alternate angles are equal; therefore the line is parallel to $A B$.
4. Again through B, cut an arc at angle of 50° and draw a line passing through B and this arc and say this intersects the line drawn parallel to $A B$ at D.
5. $\angle \mathrm{SBA}=\angle \mathrm{BAC}=50^{\circ}$, since they are alternate angles. Therefore BD parallel to AC 6. Also we can measure $B D=7 \mathrm{~cm}$ and $\mathrm{CD}=5 \mathrm{~cm}$.
2. Draw a line PQ. Draw another line parallel to $P Q$ at a distance of $\mathbf{3} \mathbf{c m}$ from it.

Solution:

Steps of construction:

1. Draw a line PQ.
2. Take any two points A and B on the line.
3. Construct $\angle P B F=90^{\circ}$ and $\angle Q A E=90^{\circ}$
4. With A as center and radius 3 cm cut $A E$ at C.
5. With B as center and radius 3 cm cut $B F$ at D.
6. Join $C D$ and produce it on either side to get the required line parallel to $A B$ and at a distance of 3 cm from it.
7. Take any three non-collinear points A, B, C and draw $\angle A B C$. Through each vertex of the triangle, draw a line parallel to the opposite side.

Solution:

Steps of construction:

1. Mark three non collinear points A, B and C such that none of them lie on the same line.
2. Join $A B, B C$ and $C A$ to form triangle $A B C$.
3. Parallel line to $A C$
4. With A as center, draw an arc cutting $A C$ and $A B$ at T and U, respectively.
5. With center B and the same radius as in the previous step, draw an arc on the opposite side of $A B$ to cut $A B$ at X.
6. With center X and radius equal to $T U$, draw an arc cutting the arc drawn in the previous step at Y.
7. Join $B Y$ and produce in both directions to obtain the line parallel to $A C$. Parallel line to $A B$:
8. With B as center, draw an arc cutting $B C$ and $B A$ at W and V, respectively.
9. With center C and the same radius as in the previous step, draw an arc on the opposite side of $B C$ to cut $B C$ at P.
10. With center P and radius equal to $W V$, draw an arc cutting the arc drawn in the previous step at Q .
11. Join CQ and produce in both directions to obtain the line parallel to $A B$.

Parallel line to BC:
12. With B as center, draw an arc cutting $B C$ and $B A$ at W and V, respectively (already drawn).
13. With center A and the same radius as in the previous step, draw an arc on the opposite side of $A B$ to cut $A B$ at R.
14. With center R and radius equal to $W V$, draw an arc cutting the arc drawn in the previous step at S.
15. Join AS and produce in both directions to obtain the line parallel to $B C$.

4. Draw two parallel lines at a distance of 5 cm apart.

Solution:

Steps of construction:

1. Draw a line PQ.
2. Take any two points A and B on the line.
3. Construct $\angle P B F=90^{\circ}$ and $\angle Q A E=90^{\circ}$
4. With A as center and radius 5 cm cut $A E$ at C.
5. With B as center and radius 5 cm cut BF at D .
6. Join $C D$ and produce it on either side to get the required line parallel to $A B$ and at a distance of 5 cm from it.

EXERCISE 17.2

PAGE NO: 17.3

1. Draw $\triangle A B C$ in which $A B=5.5 \mathrm{~cm} . B C=6 \mathrm{~cm}$ and $C A=7 \mathrm{~cm}$. Also, draw perpendicular bisector of side $B C$.

Solution:

Steps of construction:

1. Draw a line segment $A B$ of length 5.5 cm .
2. From B, cut an arc of radius 6 cm .
3. With center A , draw an arc of radius 7 cm intersecting the previously drawn arc at C .
4. Join $A C$ and $B C$ to obtain the desired triangle.
5. With center B and radius more than half of $B C$, draw two arcs on both sides of $B C$.
6. With center C and the same radius as in the previous step, draw two arcs intersecting the arcs drawn in the previous step at X and Y.
7. Join $X Y$ to get the perpendicular bisector of $B C$.
8. Draw $\triangle P Q R$ in which $P Q=3 \mathrm{~cm}, Q R=4 \mathrm{~cm}$ and $R P=5 \mathrm{~cm}$. Also, draw the bisector of LQ

Solution:

Steps of construction:

1. Draw a line segment $P Q$ of length 3 cm .
2. With Q as center and radius 4 cm , draw an arc.
3. With P as center and radius 5 cm , draw an arc intersecting the previously drawn arc at R.
4. Join $P R$ and $Q R$ to obtain the required triangle.
5. From Q, cut arcs of equal radius intersecting $P Q$ and $Q R$ at M and N, respectively.

