1. Compare the following fractions by using the symbol >or <or =:
(i) $(7 / 9)$ and $(8 / 13)$
(ii) (11/9) and (5/9)
(iii) $(37 / 41)$ and $(19 / 30)$
(iv) $(17 / 15)$ and (119/105)

Solution:

(i) Given (7/9) and (8/13)

Taking LCM for 9 and 13 we get,
$9 \times 13=117$
Now we convert the given fractions into its equivalent fractions, then it becomes
$(7 \times 13) /(9 \times 13)$ and $(8 \times 9) /(13 \times 9)$
Therefore $(91 / 117)>(72 / 117)$
Hence (7/9) > (8/13)
(ii) Given (11/9) and (5/9)

As the denominator is equal, they form equivalent fractions.
But we know that $11>5$
Hence (11/9) > (5/9)
(iii) Given (37/41) and (19/30)

Taking LCM for 41 and 30 we get,
$30 \times 41=1230$
Now we convert the given fractions into its equivalent fractions, then it becomes $(37 \times 30) /(41 \times 30)$ and $(19 \times 41) /(30 \times 41)$
Therefore $(1110 / 1230)>(779 / 1230)$
Hence $(37 / 41)>(19 / 30)$
(iv) Given (17/15) and (119/105)

Taking LCM for 15 and 105 we get, $5 \times 3 \times 7=105$
Now we convert the given fractions into its equivalent fractions, then it becomes
$(17 \times 7) /(15 \times 7)$ and $(119 / 105)$
Therefore $(119 / 105)=(119 / 105)$
Hence $(17 / 15)=(119 / 105)$

2. Arrange the following fractions in ascending order:

(i) $(3 / 8),(5 / 6),(6 / 8),(2 / 4),(1 / 3)$
(ii) (4/6), (3/8), (6/12), (5/16)

Solution:

(i) Given (3/8), (5/6), (6/8), (2/4), (1/3)

Now we have to arrange these in ascending order, to arrange these in ascending order we have to make those as equivalent fractions by taking LCM's.
LCM of $8,6,4$ and 3 is 24
Equivalent fractions are
(9/24), (20/24), (18/24), (12/24), (8/24)
We know that $8<9<12<18<20$
Now arranging in ascending order
$(8 / 24)<(9 / 24)<(12 / 24)<(18 / 24)<(20 / 24)$
Hence $(1 / 3)<(3 / 8)<(2 / 4)<(6 / 8)<(5 / 6)$
(ii) Given (4/6), (3/8), (6/12), (5/16)

Now we have to arrange these in ascending order, to arrange these in ascending order we have to make those as equivalent fractions by taking LCM's.
LCM of $8,6,12$ and 16 is 48
Equivalent fractions are (32/48), (24/48), (18/48), (15/48)
We know that $12<15<18<32$
Now arranging in ascending order
$(15 / 48)<(18 / 48)<(24 / 48)<(32 / 48)$
$(5 / 16)<(3 / 8)<(6 / 12)<(4 / 6)$

3. Arrange the following fractions in descending order:

(i) $(4 / 5),(7 / 10),(11 / 15),(17 / 20)$
(ii) (2/7), (11/35), (9/14), (13/28)

Solution:

(i) Given (4/5), (7/10), (11/15), (17/20)

Now we have to arrange these in descending order, to arrange these in descending order we have to make those as equivalent fractions by taking LCM's.
LCM of $5,10,15$ and 20 is 60
Equivalent fractions are
(48/60), (42/60), (44/60), (51/60)
We know that $51>48>44>42$
Now arranging in descending order
Hence $(17 / 20)>(4 / 5)>(11 / 15)>(7 / 10)$
(ii) Given (2/7), (11/35), (9/14), (13/28)

Now we have to arrange these in descending order, to arrange these in descending order we have to make those as equivalent fractions by taking LCM's.
LCM of $7,35,14$ and 28 is 140
Equivalent fractions are
(40/140), (44/140), (90/140), (65/140)
We know that $90>65>44>40$
Now arranging in descending order
Hence $(9 / 14)>(13 / 28)>(11 / 35)>(2 / 7)$

4. Write five equivalent fraction of (3/5).

Solution:

Given (3/5)
By multiplying or dividing both the numerator and denominator so that it keeps the same value by this we can get the equivalent fractions.
$(3 \times 2) /(5 \times 2),(3 \times 3) /(5 \times 3),(3 \times 4) /(5 \times 4),(3 \times 5) /(5 \times 5),(3 \times 6) /(5 \times 6)$
Equivalent fractions are
(6/10), (9/15), (12/20), (15/25), (18/30)

