Exercise II (A)

1. Find which of the following sequence form a G.P.:
(i) $8,24,72,216$, \qquad
(ii) $1 / 8,1 / 24,1 / 72,1 / 216$,
(iii) 9, 12, 16, 24,

Solution:

(i) Given sequence: $8,24,72,216$, \qquad
Since,
$24 / 8=3,72 / 24=3,216 / 72=3$
$\Rightarrow 24 / 8=72 / 24=216 / 72=$ \qquad $=3$
Therefore $8,24,72,216, \ldots \ldots \ldots$ is a G.P. with a common ratio 3 .
(ii) Given sequence: $1 / 8,1 / 24,1 / 72,1 / 216$, \qquad
Since,
$(1 / 24) /(1 / 8)=1 / 3,(1 / 72) /(1 / 24)=1 / 3,(1 / 216) /(1 / 72)=1 / 3$
$\Rightarrow(1 / 24) /(1 / 8)=(1 / 72) /(1 / 24)=(1 / 216) /(1 / 72)=$ $=1 / 3$
Therefore $1 / 8,1 / 24,1 / 72,1 / 216, \ldots \ldots$. is a G.P. with a common ratio $1 / 3$.
(iii) Given sequence: $9,12,16,24, \ldots \ldots \ldots$

Since,
$12 / 9=4 / 3 ; 16 / 12=4 / 3 ; 24 / 16=3 / 2$
$12 / 9=16 / 12 \neq 24 / 16$
Therefore, $9,12,16,24$ \qquad is not a G.P.
2. Find the $9^{\text {th }}$ term of the series: $1,4,16,64, \ldots$..

Solution:
It's seen that, the first term is $(a)=1$
And, common ratio(r) $=4 / 1=4$
We know that, the general term is
$\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
Thus,
$\mathrm{t}_{9}=(1)(4)^{9-1}=4^{8}=65536$
3. Find the seventh term of the G.P: $1, \sqrt{ } \mathbf{3}, 3,3 \sqrt{ } \mathbf{3}, \ldots .$.

Solution:

It's seen that, the first term is $(a)=1$
And, common ratio(r) $=\sqrt{3} / 1=\sqrt{3}$
We know that, the general term is
$\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
Thus,
$\mathrm{t}_{7}=(1)(\sqrt{ } 3)^{7-1}=(\sqrt{ } 3)^{6}=27$
4. Find the $8^{\text {th }}$ term of the sequence:

$$
\frac{3}{4}, 1 \frac{1}{2}, 3, \ldots \ldots \ldots \ldots
$$

Solution:
The given sequence can be rewritten as, $3 / 4,3 / 2,3, \ldots$.
It's seen that, the first term is $(a)=3 / 4$
And, common ratio(r) $=(3 / 2) /(3 / 4)=2$
We know that, the general term is

$$
\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}
$$

Thus,

$$
\mathrm{t}_{8}=(3 / 4)(2)^{8-1}=(3 / 4)(2)^{7}=3 \times 2^{5}=3 \times 32=96
$$

5. Find the $10^{\text {th }}$ term of the G.P. :
$12,4,1 \frac{1}{3}, \ldots \ldots \ldots \ldots$
Solution:
The given sequence can be rewritten as, $12,4,4 / 3, \ldots$.
It's seen that, the first term is $(a)=12$
And, common ratio(r) $=(4) /(12)=1 / 3$
We know that, the general term is

$$
\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}
$$

Thus,

$$
\mathrm{t}_{10}=(12)(1 / 3)^{10-1}=(12)(1 / 3)^{9}=12 \times 1 /(19683)=4 / 6561
$$

6. Find the nth term of the series:

$$
1,2,4,8, \ldots \ldots \ldots
$$

Solution:
It's seen that, the first term is $(a)=1$
And, common ratio(r) $=2 / 1=2$
We know that, the general term is

$$
\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}
$$

Thus,

$$
\mathrm{t}_{\mathrm{n}}=(1)(2)^{\mathrm{n}-1}=2^{\mathrm{n}-1}
$$

Exercise II(B)

1. Which term of the G.P. :
$-10, \frac{5}{\sqrt{3}},-\frac{5}{6}, \ldots .$. is $-\frac{5}{72}$?

Solution:

In the given G.P.
First term, $a=-10$
Common ratio, $r=(5 / \sqrt{ } 3) /(-10)=1 /(-2 \sqrt{ } 3)$
We know that, the general term is
$\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
So,
$\mathrm{t}_{\mathrm{n}}=(-10)(1 /(-2 \sqrt{ } 3))^{\mathrm{n}-1}=-5 / 72$

$$
\begin{aligned}
& -\frac{5}{72}=-10 \times\left(\frac{1}{-2 \sqrt{3}}\right)^{n-1} \\
& \frac{1}{144}=\left(\frac{-1}{2 \sqrt{3}}\right)^{n-1} \\
& \frac{-1}{2 \times 2 \times 2 \times 2 \times \sqrt{3} \times \sqrt{3} \times \sqrt{3} \times \sqrt{3}}=\left(\frac{-1}{2 \sqrt{3}}\right)^{n-1} \\
& \left(\frac{-1}{2 \sqrt{3}}\right)^{4}=\left(\frac{-1}{2 \sqrt{3}}\right)^{n-1}
\end{aligned}
$$

Now, equating the exponents we have
$\mathrm{n}-1=4$
$\mathrm{n}=5$
Thus, the $5^{\text {th }}$ of the given G.P. is $-5 / 72$
2. The fifth term of a G.P. is 81 and its second term is 24 . Find the geometric progression. Solution:

Given,
$\mathrm{t}_{5}=81$ and $\mathrm{t}_{2}=24$
We know that, the general term is
$\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
So,
$\mathrm{t}_{5}=\mathrm{ar}^{5-1}=\mathrm{ar}^{4}=81 \ldots$ (1)
And,
$\mathrm{t}_{2}=\mathrm{ar}^{2-1}=\mathrm{ar}^{1}=24$
Dividing (1) by (2), we have
$\mathrm{ar}^{4} / \mathrm{ar}=81 / 24$
$\mathrm{r}^{3}=27 / 8$
$\mathrm{r}=3 / 2$
Using r in (2), we get
$a(3 / 2)=24$
$a=16$
Hence, the G.P. is
G.P. $=\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \mathrm{ar}^{3} \ldots \ldots$
$=16,16 \times(3 / 2), 16 \times(3 / 2)^{2}, 16 \times(3 / 2)^{3}$
$=16,24,36,54, \ldots \ldots$
3. Fourth and seventh terms of a G.P. are $1 / 18$ and $-1 / 486$ respectively. Find the G.P. Solution:

Given,
$\mathrm{t}_{4}=1 / 18$ and $\mathrm{t}_{7}=-1 / 486$
We know that, the general term is
$\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
So,
$\mathrm{t}_{4}=\mathrm{ar}^{4-1}=\mathrm{ar}^{3}=1 / 18$
And,
$\mathrm{t}_{7}=\mathrm{ar}^{7-1}=\mathrm{ar}^{6}=-1 / 486$
Dividing (2) by (1), we have
$\mathrm{ar}^{6} / \mathrm{ar}^{3}=(-1 / 486) /(1 / 18)$
$r^{3}=-1 / 27$
$r=-1 / 3$
Using r in (1), we get
$\mathrm{a}(-1 / 3)^{3}=1 / 18$
$a=-27 / 18=-3 / 2$
Hence, the G.P. is
G.P. $=\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \mathrm{ar}^{3}$
$=-3 / 2,-3 / 2(-1 / 3),-3 / 2(-1 / 3)^{2},-3 / 2(-1 / 3)^{3}, \ldots \ldots$
$=-3 / 2,1 / 2,-1 / 6,1 / 18, \ldots$.
4. If the first and the third terms of a G.P are 2 and 8 respectively, find its second term.