6 . From M and N , cut arcs of equal radius intersecting at point S .
7. Join QS and extend to produce the angle bisector of angle PQR.
8. Verify that angle PQS and angle SQR are equal to 45° each.

3. Draw an equilateral triangle one of whose sides is of length $7 \mathbf{c m}$.

Solution:

Steps of construction:

1. Draw a line segment $A B$ of length 7 cm .
2. With center A, draw an arc of radius 7 cm .
3. With center B, draw an arc of radius 7 cm intersecting the previously drawn arc at C.
4. Join $A C$ and $B C$ to get the required triangle.
5. Draw a triangle whose sides are of lengths $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 7 cm . Draw the perpendicular bisector of the largest side.

Solution:

Steps of construction:

1. Draw a line segment $P R$ of length 7 cm .
2. With center P, draw an arc of radius 5 cm .
3. With center R, draw an arc of radius 4 cm intersecting the previously drawn arc at Q.
4. Join $P Q$ and $Q R$ to obtain the required triangle.
5. From P, draw arcs with radius more than half of $P R$ on either sides.
6. With the same radius as in the previous step, draw arcs from R on either sides of $P R$ intersecting the arcs drawn in the previous step at M and N .
7. MN is the required perpendicular bisector of the largest side.
8. Draw a triangle $A B C$ with $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $C A=8 \mathrm{~cm}$. Using ruler and compass alone, draw (i) the bisector $A D$ of $\angle A$ and (ii) perpendicular AL from A on $B C$. Measure LAD.

Solution:

Steps of construction:

1. Draw a line segment BC of length 7 cm .
2. With center B, draw an arc of radius 6 cm .
3. With center C, draw an arc of radius 8 cm intersecting the previously drawn arc at A.
4. Join $A C$ and $A B$ to get the required triangle.

Angle bisector steps:
5. From A, cut arcs of equal radius intersecting $A B$ and $A C$ at E and F, respectively.
6. From E and F, cut arcs of equal radius intersecting at point H.
7. Join $A H$ and extend to produce the angle bisector of angle A, meeting line $B C$ at D.
8. Perpendicular from Point A to line $B C$ steps:
9. From A, cut arcs of equal radius intersecting $B C$ at P and Q, respectively (Extend $B C$ to draw these arcs).
10. From P and Q, cut arcs of equal radius intersecting at M.
11. Join $A M$ cutting $B C$ at L.
12. $A L$ is the perpendicular to the line $B C$.
13. Angle LAD is 15°.
6. Draw $\triangle D E F$ such that $D E=D F=4 \mathrm{~cm}$ and $E F=6 \mathrm{~cm}$. Measure $\angle E$ and $\angle F$.

Solution:

Steps of construction:

1. Draw a line segment EF of length 6 cm .
2. With E as center, draw an arc of radius 4 cm .
3. With F as center, draw an arc of radius 4 cm intersecting the previous arc at D.
4. Join DE and DF to get the desired triangle DEF.
5. By measuring we get, $\angle \mathrm{E}=\angle \mathrm{F}=40^{\circ}$.

7. Draw any triangle $A B C$. Bisect side $A B$ at D. Through D, draw a line parallel to $B C$, meeting $A C$ in E. Measure $A E$ and $E C$.

Solution:

Steps of construction:
We first draw a triangle $A B C$ with each side $=6 \mathrm{~cm}$.
Steps to bisect line $A B$:

1. Draw an arc from A on either side of line $A B$.
2. With the same radius as in the previous step, draw an arc from B on either side of $A B$ intersecting the arcs drawn in the previous step at P and Q.
3. Join $P Q$ cutting $A B$ at $D . P Q$ is the perpendicular bisector of $A B$.

Parallel line to BC :
4. With B as center, draw an arc cutting $B C$ and $B A$ at M and N, respectively.
5. With center D and the same radius as in the previous step, draw an arc on the opposite side of $A B$ to cut $A B$ at Y.
6. With center Y and radius equal to $M N$, draw an arc cutting the arc drawn in the previous step at X.
7. Join XD and extend it to intersect $A C$ at E.
8. $D E$ is the required parallel line.

EXERCISE 17.3

1. Draw $\triangle A B C$ in which $A B=3 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $\angle B=70^{\circ}$.

Solution:

Steps of construction:

1. Draw a line segment $A B$ of length 3 cm .
2. Draw $\angle X B A=70^{\circ}$.
3. Cut an arc on $B X$ at a distance of 5 cm at C.
4. Join $A C$ to get the required triangle.
5. Draw $\triangle A B C$ in which $\angle A=70^{\circ}$. $A B=4 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$. Measure $B C$.