5. Find the sum:

(i) $(5 / 8)+(3 / 10)$
(ii) 4 3/4 $+92 / 5$
(iii) $(5 / 6)+3+(3 / 4)$
(iv) $23 / 5+47 / 10+24 / 15$

Solution:

(i) Given $(5 / 8)+(3 / 10)$

Taking LCM for 8 and 10 we get 40
Now we have to convert the given fractions into equivalent fractions with denominator 40
$(5 / 8)+(3 / 10)=(5 \times 5) /(8 \times 5)+(3 \times 4) /(10 \times 4)$
$=(25 / 40)+(12 / 40)$
$=(37 / 40)$
(ii) Given $43 / 4+92 / 5$

First convert given mixed fractions into improper fractions.
$43 / 4+92 / 5=(19 / 4)+(47 / 5)$
Taking LCM for 4 and 5 we get 20
Now we have to convert the given fractions into equivalent fractions with denominator 20

$$
\begin{aligned}
& 43 / 4+92 / 5=(19 / 4)+(47 / 5)=(19 \times 5) /(4 \times 5)+(47 \times 4) /(5 \times 4) \\
& =(95 / 20)+(188 / 20) \\
& =(283 / 20)
\end{aligned}
$$

(iii) Given (5/6) $+3+(3 / 4)$

Taking LCM for 6,1 and 4 we get 12
Now we have to convert the given fractions into equivalent fractions with denominator 12
$(5 / 6)+3+(3 / 4)=(5 \times 2) /(6 \times 2)+(3 \times 12) /(1 \times 12)+(3 \times 3) /(4 \times 3)$
$=(10 / 12)+(36 / 12)+(9 / 12)$
$=(55 / 12)$
(iv) Given $23 / 5+47 / 10+24 / 15$

First convert given mixed fractions into improper fractions
$23 / 5+47 / 10+24 / 15=(13 / 5)+(47 / 10)+(34 / 15)$
Taking LCM for 5, 10 and 15 we get 30
Now we have to convert the given fractions into equivalent fractions with denominator 30
$23 / 5+47 / 10+24 / 15=(13 / 5)+(47 / 10)+(34 / 15)=(13 \times 6) /(5 \times 6)+(47 \times 3) /(10 \times$
3) $+(34 \times 2) /(15 \times 2)$
$=(78 / 30)+(141 / 30)+(68 / 30)$
$=(287 / 30)$

6. Find the difference of:

(i) $(13 / 24)$ and $(7 / 16)$
(ii) 6 and (23/3)
(iii) $(21 / 25)$ and $(18 / 20)$
(iv) 3 3/10 and 2 7/15

Solution:

(i) Given ($13 / 24$) and ($7 / 16$)

To find the difference we have to make it equivalent fractions.
LCM of 24 and 16 is 48 .
Now converting the given fractions into equivalent fractions with denominator 48.
$(13 / 24)-(7 / 16)=(26 / 48)-(21 / 48)$
$=(26-21) / 48$
$=(5 / 48)$
(ii) Given 6 and (23/3)

To find the difference we have to make it equivalent fractions.
LCM of 3 and 1 is 3 .
Now converting the given fractions into equivalent fractions with denominator 3.
$(23 / 3)-6=(23 / 3)-(18 / 3)$
$=(23-18) / 3$
$=(5 / 3)$
(iii) Given (21/25) and (18/20)

To find the difference we have to make it equivalent fractions.
LCM of 25 and 20 is 100.
Now converting the given fractions into equivalent fractions with denominator 100.
$(18 / 20)-(21 / 25)=(90 / 100)-(84 / 100)$
$=(90-84) / 100$
= 6/100
By converting it into its simplest form we get
$=3 / 50$
(iv) Given 3 3/10 and 2 7/15

First convert given mixed fractions into improper fractions.
(33/10) and (37/15)
To find the difference we have to make it equivalent fractions.
LCM of 10 and 15 is 30 .
Now converting the given fractions into equivalent fractions with denominator 30.
$(33 / 10)-(37 / 15)=(99 / 30)-(74 / 30)$
$=(99-74) / 30$
$=(25 / 30)$
By converting it into simplest form we get
$=(5 / 6)$

7. Find the difference:

(i) $(6 / 7)-(9 / 11)$
(ii) $8-(5 / 9)$
(iii) $9-52 / 3$
(iv) 4 3/10-1 2/15

Solution:

(i) Given (6/7) - (9/11)

To find the difference we have to make it equivalent fractions.
LCM of 7 and 11 is 77 .
Now converting the given fractions into equivalent fractions with denominator 77.
Equivalent fractions are (66/77) and (63/77)
$(6 / 7)-(9 / 11)=(66 / 77)-(63 / 77)$
$=(66-63) / 77$
$=(3 / 77)$
(ii) Given 8 - (5/9)

To find the difference we have to make it equivalent fractions.
LCM of 1 and 9 is 9 .
Now converting the given fractions into equivalent fractions with denominator 9 .
Equivalent fractions are (72/9) and (5/9)
8 - (5/9) = (72/9) - (5/9)
$=(72-5) / 9$
$=(67 / 9)$
(iii) Given 9-5 2/3

First convert the given mixed fractions into improper fractions.
We get $52 / 3=(17 / 3)$
To find the difference we have to make it equivalent fractions.
LCM of 1 and 3 is 3 .