Solution:

Given,
$\mathrm{t}_{1}=2$ and $\mathrm{t}_{3}=8$
We know that, the general term is
$\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
So,
$\mathrm{t}_{1}=\mathrm{ar}^{1-1}=\mathrm{a}=2$
And,
$\mathrm{t}_{3}=\mathrm{ar}^{3-1}=\mathrm{ar}^{2}=8$
Dividing (2) by (1), we have
$\mathrm{ar}^{2} / \mathrm{a}=8 / 2$
$\mathrm{r}^{2}=4$
$\mathrm{r}= \pm 2$
Hence, the $2^{\text {nd }}$ term of the G.P. is

When $\mathrm{a}=2$ and $\mathrm{r}=2$ is $2(2)=4$
Or when $\mathrm{a}=2$ and $\mathrm{r}=-2$ is $2(-2)=-4$
5. The product of $3^{\text {rd }}$ and $8^{\text {th }}$ terms of a G.P. is 243 . If its $4^{\text {th }}$ term is 3 , find its $7^{\text {th }}$ term Solution:

Given,
Product of $3^{\text {rd }}$ and $8^{\text {th }}$ terms of a G.P. is 243
The general term of a G.P. with first term a and common ratio r is given by,

$$
\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}
$$

So,

$$
\mathrm{t}_{3} \times \mathrm{t}_{8}=\mathrm{ar}^{3-1} \mathrm{xar}^{8-1}=\mathrm{ar}^{2} \mathrm{xar}^{7}=\mathrm{a}^{2} \mathrm{r}^{9}=243
$$

Also given,

$$
\mathrm{t}_{4}=\mathrm{ar}^{4-1}=a \mathrm{r}^{3}=3
$$

Now,

$$
a^{2} r^{9}=\left(a r^{3}\right) a r^{6}=243
$$

Substituting the value of $\mathrm{ar}^{3}{ }^{3}$ in the above equation, we get,
(3) $\mathrm{ar}^{6}=243$
$\mathrm{ar}^{6}=81$
$\mathrm{ar}^{7-1}=81=\mathrm{t}_{7}$
Thus, the $7^{\text {th }}$ term of the G.P is 81 .

Exercise II(C)

1. Find the seventh term from the end of the series: $\sqrt{ } 2,2,2 \sqrt{ } 2, \ldots \ldots, 32$

Solution:
Given series: $\sqrt{ } 2,2,2 \sqrt{ } 2, \ldots \ldots, 32$
Here,
$\mathrm{a}=\sqrt{2}$
$\mathrm{r}=2 / \sqrt{ } 2=\sqrt{ } 2$
And, the last term (1) $=32$
$1=\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}=32$
$(\sqrt{ } 2)(\sqrt{ } 2)^{\mathrm{n}-1}=32$
$(\sqrt{2})^{\mathrm{n}}=32$
$(\sqrt{ } 2)^{\mathrm{n}}=(2)^{5}=(\sqrt{ } 2)^{10}$
Equating the exponents, we have
$\mathrm{n}=10$
So, the $7^{\text {th }}$ term from the end is $(10-7+1)^{\text {th }}$ term.
i.e. $4^{\text {th }}$ term of the G.P

Hence,
$t_{4}=(\sqrt{ } 2)(\sqrt{ } 2)^{4-1}=(\sqrt{ } 2)(\sqrt{ } 2)^{3}=(\sqrt{ } 2) \times 2 \sqrt{ } 2=4$
2. Find the third term from the end of the G.P.

2/27, 2/9, 2/3,, 162
Solution:
Given series: $2 / 27,2 / 9,2 / 3, \ldots \ldots, 162$
Here,
$\mathrm{a}=2 / 27$
$\mathrm{r}=(2 / 9) /(2 / 27)$
$\mathrm{r}=3$
And, the last term (1) = 162
$\mathrm{l}=\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}=162$
$(2 / 27)(3)^{\mathrm{n}-1}=162$
(3) ${ }^{\mathrm{n}-1}=162 \times(27 / 2)$
(3) ${ }^{\mathrm{n}-1}=2187$
$(3)^{\mathrm{n}-1}=(3)^{7}$
$\mathrm{n}-1=7$
$\mathrm{n}=7+1$
$\mathrm{n}=8$
So, the third term from the end is $(8-3+1)^{\text {th }}$ term
i.e $6^{\text {th }}$ term of the G.P. $=t_{6}$

Hence,
$\mathrm{t}_{6}=\mathrm{ar}^{6-1}$
$\mathrm{t}_{6}=(2 / 27)(3)^{6-1}$
$\mathrm{t}_{6}=(2 / 27)(3)^{5}$
$\mathrm{t}_{6}=2 \times 3^{2}$
$\mathrm{t}_{6}=18$
3. Find the G.P. $1 / 27,1 / 9,1 / 3, \ldots \ldots, 81$; find the product of fourth term from the beginning and the fourth term from the end.