Solution:

Steps of construction:

1. Draw a line segment AC of length 6 cm .
2. Draw $\angle X A C=70^{\circ}$.
3. Cut an arc on $A X$ at a distance of 4 cm at B.
4. Join $B C$ to get the desired triangle.
5. We see that $B C=6 \mathrm{~cm}$.
6. Draw an isosceles triangle in which each of the equal sides is of length 3 cm and the angle between them is 45°.

Steps of construction:

1. Draw a line segment $P Q$ of length 3 cm .
2. Draw $\angle Q P X=45^{\circ}$.
3. Cut an arc on PX at a distance of 3 cm at R .
4. Join $Q R$ to get the required triangle.
5. Draw $\triangle A B C$ in which $\angle A=120^{\circ}, A B=A C=3 \mathrm{~cm}$. Measure $\angle B$ and $\angle C$.

Solution:

Steps of construction:

1. Draw a line segment $A C$ of length 3 cm .
2. Draw $\angle X A C=120^{\circ}$.
3. Cut an arc on $A X$ at a distance of 3 cm at B.
4. Join $B C$ to get the required triangle.
5. By measuring, we get $\angle B=\angle C=30^{\circ}$.
6. Draw $\triangle A B C$ in which $\angle C=90^{\circ}$ and $A C=B C=4 \mathrm{~cm}$.

Solution:

Steps of construction:

1. Draw a line segment $B C$ of length 4 cm .
2. At C, draw $\angle B C Y=90^{\circ}$.
3. Cut an arc on CY at a distance of 4 cm at A .
4. Join $A B$. $A B C$ is the required triangle.
5. Draw a triangle $A B C$ in which $B C=4 \mathrm{~cm}, A B=3 \mathrm{~cm}$ and $\angle B=45^{\circ}$. Also, draw a perpendicular from A on $B C$.

Solution:

Steps of construction:

1. Draw a line segment $A B$ of length 3 cm .
2. Draw an angle of 45° and cut an arc at this angle at a radius of 4 cm at C .
3. Join AC to get the required triangle.
4. With A as center, draw intersecting arcs at M and N .
5. With center M and radius more than half of $M N$, cut an arc on the opposite side of $\angle A$.
6. With N as center and same radius taken in the previous step, cut an arc intersecting the previous arc at E .
7. Join $A E$, it meets $B C$ at D, then $A E$ is the required perpendicular.
8. Draw a triangle $A B C$ with $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $\angle B=60^{\circ}$. Also, draw the bisector of angles C and A of the triangle, meeting in a point 0 . Measure $\angle C O A$.

Solution:

Steps of construction:

1. Draw a line segment $B C=4 \mathrm{~cm}$.
2. Draw $\angle C B X=60^{\circ}$.
3. Draw an arc on $B X$ at a radius of 3 cm cutting $B X$ at A.
4. Join $A C$ to get the required triangle.

Angle bisector for angle A:
5. With A as center, cut arcs of the same radius cutting $A B$ and $A C$ at P and Q, respectively.
6. From P and Q cut arcs of same radius intersecting at T.
7. Join AT to get the angle bisector of angle A.

Angle bisector for angle C:
8. With A as center, cut arcs of the same radius cutting $C B$ and $C A$ at M and N, respectively.
9. From M and N, cut arcs of the same radius intersecting at R
10. Join CR to get the angle bisector of angle C.
11. Mark the point of intersection of CR and AT as O.
12. Angle $\angle C O A=120^{\circ}$.

EXERCISE 17.4

1. Construct $\triangle A B C$ in which $B C=4 \mathrm{~cm}, \angle B=50^{\circ}$ and $\angle C=70^{\circ}$.

Solution:

Steps of construction:

1. Draw a line segment $B C$ of length 4 cm .
2. Draw $\angle C B X$ such that $\angle C B X=50^{\circ}$.
3. Draw $\angle B C Y$ with Y on the same side of $B C$ as X such that $\angle B C Y=70^{\circ}$.
4. Let $C Y$ and $B X$ intersects at A.
5. $A B C$ is the required triangle.
6. Draw $\triangle A B C$ in which $B C=8 \mathrm{~cm}, \angle B=50^{\circ}$ and $\angle A=50^{\circ}$.

Solution:

Steps of construction:

1. Draw a line segment $B C$ of length 8 cm .
2. Draw $\angle C B X$ such that $\angle C B X=50^{\circ}$.
3. Draw $\angle B C Y$ with Y on the same side of $B C$ as X such that $\angle B C Y=80^{\circ}$.
4. Let $C Y$ and $B X$ intersects at A.
5. Draw $\triangle A B C$ in which $\angle Q=80^{\circ}, \angle R=55^{\circ}$ and $Q R=4.5 \mathrm{~cm}$. Draw the perpendicular bisector of side QR.