Now converting the given fractions into equivalent fractions with denominator 3.
Equivalent fractions are (27/3) and (17/3)
$9-52 / 3=(27 / 3)-(17 / 3)$
$=(10 / 3)$
(iv) Given 4 3/10-1 2/15

First convert the given mixed fractions into improper fractions.
We get $(43 / 10)$ and $(17 / 15)$
To find the difference we have to make it equivalent fractions.
LCM of 10 and 15 is 30 .
Now converting the given fractions into equivalent fractions with denominator 30.
Equivalent fractions are ($129 / 30$) and ($34 / 30$)
$43 / 10-12 / 15=(43 / 10)-(17 / 15)$
$=(129 / 30)-(34 / 30)$
$=(129-34) / 30$
$=(95 / 30)$
$=(19 / 6)$
8. Simplify:
(i) $(2 / 3)+(1 / 6)-(2 / 9)$
(ii) $12-31 / 2$
(iii) 7 5/6-4 3/8 + $27 / 12$

Solution:

(i) Given $(2 / 3)+(1 / 6)-(2 / 9)$

LCM of 3,6 and 9 is 18
Now we have to convert the given fraction into equivalent fraction with denominator 18
$(2 / 3)+(1 / 6)-(2 / 9)=(12 / 18)+(3 / 18)-(4 / 18)$
$=(12+3-4) / 18$
$=11 / 18$
(ii) Given 12 - 3 (1/2)

First convert the given mixed fraction into improper fraction we get (7/2)
LCM of 2 and 1 is 2
Now we have to convert the given fraction into equivalent fraction with denominator 2
$12-31 / 2=(24 / 2)-(7 / 2)$
$=(24-7) / 2$
$=(17 / 2)$
(iii) Given $75 / 6-43 / 8+27 / 12$

First convert the given mixed fraction into improper fraction we get (47/6), (35/8) and (31/12)
LCM of 12,6 and 8 is 48
Now we have to convert the given fraction into equivalent fraction with denominator 48
$75 / 6-43 / 8+27 / 12=(47 / 6)-(35 / 8)+(31 / 12)$
$=(376 / 48)-(210 / 48)+(124 / 48)$
$=(376-210+124) / 48$
$=(290 / 48)$
$=(145 / 24)$

9. What should be added to 5 3/7 to get 12?

Solution:

Given 5 3/7
First convert the given mixed fraction into improper fraction we get (38/7)
Let x be the number added to $(38 / 7)$ to get 12
Therefore $\mathrm{x}+(38 / 7)=12$
$\mathrm{x}=12-(38 / 7)$
LCM for 7 and 1 is 7
$\mathrm{x}=(12 \times 7-38) / 7$
$x=(84-38) / 7$
$\mathrm{x}=(46 / 7)$
Hence (46/7) is the number which is added to $53 / 7$ to get 12 .

10. What should be added to $54 / 15$ to get 12 3/5?

Solution:

Given 5 4/15
First convert the given mixed fraction into improper fraction we get (79/15) Let x be the number added to $(79 / 15)$ to get $(63 / 5)$

Therefore $x+(79 / 15)=(63 / 5)$
$x=(63 / 5)-(79 / 15)$
LCM for 15 and 5 is 15
$\mathrm{x}=(63 \times 3-79) / 15$
$x=(189-79) / 15$
$x=(110 / 15)=(22 / 3)$
Hence $(22 / 3)$ is the number which is added to $54 / 15$ to get $123 / 5$.
11. Suman studies for 5 2/3 hours daily. She devotes 2 4/5 hours of her time for Science and Mathematics. How much time does she devote for other subject?

Solution:

Given Suman studies for 5 2/3 hours i.e. (17/3) hours
And she devotes $24 / 5$ hours i.e. (14/5) hours for Science and Mathematics.
Let x be the hours she devotes for other subjects.
$(17 / 3)=x+(14 / 5)$
$x=(17 / 3)-(14 / 5)$
LCM of 3 and 5 is 15
$x=(17 \times 5-14 \times 3) / 15$
$\mathrm{x}=(85-42) / 15$
$x=(43 / 15)=213 / 15$ hours
12. A piece of wire is of length $123 / 4 \mathrm{~m}$. If it is cut into two pieces in such a way that the length of one piece is $51 / 4 \mathrm{~m}$, what is the length of other piece?

