

RD Sharma Solutions for Class 7 Maths Chapter 1 Integers

EXERCISE 1.1

PAGE NO: 1.5

1. Determine each of the following products:

(i) 12 × 7
(ii) (-15) × 8
(iii) (-25) × (-9)
(iv) 125 × (-8)
Solution:
(i) Given 12 × 7
Here we have to find the products of given numbers
12 ×7 = 84
Because the product of two integers of like signs is equal to the product of their absolute values.

(ii) Given (-15) × 8

Here we have to find the products of given numbers

(-15) ×8 = -120

Because the product of two integers of opposite signs is equal to the additive inverse of the product of their absolute values.

(iii) Given (-25) × (-9)

Here we have to find the products of given numbers

(-25) × (-9) = + (25 ×9) = +225

Because the product of two integers of opposite signs is equal to the additive inverse of the product of their absolute values.

(iv) Given 125 × (-8)

Here we have to find the products of given numbers

125 × (-8) = -1000

Because the product of two integers of opposite signs is equal to the additive inverse of the product of their absolute values.

2. Find each of the following products:

(i) 3 × (-8) × 5 (ii) 9 × (-3) × (-6) (iii) (-2) × 36 × (-5)

RD Sharma Solutions for Class 7 Maths Chapter 1 Integers

(iv) $(-2) \times (-4) \times (-6) \times (-8)$

Solution: (i) Given $3 \times (-8) \times 5$ Here we have to find the product of given number. $3 \times (-8) \times 5 = 3 \times (-8 \times 5)$ $= 3 \times -40 = -120$ Since the product of two integers of opposite signs is equal to the additive inverse of the

product of their absolute values.

(ii) Given 9 × (-3) × (-6)
Here we have to find the product of given number.
9 × (-3) × (-6) = 9 × (-3 × -6) [∵ the product of two integers of like signs is equal to the product of their absolute values.]
=9 × +18 = +162

(iii) Given (-2) × 36 × (-5)

Here we have to find the product of given number. (-2) \times 36 \times (-5) = (-2 \times 36) \times -5 [: the product of two integers of like signs is equal to the product of their absolute values.]

=-72 × -5 = +360

(iv) Given (-2) × (-4) × (-6) × (-8) Here we have to find the product of given number. (-2) × (-4) × (-6) × (-8) = (-2 × -4) × (-6 × -8) [\because the product of two integers of like signs is equal to the product of their absolute values.]

=-8 × -48 = +384

3. Find the value of: (i) $1487 \times 327 + (-487) \times 327$ (ii) $28945 \times 99 - (-28945)$ Solution: (i) Given $1487 \times 327 + (-487) \times 327$ By using the rule of multiplication of integers, we have $1487 \times 327 + (-487) \times 327 = 486249 - 159249$ Since the product of two integers of opposite signs is equal to the additive inverse of the product of their absolute values. =327000

(ii) Given $28945 \times 99 - (-28945)$ By using the rule of multiplication of integers, we have $28945 \times 99 - (-28945) = 2865555 + 28945$ Since the product of two integers of like signs is equal to the product of their absolute values.

=2894500

4. Complete the following multiplication table:

		Second number									
	x	-4	-3	-2	-1	0	1	2	3	4	
First number	-4					0			0		
	-3					0.0		2	22		
	-2						No.	A V	200		
	-1						0	9			
	0						10				
	1					0	1.0				
	2		-	00		0					
	3				0	~					
	4	1			(100						

Is the multiplication table symmetrical about the diagonal joining the upper left corner to the lower right corner?

Solution:

RD Sharma Solutions for Class 7 Maths Chapter 1 Integers

Second number

First number	x	-4	-3	-2	-1	0	1	2	3	4
	-4	16	12	8	4	0	-4	-8	-12	-16
	-3	12	9	6	3	0	-3	-6	-9	-12
	-2	8	6	4	2	0	-2	-4	-6	-8
	-1	4	3	2	1	0	-1	-2	-3	-4
	0	0	0	0	0	0	0	0	0	0
	1	-4	-3	-2	-1	0	1	2	3	4
	2	-8	-6	-4	-2	0	2	4	6	8
	3	-12	-9	-6	-3	0	3	6	9	12
	4	-16	-12	-8	-4	0	4	8	12	16

From the table it is clear that, the table is symmetrical about the diagonal joining the upper left corner to the lower right corner.

5. Determine the integer whose product with '-1' is

(i) 58

(ii) 0

(iii) -225

Solution:

(i) Given 58

Here we have to find the integer which is multiplied by -1

We get, 58 × -1 = -58

Since the product of two integers of opposite signs is equal to the additive inverse of the product of their absolute values.

(ii) Given 0

Here we have to find the integer which is multiplied by -1

We get, $0 \times -1 = 0$ [because anything multiplied with 0 we get 0 as their result]

(iii) Given -225

Here we have to find the integer which is multiplied by -1

We get, -225 × -1 = 225

Since the product of two integers of like signs is equal to the product of their absolute values.

https://byjus.com