Solution:

Steps of construction:

1. Draw a line segment $Q R=4.5 \mathrm{~cm}$.
2. Draw $\angle R Q X=80^{\circ}$ and $\angle Q R Y=55^{\circ}$.
3. Let $Q X$ and $R Y$ intersects at P so that $P Q R$ is the required triangle.
4. With Q as center and radius more than 4.5 cm , draw arcs on either sides of QR.
5. With R as center and radius more than 4.5 cm , draw arcs intersecting the previous arcs at M and N .
6. Join MN
7. MN is the required perpendicular bisector of QR .
8. Construct $\triangle A B C$ in which $A B=6.4 \mathrm{~cm}, \angle A=45^{\circ}$ and $\angle B=60^{\circ}$

Solution:

Steps of construction:

1. Draw a line segment $A B=6.4 \mathrm{~cm}$.
2. Draw $\angle B A X=45^{\circ}$.
3. Draw $\angle A B Y$ with Y on the same side of $A B$ as X such that $\angle A B Y=60^{\circ}$.
4. Let $A X$ and $B Y$ intersects at C.
5. $A B C$ is the required triangle.
6. Draw $\triangle A B C$ in which $A C=6 \mathrm{~cm}, \angle A=90^{\circ}$ and $\angle B=60^{\circ}$

Solution:

Steps of construction:

1. Draw a line segment $A C=6 \mathrm{~cm}$.
2. Draw $\angle A C X=30^{\circ}$.
3. Draw $\angle C A Y$ with Y on the same side of $A C$ as X such that $\angle C A Y=90^{\circ}$.
4. Join $C X$ and $A Y$. Let these intersects at B.
5. $A B C$ is the required triangle where angle $\angle A B C=60^{\circ}$.

EXERCISE 17.5

1. Draw a right triangle with hypotenuse of length 5 cm and one side of length 4 cm .

Solution:

Steps of construction:

1. Draw a line segment $Q R=4 \mathrm{~cm}$.
2. Draw $\angle Q R X$ of measure 90°.
3. With center Q and radius $P Q=5 \mathrm{~cm}$, draw an arc of the triangle to intersect ray $R X$ at P.
4. Join PQ to obtain the desired triangle PQR.
5. PQR is the required triangle.
6. Draw a right triangle whose hypotenuse is of length 4 cm and one side is of length 2.5 cm .

Solution:

Steps of construction:

1. Draw a line segment $Q R=2.5 \mathrm{~cm}$.
2. Draw $\angle Q R X$ of measure 90°.
3. With center Q and radius $P Q=4 \mathrm{~cm}$, draw an arc of the triangle to intersect ray $R X$ at P.
4. Join PQ to obtain the desired triangle PQR.
5. PQR is the required triangle.
6. Draw a right triangle having hypotenuse of length 5.4 cm , and one of the acute angles of measure 30°

Solution:

Let $A B C$ be the right triangle at A such that hypotenuse $B C=5.4 \mathrm{~cm}$. Let $C=30^{\circ}$.
Therefore $\angle A+\angle B+\angle C=180^{\circ}$
$\angle B=180^{\circ}-30^{\circ}-90^{\circ}=60^{\circ}$
Steps of construction:

1. Draw a line segment $B C=5.4 \mathrm{~cm}$.
2. Draw angle $C B Y=60^{\circ}$
3. Draw angle $B C X$ of measure 30° with X on the same side of $B C$ as Y.
4. Let $B Y$ and $C X$ intersects at A.
5. Then $A B C$ is the required triangle.
6. Construct a right triangle $A B C$ in which $A B=5.8 \mathrm{~cm}, B C=4.5 \mathrm{~cm}$ and $\angle C=90^{\circ}$.

Solution:

Steps of construction:

1. Draw a line segment $B C=4.5 \mathrm{~cm}$.
2. Draw $\angle B C X$ of measure 90°
3. With center B and radius $A B=5.8 \mathrm{~cm}$, draw an arc of the triangle to intersect ray $C X$ at A.
4. Join $A B$ to obtain the desired triangle $A B C$.
5. $A B C$ is the required triangle.
6. Construct a right triangle, right angled at C in which $A B=5.2 \mathrm{~cm}$ and $B C=4.6 \mathrm{~cm}$.

Solution:

Steps of construction:

1. Draw a line segment $B C=4.6 \mathrm{~cm}$.
2. Draw $\angle B C X$ of measure 90°
3. With center B and radius $A B=5.2 \mathrm{~cm}$, draw an arc of the triangle to intersects ray $C X$ at A.
4. Join $A B$ to obtain the desired triangle $A B C$.
5. $A B C$ is the required triangle.