Solution:

Given the total length of piece of wire is $123 / 4$ i.e. (51/4) m
Length of one piece of wire is $51 / 4$ i.e. ((21/4) m
Let the length of other piece be ' x ' m
(51/4) $=x+(21 / 4)$
$x=(51 / 4)-(21 / 4)$
$x=(51-21) / 4$
$\mathrm{x}=(30 / 4)$
$x=(15 / 2)$
$x=71 / 2 m$

13. A rectangular sheet of paper is $121 / 2 \mathrm{~cm}$ long and $102 / 3 \mathrm{~cm}$ wide. Find its

 perimeter.
Solution:

Given length of rectangular sheet of paper is $121 / 2$ i.e. (25/2)
Breadth of rectangular sheet of paper is $102 / 3$ i.e. (32/3)
But we know that perimeter of rectangle $=2$ (length + breadth)
Perimeter of rectangular sheet $=2[(25 / 2)+(32 / 3)]$
LCM of 2 and 3 is 6 , by taking this and simplifying we get
Perimeter $=2[(25 \times 3) / 6+(32 \times 2) / 6]$
$=2[(75 / 6)+(64 / 6)]$
$=2(139 / 6)$
$=(139 / 3)$
$=461 / 3 \mathrm{~cm}$
14. In a "magic square", the sum of the numbers in each row, in each column and along the diagonal is the same. Is this a magic square?

$(4 / 11)$	$(9 / 11)$	$(2 / 11)$
$(3 / 11)$	$(5 / 11)$	$(7 / 11)$
$(8 / 11)$	$(1 / 11)$	$(6 / 11)$

Solution:

Along first column $=(4 / 11)+(3 / 11)+(8 / 11)=(15 / 11)$
Along second column $=(9 / 11)+(5 / 11)+(7 / 11)=(15 / 11)$
Along third column $=(2 / 11)+(7 / 11)+(6 / 11)=(15 / 11)$
Along first row $=(4 / 11)+(9 / 11)+(2 / 11)=(15 / 11)$
Along second row $=(3 / 11)+(5 / 11)+(7 / 11)=(15 / 11)$
Along third row $=(8 / 11)+(1 / 11)+(6 / 11)=(15 / 11)$
Along diagonal $=(4 / 11)+(5 / 11)+(6 / 11)=(15 / 11)$

$$
=(2 / 11)+(5 / 11)+(8 / 11)=(15 / 11)
$$

Therefore sum along all direction is same i.e. (15/11). Hence it is a magical square
15. The cost of Mathematics book is Rs 25 3/4 and that of Science book is Rs 20 1/2. Which cost more and by how much?

Solution:

Given the cost of Mathematics book is Rs 25 3/4 i.e. (103/4)
Cost of Science book is Rs $201 / 2$ i.e. (41/2)
Now the LCM of 2 and 4 is 4
Now we have to convert the given fractions into its equivalent fractions with denominator 4
Mathematics book cost is Rs (103/4)
Science book cost is $\operatorname{Rs}(41 \times 2 / 2 \times 2)=(82 / 4)$
$(103-82) / 4=21 / 4=51 / 4$
Hence the cost of Mathematics book is more than cost of Science book by 5 1/4
16. (i) Provide the number in box []and also give its simplest form in each of the following:
(i) $(2 / 3) \times[]=(10 / 30)$
(ii) $(3 / 5) \times[]=(24 / 75)$

Solution:

(i) $(2 / 3) \times[5 / 10]=(10 / 30)$
(ii) $(3 / 5) \times[8 / 15]=(24 / 75)$

1. Multiply:

(i) $(7 / 11)$ by $(3 / 5)$
(ii) $(3 / 5)$ by 25
(iii) $34 / 15$ by 24
(iv) 3 1/8 by 4 10/11

Solution:

(i) Given $(7 / 11)$ by $(3 / 5)$

We have to multiply the given number
$(7 / 11) \times(3 / 5)=(21 / 55)$
(ii) Given (3/5) by 25
$(3 / 5) \times 25=15$ [dividing 25 by 5]
(iii) Given $34 / 15$ by 24

First convert the given mixed fraction to improper fraction.
$(49 / 15) \times 24=(1176 / 15)$
$=782 / 5$
(iv) Given $31 / 8$ by 4 10/11

First convert the given mixed fractions to improper fractions.
$(25 / 8) \times(54 / 11)=(1350 / 88)=(675 / 44)$
$=15$ 15/44
2. Find the product:
(i) $(4 / 7) \times(14 / 25)$
(ii) $71 / 2 \times 24 / 15$
(iii) $36 / 7 \times 42 / 3$
(iv) $611 / 14 \times 31 / 2$