Solution:

Given G.P. $1 / 27,1 / 9,1 / 3, \ldots \ldots, 81$
Here, $\mathrm{a}=1 / 27$, common ratio $(\mathrm{r})=(1 / 9) /(1 / 27)=3$ and $\mathrm{l}=81$
We know that,
$1=\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}=81$
$(1 / 27)(3)^{\mathrm{n}-1}=81$
$3^{\mathrm{n}-1}=81 \times 27=2187$
$3^{\mathrm{n}-1}=3^{7}$
$\mathrm{n}-1=7$
$\mathrm{n}=8$
Hence, there are 8 terms in the given G.P.
Now,
$4^{\text {th }}$ term from the beginning is t_{4} and the $4^{\text {th }}$ term from the end is $(8-4+1)=5^{\text {th }}$ term (t_{5})
Thus,
the product of t_{4} and $t_{5}=a r^{4-1} x a r^{5-1}=a r^{3} x a r^{4}=a^{2} r^{7}=(1 / 27)^{2}(3)^{7}=3$
4. If for a G.P., $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms are a, b and c respectively; prove that:
$(q-r) \log a+(r-p) \log b+(p-q) \log c=0$
Solution:
Let's take the first term of the G.P. be A and its common ratio be R.
Then,
$\mathrm{p}^{\text {th }}$ term $=\mathrm{a} \Rightarrow \mathrm{AR}^{\mathrm{p}-1}=\mathrm{a}$
$\mathrm{q}^{\text {th }}$ term $=\mathrm{b} \Rightarrow \mathrm{AR}^{\mathrm{q}-1}=\mathrm{b}$
$\mathrm{r}^{\text {th }}$ term $=\mathrm{c} \Rightarrow \mathrm{AR}^{\mathrm{r}-1}=\mathrm{c}$
Now,

$$
\begin{aligned}
a^{q-r} \times b^{r-p} \times C^{p-q} & =\left(A R^{p-1}\right)^{q-r} \times\left(A R^{q-1}\right)^{r-p} \times\left(A R^{r-1}\right)^{p-q} \\
& =A^{q-r} \cdot R^{(p-1)(q-r)} \times A^{r-p} \cdot R^{(q-1)(r-p)} \times A^{p-q} \cdot R^{(r-1)(p-q)} \\
& =A^{q-r+-p+p-q} \times R^{(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)} \\
& =A^{0} \times R^{0} \\
& =1
\end{aligned}
$$

On taking \log on both the sides, we get
$\log \left(\mathrm{a}^{\mathrm{q}-\mathrm{r}} \mathrm{x} \mathrm{b}^{\mathrm{r}-\mathrm{p}} \mathrm{xc}^{\mathrm{p}-\mathrm{q}}\right)=\log 1$
$\Rightarrow(\mathrm{q}-\mathrm{r}) \log \mathrm{a}+(\mathrm{r}-\mathrm{p}) \log \mathrm{b}+(\mathrm{p}-\mathrm{q}) \log \mathrm{c}=0$

Exercise II(D)

1. Find the sum of G.P.:
(i) $1+3+9+27+$ \qquad to 12 terms
(ii) $0.3+0.03+0.003+0.0003+$ \qquad to 8 terms.
(iii) $1-1 / 2+1 / 4-1 / 8+$ \qquad to 9 terms
(iv) $1-1 / 3+1 / 3^{2}-1 / 3^{3}+$ \qquad to n terms
(v) $\frac{x+y}{x-y}+1+\frac{x-y}{x+y}+\ldots$. upto n terms
(vi) $\sqrt{3}+\frac{1}{\sqrt{3}}+\frac{1}{3 \sqrt{3}}+\ldots$ \qquad to n terms.

