## Exercise IO(A)

1. Which of the following sequences are in arithmetic progression?
(i) $2,6,10,14, \ldots$
(ii) $15,12,9,6, \ldots$
(iii) $5,9,12,18, \ldots$.
(iv) $1 / 2,1 / 3,1 / 4,1 / 5, \ldots$.

## Solution:

(i) $2,6,10,14, \ldots$

Finding the difference between the terms,
$\mathrm{d}_{1}=6-2=4$
$\mathrm{d}_{2}=10-6=4$
$d_{3}=14-10=4$
As $d_{1}=d_{2}=d_{3}$, the given sequence is in arithmetic progression.
(ii) $15,12,9,6, \ldots$

Finding the difference between the terms,
$\mathrm{d}_{1}=12-15=-3$
$\mathrm{d}_{2}=9-12=-3$
$\mathrm{d}_{3}=6-9=-3$
As $d_{1}=d_{2}=d_{3}$, the given sequence is in arithmetic progression.
(iii) $5,9,12,18, \ldots$

Finding the difference between the terms,
$\mathrm{d}_{1}=9-5=4$
$\mathrm{d}_{2}=12-9=3$
$\mathrm{d}_{3}=18-12=6$
As $\mathrm{d}_{1} \neq \mathrm{d}_{2} \neq \mathrm{d}_{3}$, the given sequence is not in arithmetic progression.
(iv) $1 / 2,1 / 3,1 / 4,1 / 5, \ldots$

Finding the difference between the terms,
$\mathrm{d}_{1}=1 / 3-1 / 2=-1 / 6$
$\mathrm{d}_{2}=1 / 4-1 / 3=-1 / 12$
$d_{3}=1 / 5-1 / 4=-1 / 20$
As $\mathrm{d}_{1} \neq \mathrm{d}_{2} \neq \mathrm{d}_{3}$, the given sequence is not in arithmetic progression.

## 2. The $n^{\text {th }}$ term of sequence is ( $2 n-3$ ), find its fifteenth term.

## Solution:

Given, $\mathrm{n}^{\text {th }}$ term of sequence is $(2 \mathrm{n}-3)$
So, the $15^{\text {th }}$ term is when $\mathrm{n}=15$
$\mathrm{t}_{15}=2(15)-3=30-3=27$
Thus, the $15^{\text {th }}$ term of the sequence is 27 .
3. If the $p^{\text {th }}$ term of an A.P. is $(2 p+3)$; find the A.P.

## Solution:

Given, $\mathrm{p}^{\text {th }}$ term of an A.P. $=(2 \mathrm{p}+3)$
So, on putting $p=1,2,3, \ldots$, we have
$\mathrm{t}_{1}=2(1)+3=5$
$\mathrm{t}_{2}=2(2)+3=7$
$\mathrm{t}_{3}=2(3)+3=9$
Hence, the sequence A.P. is $5,7,9, \ldots$

## 4. Find the $24^{\text {th }}$ term of the sequence:

$12,10,8,6, \ldots \ldots$

## Solution:

Given sequence,
$12,10,8,6, \ldots \ldots$
The common difference:
$10-12=-2$
$8-10=-2$
$6-8=-2$
So, the common difference(d) of the sequence is -2 and $\mathrm{a}=12$.
Now, the general term of this A.P. is given by
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=12+(\mathrm{n}-1)(-2)=12-2 \mathrm{n}+2=14-2 \mathrm{n}$
For $24^{\text {th }}$ term, $\mathrm{n}=24$
$\mathrm{t}_{\mathrm{n}}=14-2(24)=14-48=-34$
Therefore, the $24^{\text {th }}$ term is -34
5. Find the $30^{\text {th }}$ term of the sequence:
$1 / 2,1,3 / 2$,
Solution:
Given sequence,
$1 / 2,1,3 / 2, \ldots \ldots$...
So,
$\mathrm{a}=1 / 2$
$\mathrm{d}=1-1 / 2=1 / 2$
We know that,
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
Hence, the $30^{\text {th }}$ term will be
$\mathrm{t}_{30}=1 / 2+(30-1)(1 / 2)=1 / 2+29 / 2=30 / 2=15$
Therefore, the $30^{\text {th }}$ term is 15 .
6. Find the $100^{\text {th }}$ term of the sequence:
$\sqrt{ } 3,2 \sqrt{ } 3,3 \sqrt{ } 3, \ldots$.
Solution:

Given A.P. is $\sqrt{ } 3,2 \sqrt{ } 3,3 \sqrt{ } 3, \ldots$.
So,
$\mathrm{a}=\sqrt{ } 3$
$\mathrm{d}=2 \sqrt{ } 3-\sqrt{ } 3=\sqrt{ } 3$
The general term is given by,
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
For $100^{\text {th }}$ term
$t_{100}=\sqrt{ } 3+(100-1) \sqrt{ } 3=\sqrt{ } 3+99 \sqrt{ } 3=100 \sqrt{ } 3$
Therefore, the $100^{\text {th }}$ term of the given A.P. is $100 \sqrt{ } 3$.