Solution:

(i) Given $(4 / 7) \times(14 / 25)$
$(4 / 7) \times(14 / 25)=(4 \times 14) /(7 \times 25)$
$=(56 / 175)$
Converting above fractions into simplest form
$=(8 / 25)$
(ii) Given $71 / 2 \times 24 / 15$

We have to convert mixed fractions into improper fractions
Then we get ($15 / 2$) and ($34 / 15$)
$7(1 / 2) \times 2(4 / 15)=(15 / 2) \times(34 / 15)$
$=(15 \times 34) /(2 \times 15)$
$=(510 / 30)$
$=17$
(iii) Given 3 6/7× 4 2/3

We have to convert mixed fractions into improper fractions
Then we get ($27 / 7$) and ($14 / 3$)
$36 / 7 \times 42 / 3=(27 / 7) \times(14 / 3)$
On simplifying
$=9 \times 2$
$=18$
(iv) Given $611 / 14 \times 31 / 2$

We have to convert mixed fractions into improper fractions
Then we get $(95 / 14)$ and ($7 / 2$)
$611 / 14 \times 31 / 2=(95 / 14) \times(7 / 2)$
$=(95 \times 7) / 28$
$=(665 / 28)$
$=233 / 4$
3. Simplify:
(i) $(12 / 25) \times(15 / 28) \times(35 / 36)$
(ii) $(10 / 27) \times(39 / 56) \times(28 / 65)$
(iii) 2 2/17 $\times 72 / 9 \times 1$ 33/52

Solution:

(i) Given $(12 / 25) \times(15 / 28) \times(35 / 36)$
$=(12 \times 15 \times 35) /(25 \times 28 \times 36)$
$=(6300 / 25200)$
On simplifying we get
$=(1 / 4)$
(ii) Given $(10 / 27) \times(39 / 56) \times(28 / 65)$
$=(10 \times 39 \times 28) /(27 \times 56 \times 65)$
$=(10920 / 98280)$
On simplifying we get
$=(1 / 9)$
(iii) Given 2 2/17 $\times 7$ 2/9 $\times 1$ 33/52

First convert the given mixed fractions into improper fractions then we get
$=(36 / 17) \times(65 / 9) \times(85 / 52)$
$=(36 \times 65 \times 85) /(17 \times 9 \times 52)$
$=(198900 / 7956)$
On simplifying we get
$=25$

4. Find:

(i) $(1 / 2)$ of $42 / 9$
(ii) $(5 / 8)$ of $92 / 3$
(iii) $(2 / 3)$ of $(9 / 16)$

Solution:

(i) Given (1/2) of 4 2/9

First convert given mixed fraction into improper fraction then we get (38/9)
$=(1 / 2) \times(38 / 9)$
$=(1 \times 38) /(2 \times 9)$
$=(38 / 18)$
= $21 / 9$
(ii) Given (5/8) of $92 / 3$

First convert given mixed fraction into improper fraction then we get (29/3)
$=(5 / 8) \times(29 / 3)$
$=(5 \times 29) /(8 \times 3)$
$=(145 / 24)$
$=61 / 24$
(iii) Given (2/3) of (9/16)
$=(2 / 3) \times(9 / 16)$
$=(2 \times 9) /(3 \times 16)$
$=(18 / 48)$
$=(3 / 8)$
5. Which is greater? $(1 / 2)$ of $(6 / 7)$ or $(2 / 3)$ of $(3 / 7)$

Solution:

Given (1/2) of (6/7)
$=(1 / 2) \times(6 / 7)$
$=(1 \times 6) /(2 \times 7)$
$=(6 / 14)$
Also given that $(2 / 3)$ of $(3 / 7)$
$=(2 / 3) \times(3 / 7)$
$=(2 \times 3) /(3 \times 7)$
$=(6 / 21)$
While comparing two fractions, if numerators of both the fractions are same, then the denominator having higher value shows the fraction has lower value.
Therefore $(6 / 14)$ is greater.
Hence (1/2) of (6/7) is greater.
6. Find:
(i) $(7 / 11)$ of Rs 330
(ii) $(5 / 9)$ of 108 meters
(iii) $(3 / 7)$ of 42 liters
(iv) $(1 / 12)$ of an hour
(v) $(5 / 6)$ of an year
(vi) $(3 / 20)$ of a kg
(vii) $(\mathbf{7 / 2 0})$ of a liter
(viii) (5/6) of a day
(ix) (2/7) of a week

Solution:

(i) Given (7/11) of Rs 330
$=(7 / 11) \times 330$
On dividing by 11 we get
$=7 \times 30$
$=210$
(7/11) of Rs 330 is Rs 210
(ii) Given (5/9) of 108 meters
$=(5 / 9) \times 108$
Dividing 108 by 9 we get
$=5 \times 12$
$=60$
(5/9) of 108 meters is 60 meters
(iii) Given (3/7) of 42 liters $=(3 / 7) \times 42$
Dividing 42 by 7 we get
$=3 \times 6$
$=18$
(3/7) of 42 liters is 18 liters
(iv) Given ($1 / 12$) of an hour

An hour $=60$ minutes
$=(1 / 12) \times 60$
Dividing 60 by 12 we get
$=1 \times 5$
$=5$
(1/12) of an hour is 5 minutes
(v) Given (5/6) of an year

1 year = 12 months
$=(5 / 6) \times 12$
Dividing 12 by 6 we get
$=5 \times 2$
$=10$
(5/6) of an year is 10 months
(vi) Given (3/20) of a kg
$1 \mathrm{~kg}=1000$ grams
$=(3 / 20) \times 1000$
$=3 \times 50$
$=150$
$(3 / 20)$ of a kg is 150 grams
(vii) Given (7/20) of a liter

1 liter $=1000 \mathrm{ml}$
$=(7 / 20) \times 1000$
$=7 \times 50$
$=350$
(7/20) of a liter is 350 ml
(viii) Given (5/6) of a day

1 day $=24$ hours
$=(5 / 6) \times 24$
$=5 \times 4$
$=20$
(5/6) of a day is 20 hours
(ix) Given (2/7) of a week

1 week $=7$ days
$=(2 / 7) \times 7$
$=2 \times 1$
$=2$
(2/7) of a week is 2 days
7. Shikha plants 5 saplings in a row in her garden. The distance between two adjacent saplings is $3 / 4 \mathrm{~m}$. Find the distance between the first and the last sapling.

Solution:

Given that the distance between two adjacent saplings is (3/4) m There are 4 adjacent spacing for 5 sapling
Therefore, distance between the first and the last sapling is $=(3 / 4) \times 4$
$=3$
The distance between them is 3 m
8. Ravish reads ($1 / 3$) part of a book in 1 hour. How much part of the book will he read in $21 / 5$ hours?

Solution:

Given Ravish takes 1 hour to read ($1 / 3$) part of the book
Then we have to calculate how much part he will read in $21 / 5$ hours
First convert the given mixed fraction into improper fraction i.e. (11/5)
Now let x be the full part of book
1 hour $=(1 / 3) x$
Remaining part of the book, he will read in
$=(11 / 5) \times(1 / 3) \mathrm{x}$
$=(11 / 15)$ part of the book
9. Lipika reads a book for 1 3/4 hours every day. She reads the entire book in 6 days. How many hours in all were required by her to read the book?

Solution:

Given time taken by Lipika to read a book per day $=13 / 4=(7 / 4)$ hours
Time taken by Lipika to read a book in 6 days $=(7 / 4) \times 6$
$=(42 / 4)$
= $10 \frac{1}{2}$ hours
10. Find the area of a rectangular park which is $412 / 3 \mathrm{~m}$ along and $183 / 5 \mathrm{~m}$ broad.

Solution:

Given length of rectangular park is $=412 / 3=(125 / 3)$
Breadth of rectangular park is $=183 / 5=(93 / 5)$
Area of rectangular park $=$ length \times breadth
$=(125 / 3) \times(93 / 5)$
$=(125 \times 93) / 15$
$=(11625 / 15)$
$=775 \mathrm{~m}^{2}$
11. If milk is available at Rs $\mathbf{1 7} 3 / 4$ per liter, find the cost of $\mathbf{7 2 / 5}$ liters of milk.

Solution:

Given the cost of milk per liter is $=173 / 4=\operatorname{Rs}(71 / 4)$
And the cost of $72 / 5=(37 / 5)$ is
$=(37 / 5) \times(71 / 4)$
$=(37 \times 71) / 20$
$=(2627 / 20)$
= Rs 131 7/20
12. Sharada can walk $\mathbf{8 1 / 3} \mathbf{~ k m}$ in one hour. How much distance will she cover in 2/5 hours?

Solution:

Given distance covered by Sharada in one hour $=81 / 3=(25 / 3) \mathrm{km}$
Distance covered by her in $22 / 5$ hours $=(12 / 5)$ is
$=(25 / 3) \times(12 / 5)$
$=(25 \times 12) / 15$
$=(300 / 15)$
$=20 \mathrm{~km}$
13. A sugar bag contains 30 kg of sugar. After consuming (2/3) of it, how much sugar is left in the bag?