Solution:

(i) Given G.P: $1+3+9+27+$ \qquad to 12 terms
Here,
$\mathrm{a}=1$ and $\mathrm{r}=3 / 1=3(\mathrm{r}>1)$
Number of terms, $\mathrm{n}=12$
Hence,
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) / \mathrm{r}-1$
$\Rightarrow S_{12}=(1)\left((3)^{12}-1\right) / 3-1$

$$
\begin{aligned}
& =\left(3^{12}-1\right) / 2 \\
& =(531441-1) / 2 \\
& =531440 / 2 \\
& =265720
\end{aligned}
$$

(ii) Given G.P: $0.3+0.03+0.003+0.0003+\ldots$. to 8 terms

Here,
$\mathrm{a}=0.3$ and $\mathrm{r}=0.03 / 0.3=0.1(\mathrm{r}<1)$
Number of terms, $n=8$
Hence,

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) / 1-\mathrm{r} \\
& \Rightarrow \mathrm{~S}_{8}=(0.3)\left(1-0.1^{8}\right) /(1-0.1) \\
& \\
& =0.3\left(1-0.1^{8}\right) / 0.9 \\
& \\
& \quad=\left(1-0.1^{8}\right) / 3 \\
& \\
& =1 / 3\left(1-(1 / 10)^{8}\right)
\end{aligned}
$$

(iii) Given G.P: $1-1 / 2+1 / 4-1 / 8+\ldots \ldots$. to 9 terms

Here,
$\mathrm{a}=1$ and $\mathrm{r}=(-1 / 2) / 1=-1 / 2(|\mathrm{r}|<1)$
Number of terms, $n=9$
Hence,

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) / 1-\mathrm{r} \\
& \Rightarrow \mathrm{~S} 9 \\
& =(1)\left(1-(-1 / 2)^{9}\right) /(1-(-1 / 2)) \\
& \\
& =\left(1+(1 / 2)^{9}\right) /(3 / 2) \\
& \\
& =2 / 3 \times(1+1 / 512)
\end{aligned}
$$

$$
\begin{aligned}
& =2 / 3 \times(513 / 512) \\
& =171 / 256
\end{aligned}
$$

(iv) Given G.P: $1-1 / 3+1 / 3^{2}-1 / 3^{3}+\ldots \ldots \ldots$ to n terms

Here,
$\mathrm{a}=1$ and $\mathrm{r}=(-1 / 3) / 1=-1 / 3(|\mathrm{r}|<1)$
Number of terms is n
Hence,

$$
\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) / 1-\mathrm{r}
$$

$$
S_{n}=\frac{1\left(1-\left(-\frac{1}{3}\right)^{n}\right)}{1-\left(-\frac{1}{3}\right)}
$$

$$
=\frac{1\left(1-\left(-\frac{1}{3}\right)^{n}\right)}{1+\frac{1}{3}}
$$

$$
=\frac{\left[1-\left(-\frac{1}{3}\right)^{n}\right]}{\frac{4}{3}}
$$

$$
=\frac{3}{4}\left[1-\left(-\frac{1}{3}\right)^{n}\right]
$$

(v) Given G.P:
$\frac{x+y}{x-y}+1+\frac{x-y}{x+y}+\ldots .$. upto n terms
Here,
$\mathrm{a}=(\mathrm{x}+\mathrm{y}) /(\mathrm{x}-\mathrm{y})$ and $\mathrm{r}=1 /[(\mathrm{x}+\mathrm{y}) /(\mathrm{x}-\mathrm{y})]=(\mathrm{x}-\mathrm{y}) /(\mathrm{x}+\mathrm{y}) \quad(|\mathrm{r}|<1)$
Number of terms $=\mathrm{n}$
Hence,
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) / 1-\mathrm{r}$

$$
\begin{aligned}
S_{n} & =\frac{\frac{x+y}{x-y}\left(1-\left(\frac{x-y}{x+y}\right)^{n}\right)}{1-\left(\frac{x-y}{x+y}\right)} \\
& =\frac{\frac{x+y}{x-y}\left(1-\left(\frac{x-y}{x+y}\right)^{n}\right)}{\frac{x+y-x+y}{x+y}} \\
& =\frac{\frac{x+y}{x-y}\left(1-\left(\frac{x-y}{x+y}\right)^{n}\right)}{\frac{2 y}{x+y}} \\
& =\frac{(x+y)^{2}\left(1-\left(\frac{x-y}{x+y}\right)^{n}\right)}{2 y(x-y)}
\end{aligned}
$$