## 7. Find the $50^{\text {th }}$ term of the sequence:

$1 / n,(n+1) / n,(2 n+1) / n, \ldots \ldots$

## Solution:

Given sequence,
$1 / \mathrm{n},(\mathrm{n}+1) / \mathrm{n},(2 \mathrm{n}+1) / \mathrm{n}, \ldots \ldots$.
So,
$\mathrm{a}=1 / \mathrm{n}$
$\mathrm{d}=(\mathrm{n}+1) / \mathrm{n}-1 / \mathrm{n}=(\mathrm{n}+1-1) / \mathrm{n}=1$
Then, the general term is given by
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
For $50^{\text {th }}$ term, $\mathrm{n}=50$
$\mathrm{t}_{50}=1 / \mathrm{n}+(50-1) 1=1 / \mathrm{n}+49=(49 \mathrm{n}+1) / \mathrm{n}$
Hence, the $50^{\text {th }}$ term of the given sequence is $(49 n+1) / n$.
8. Is 402 a term of the sequence: $8,13,18,23, \ldots \ldots \ldots \ldots$.......

## Solution:

Give sequence, $8,13,18,23, \ldots \ldots \ldots \ldots$
$\mathrm{d}=13-8=5$ and $\mathrm{a}=8$
So, the general term is given by
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{t}_{\mathrm{n}}=8+(\mathrm{n}-1) 5=8+5 \mathrm{n}-5=3+5 \mathrm{n}$
Now,
If 402 is a term of the sequence whose $\mathrm{n}^{\text {th }}$ is given by $(3+5 \mathrm{n})$ then n must be a non-negative integer.
$3+5 n=402$
$5 n=399$
$\mathrm{n}=399 / 5$
So, clearly n is a fraction.
Thus, we can conclude that 402 is not a term of the given sequence.
9. Find the common difference and $99^{\text {th }}$ term of the arithmetic progression:
$7 \frac{3}{4}, 9 \frac{1}{2}, 11 \frac{1}{4}$,

## Solution:

Given, A.P,
i.e., $31 / 4$,
$7 \frac{3}{4}, 9 \frac{1}{2}, 11 \frac{1}{4}$
$19 / 2,45 / 4, \ldots \ldots$.
So,
$\mathrm{a}=31 / 4$
Common difference, $\mathrm{d}=19 / 2-31 / 4=(38-31) / 4=7 / 4$
Then the general term of the A.P
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{t}_{99}=(31 / 4)+(99-1) \times(7 / 4)$
$=(31 / 4)+93 \times(7 / 4)$
$=(31 / 4)+(686 / 4)$
$=(31+686) / 4$
$=(717) / 4$
= 179 1/4
Hence, the $99^{\text {th }}$ term of A.P. is $179 \frac{1}{4}$
10. How many terms are there in the series:
(i) $4,7,10,13, \ldots \ldots \ldots . ., 148$ ?
(ii) $0.5,0.53,0.56, \ldots \ldots \ldots \ldots . ., 1.1 ?$
(iii) $3 / 4,1,1 \frac{1}{4}$, $3 ?$

## Solution:

(i) Given series, $4,7,10,13, \ldots \ldots \ldots \ldots, 148$

Here,
$\mathrm{a}=4$ and $\mathrm{d}=7-4=3$
So, the given term is given by $\mathrm{t}_{\mathrm{n}}=4+(\mathrm{n}-1) 3=4+3 \mathrm{n}-3$
$\mathrm{t}_{\mathrm{n}}=1+3 \mathrm{n}$
Now,
$148=1+3 n$
$147=3 n$
$\mathrm{n}=147 / 3=49$
Thus, there are 49 terms in the series.
(ii) Given series, $0.5,0.53,0.56, \ldots \ldots \ldots \ldots . .1 .1$

Here,
$a=0.5$ and $d=0.53-0.5=0.03$
So, the given term is given by $\mathrm{t}_{\mathrm{n}}=0.5+(\mathrm{n}-1) 0.03=0.5+0.03 \mathrm{n}-0.03$
$\mathrm{t}_{\mathrm{n}}=0.47+0.03 \mathrm{n}$
Now,
$1.1=0.47+0.03 n$
$1.1-0.47=0.03 n$
$\mathrm{n}=0.63 / 0.03=21$
Thus, there are 21 terms in the series.
(iii) Given series, $3 / 4,1,1 \frac{1}{4}$, 3
Here,
$\mathrm{a}=3 / 4$ and $\mathrm{d}=1-3 / 4=1 / 4$

So, the given term is given by $\mathrm{t}_{\mathrm{n}}=3 / 4+(\mathrm{n}-1) 1 / 4=(3+\mathrm{n}-1) / 4$

$$
\mathrm{t}_{\mathrm{n}}=(2+\mathrm{n}) / 4
$$

Now,

$$
\begin{aligned}
& 3=(2+n) / 4 \\
& 12=2+n \\
& n=10
\end{aligned}
$$

Thus, there are 10 terms in the series.