Solution:

A sugar bag contains 30 kg of sugar.
After consuming, the left sugar in the bag is $=30-(2 / 3) \times 30$
$=30-2 \times 10$
$=30-20$
$=10 \mathrm{~kg}$
14. Each side of a square is $\mathbf{6} 2 / 3 \mathrm{~m}$ long. Find its area.

Solution:

Side of a square $=62 / 3=(20 / 3) \mathrm{m}$
Area of square $=$ side \times side
$=(20 / 3) \times(20 / 3)$
$=(400 / 9)$
$=444 / 9 \mathrm{~m}^{2}$
15. There are 45 students in a class and (3/5) of them are boys. How many girls are there in the class?

Solution:

Total number of students $=45$
Number of boys out of 45 is $=(3 / 5)$
Number of girls $=45-(3 / 5) \times 45$
$=45-3 \times 9$
$=45-27$
$=18$ girls

1. Find the reciprocal of each of the following fractions and classify them as proper, improper and whole numbers:
(i) $(3 / 7)$
(ii) $(5 / 8)$
(iii) (9/7)
(iv) $(6 / 5)$
(v) $(12 / 7)$
(vi) $(1 / 8)$

Solution:

(i) Given (3/7)

Reciprocal of (3/7) is ($7 / 3$)
$(7 / 3)$ is improper fraction
(ii) Given (5/8)

Reciprocal of (5/8) is (8/5)
It is improper fraction
(iii) Given (9/7)

Reciprocal of (9/7) is (7/9)
It is proper fraction
(iv) Given (6/5)

Reciprocal of $(6 / 5)$ is $(5 / 6)$
It is proper fraction
(v) Given (12/7)

Reciprocal of (12/7) is (7/12)
It is proper fraction
(vi) Given (1/8)

Reciprocal of $(1 / 8)$ is $(8 / 1)=8$
It is whole number

2. Divide:

(i) $(3 / 8)$ by $(5 / 9)$
(ii) $31 / 4$ by $(2 / 3)$
(iii) $(7 / 8)$ by $41 / 2$
(iv) $61 / 4$ by $23 / 5$

Solution:

(i) Given (3/8) by (5/9)

From the rule of division of fraction we know that $(a / b) \div(c / d)=(a / b) \times(d / c)$
$(3 / 8) /(5 / 9)=(3 / 8) \times(9 / 5)$
$=(3 \times 9) /(8 \times 5)$
$=(27 / 40)$
(ii) Given $31 / 4$ by (2/3)

Converting $31 / 4$ to improper fraction we get (13/4)
From the rule of division of fraction we know that $(a / b) \div(c / d)=(a / b) \times(d / c)$
$(13 / 4) /(2 / 3)=(13 / 4) \times(3 / 2)$
$=(13 \times 3) /(4 \times 2)$
$=(39 / 8)$
$=47 / 8$
(iii) Given (7/8) by $41 / 2$

Converting $41 / 2$ to improper fraction we get (9/2)
From the rule of division of fraction we know that $(a / b) \div(c / d)=(a / b) \times(d / c)$
$(7 / 8) /(9 / 2)=(7 / 8) \times(2 / 9)$
$=(7 \times 2) /(8 \times 9)$
$=(14 / 72)$
$=(7 / 36)$
(iv) Given $61 / 4$ by 2 3/5

Converting $61 / 4$ and $23 / 5$ to improper fraction we get (25/4) and (13/5)
From the rule of division of fraction we know that $(a / b) \div(c / d)=(a / b) \times(d / c)$
$(25 / 4) /(13 / 5)=(25 / 4) \times(5 / 13)$
$=(25 \times 5) /(4 \times 13)$
$=(125 / 52)$
$=2$ 21/52
3. Divide:
(i) $(3 / 8)$ by 4
(ii) $(9 / 16)$ by 6
(iii) 9 by $(3 / 16)$
(iv) 10 by (100/3)

Solution:

(i) Given (3/8) by 4
$=(3 / 8) / 4$
$=(3 / 8 \times 4)$
$=(3 / 32)$
(ii) Given (9/16) by 6
$=(9 / 16) / 6$
$=(9 / 16 \times 6)$
$=(9 / 96)$
$=(3 / 32)$
(iii) Given 9 by (3/16)
$=9 /(3 / 16)$
$=(9 \times 16) / 3$
$=16 \times 3$
$=48$
(iv) Given 10 by (100/3)
$=10 /(100 / 3)$
$=(10 \times 3) / 100$
$=(3 / 10)$
4. Simplify:
(i) $(3 / 10) \div(10 / 3)$
(ii) $43 / 5 \div(4 / 5)$
(iii) 5 4/7 $\div 1$ 3/10
(iv) $4 \div \mathbf{2} \mathbf{2 / 5}$

Solution:

(i) Given $(3 / 10) \div(10 / 3)$
$=(3 \times 3) /(10 \times 10)$
$=(9 / 100)$
(ii) Given $43 / 5 \div(4 / 5)$

First convert the given mixed fraction into improper fractions
$43 / 5=(23 / 5)$
$(23 / 5) \div(4 / 5)=(23 \times 5) /(5 \times 4)$
$=(23 / 4)$
$=53 / 4$
(iii) Given $54 / 7 \div 13 / 10$

First convert the given mixed fractions into improper fractions
(39/7) and (13/10)
$(39 / 7) \div(13 / 10)=(39 \times 10) /(7 \times 13)$
$=(390 / 91)$
$=(30 / 7)$
= $42 / 7$
(iv) Given $4 \div 22 / 5$

First convert the given mixed fraction into improper fraction
$22 / 5=(12 / 5)$
$4 \div(12 / 5)=(4 \times 5) / 12$
$=(20 / 12)$
$=12 / 3$

5. A wire of length $121 / 2 \mathrm{~m}$ is cut into 10 pieces of equal length. Find the length of each piece.

Solution:

Given total length of the wire is $=121 / 2=(25 / 2) \mathrm{m}$
It is cut into 10 pieces, so length of one piece is
$=(25 / 2) / 10$
$=(25 / 20)$
$=(5 / 4)$
$=11 / 4 \mathrm{~m}$
6. The length of rectangular plot of area $651 / 3 \mathrm{~m}^{2}$ is $121 / 4 \mathrm{~m}$. What is the width of the plot?

Solution:

Given area of rectangular plot is $651 / 3 \mathrm{~m}^{2}=(196 / 3) \mathrm{m}^{2}$
Length of the same plot is $121 / 4 \mathrm{~m}=(49 / 4) \mathrm{m}$
Width of the plot is
Area $=$ length \times breadth
$(196 / 3)=(49 / 4) \times$ breadth
Breadth $=(196 / 3) /(49 / 4)$
$=(196 \times 4) /(49 \times 3)$
$=(784 / 147)$
$=51 / 3$

7. By what number should 6 2/9 be multiplied to get 4 4/9?

Solution:

Let x be the number which needs to be multiplied by $62 / 9=(56 / 9)$
$x \times(56 / 9)=44 / 9$
$x \times(56 / 9)=(40 / 9)$
$x=(40 / 9) \times(9 / 56)$
$x=(40 / 56)$
$x=(5 / 7)$
8. The product of two numbers is $255 / 6$. If one of the numbers is $\mathbf{6 2 / 3}$, find the other.

Solution:

Given product of two numbers is $255 / 6=(155 / 6)$

One of the number is $62 / 3=(20 / 3)$
Let the other number be x
$(155 / 6)=x \times(20 / 3)$
$x=(3 / 20) \times(155 / 6)$
$x=(31 / 8)$
$x=37 / 8$
9. The cost of $61 / 4 \mathrm{~kg}$ of apples is Rs 400 . At what rate per kg are the apples being sold?

Solution:

The cost of $61 / 4 \mathrm{~kg}=(25 / 4)$ of apples is Rs 400
Cost of apple per kg is $=(25 / 4) / 400$
$=(4 / 25) \times 400$
$=$ Rs 64
10. By selling oranges at the rate of Rs $51 / 4$ per orange, a fruit-seller gets Rs 630 . How many dozens of oranges does he sell?

Solution:

Given cost of 1 orange is Rs $51 / 4=(21 / 4)$
He got Rs 630 by selling the oranges
Number of dozens of oranges sold by him for Rs 630 is $=(4 / 21) \times 630$
$=120$ apples
But we know that 1 dozen = 12
120 apples means 10 dozens
11. In mid-day meal scheme $(3 / 10)$ liter of milk is given to each student of a primary school. If $\mathbf{3 0}$ liters of milk is distributed every day in the school, how many students are there in the school?

Solution:

Given (3/10) liter of milk is given to each student
Number of student given (3/10) liter of milk = 1
Number of students giving 1 liter of milk $=(10 / 3)$
Numbers of students giving 30 liters of milk $=(10 / 3) \times 30=100$ students
12. In a charity show Rs 6496 were collected by selling some tickets. If the price of each ticket was Rs 50 3/4, how many tickets were sold?

Solution:
Given amount collected by selling tickets $=$ Rs 6496
The price of each ticket is $=503 / 4=(203 / 4)$
Number of ticket bought at Rs $(203 / 4)=1$
Number of tickets bought for Rs 6496 is $=(4 / 203) \times 6496$
$=4 \times 32$
$=128$ tickets