(vi) Given G.P:

$$
\sqrt{3}+\frac{1}{\sqrt{3}}+\frac{1}{3 \sqrt{3}}+\ldots . . \text { to } n \text { terms. }
$$

Here,

$$
a=\sqrt{ } 3 \text { and } r=1 / \sqrt{ } 3 / \sqrt{ } 3=1 / 3 \quad(|r|<1)
$$

Number of terms $=\mathrm{n}$
Hence,

$$
\begin{aligned}
S_{n} & =a\left(1-r^{n}\right) / 1-r \\
S_{n} & =\frac{\sqrt{3}\left(1-\left(\frac{1}{3}\right)^{n}\right)}{1-\frac{1}{3}}=\frac{\sqrt{3}\left(1-\frac{1}{3^{n}}\right)}{\frac{2}{3}} \\
& =\frac{3 \sqrt{3}}{2}\left(1-\frac{1}{3^{n}}\right)
\end{aligned}
$$

2. How many terms of the geometric progression $1+4+16+64+\ldots \ldots$. must be added to get sum equal to 5461?
Solution:

Given G.P: $1+4+16+64+\ldots \ldots .$.
Here,
$a=1$ and $r=4 / 1=4 \quad(r>1)$
And,
$\mathrm{S}_{\mathrm{n}}=5461$
We know that,
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) / \mathrm{r}-1$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=(1)\left((4)^{\mathrm{n}}-1\right) / 4-1$

$$
=\left(4^{n}-1\right) / 3
$$

$5461=\left(4^{\mathrm{n}}-1\right) / 3$
$16383=4^{\mathrm{n}}-1$
$4^{n}=16384$
$4^{\mathrm{n}}=4^{7}$
$\mathrm{n}=7$
Therefore, 7 terms of the G.P must be added to get a sum of 5461 .
3. The first term of a G.P. is 27 and its $\mathbf{8}^{\text {th }}$ term is $\mathbf{1 / 8 1}$. Find the sum of its first 10 terms.

Solution:

Given,
First term (a) of a G.P = 27
And, $8^{\text {th }}$ term $=\mathrm{t}_{8}=\mathrm{ar}^{8-1}=1 / 81$
(27) $r^{7}=1 / 81$
$\mathrm{r}^{7}=1 /(81 \times 27)$
$r^{7}=(1 / 3)^{7}$
$r=1 / 3 \quad(r<1)$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) / 1-\mathrm{r}$
Now,
Sum of first 10 terms $=S_{10}$

$$
\begin{aligned}
S_{10} & =\frac{27\left(1-\left(\frac{1}{3}\right)^{10}\right)}{1-\frac{1}{3}}=\frac{27\left(1-\frac{1}{3^{10}}\right)}{\frac{2}{3}} \\
& =\frac{81}{2}\left(1-\frac{1}{3^{10}}\right)
\end{aligned}
$$

4. A boy spends Rs. 10 on first day, Rs. 20 on second day, Rs. 40 on third day and so on. Find how much, in all, will he spend in 12 days?

Solution:

Given,
Amount spent on $1^{\text {st }}$ day $=$ Rs 10
Amount spent on $2^{\text {nd }}$ day $=$ Rs 20
And amount spent on $3^{\text {rd }}$ day $=$ Rs 40
It's seen that,
$10,20,40, \ldots \ldots$ forms a G.P with first term, $\mathrm{a}=10$ and common ratio, $\mathrm{r}=20 / 10=2(\mathrm{r}>1)$
The number of days, $n=12$
Hence, the sum of money spend in 12 days is the sum of 12 terms of the G.P.
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) / \mathrm{r}-1$
$\mathrm{S}_{12}=(10)\left(2^{12}-1\right) / 2-1=10\left(2^{12}-1\right)=10(4096-1)=10 \times 4095=40950$
Therefore, the amount spent by him in 12 days is Rs 40950
5. The $4^{\text {th }}$ term and the $7^{\text {th }}$ term of a G.P. are $1 / 27$ and $1 / 729$ respectively. Find the sum of n terms of the G.P.
Solution:
Given,
$\mathrm{t}_{4}=1 / 27$ and $\mathrm{t}_{7}=1 / 729$
We know that,
$\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
So,
$t_{4}=\operatorname{ar}^{4-1}=\mathrm{ar}^{3}=1 / 27 \ldots$. (1)
$\mathrm{t}_{7}=\mathrm{ar}^{7-1}=\mathrm{ar}^{6}=1 / 729 \ldots$ (2)
Dividing (2) by (1) we get,
$\mathrm{ar}^{6} / \mathrm{ar}^{3}=(1 / 729) /(1 / 27)$
$r^{3}=(1 / 3)^{3}$
$\mathrm{r}=1 / 3(\mathrm{r}<1)$
In (1)
a $\times 1 / 27=1 / 27$
$\mathrm{a}=1$
Hence,
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right) / 1-\mathrm{r}$
$\mathrm{S}_{\mathrm{n}}=\left(1-(1 / 3)^{\mathrm{n}}\right) / 1-(1 / 3)$
$=\left(1-(1 / 3)^{\mathrm{n}}\right) /(2 / 3)$

$$
=3 / 2\left(1-(1 / 3)^{\mathrm{n}}\right)
$$

6. A geometric progression has common ratio $=3$ and last term $=486$. If the sum of its terms is 728; find its first term.
Solution:
Given,
For a G.P.,
$\mathrm{r}=3,1=486$ and $\mathrm{S}_{\mathrm{n}}=728$
$\frac{\mathrm{Ir}-\mathrm{a}}{\mathrm{r}-1}=728$
$\frac{486 \times 3-a}{3-1}=728$
$\frac{1458-a}{2}=728$
$1458-\mathrm{a}=728 \times 2=1456$
Thus, $\mathrm{a}=2$
7. Find the sum of G.P.: 3, 6, 12,, 1536.

Solution:

Given G.P: 3, 6, 12, $\ldots ., 1536$
Here,
$a=3,1=1536$ and $r=6 / 3=2$
So,
The sum of terms $=(\operatorname{lr}-\mathrm{a}) /(\mathrm{r}-1)$

$$
\begin{aligned}
& =(1536 \times 2-3) /(2-1) \\
& =3072-3 \\
& =3069
\end{aligned}
$$

8. How many terms of the series $2+6+18+\ldots$. must be taken to make the sum equal to 728 ? Solution:

Given G.P: $2+6+18+\ldots$.
Here,
$\mathrm{a}=2$ and $\mathrm{r}=6 / 2=3$
Also given,
$\mathrm{S}_{\mathrm{n}}=728$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right) / \mathrm{r}-1$
$728=(2)\left(3^{n}-1\right) / 3-1=3^{n}-1$
$729=3^{\mathrm{n}}$
$3^{6}=3^{n}$
$\mathrm{n}=6$
Therefore, 6 terms must be taken to make the sum equal to 728 .
9. In a G.P., the ratio between the sum of first three terms and that of the first six terms is 125: 152.

Find its common ratio.
Solution:
Given,

$$
\begin{aligned}
& \frac{\left.a\left(r^{3}-1\right)\right)}{r-1}: \frac{\left.a\left(r^{6}-1\right)\right)}{r-1}=125: 152 \\
& \frac{\left.a\left(r^{3}-1\right)\right)}{r-1} \\
& \frac{\left.a\left(r^{6}-1\right)\right)}{r-1}=\frac{125}{152} \\
& \frac{\left(r^{3}-1\right)}{\left(r^{6}-1\right)}=\frac{125}{152} \\
& \frac{r^{3}-1}{\left(r^{3}\right)^{2}-(1)^{2}}=\frac{125}{152} \\
& \frac{r^{3}-1}{\left(r^{3}-1\right)\left(r^{3}+1\right)}=\frac{125}{152} \\
& \frac{1}{r^{3}+1}=\frac{125}{152} \\
& r^{3}+1=\frac{152}{125} \\
& r^{3}=\frac{152}{125}-1=\frac{152-125}{125}=\frac{27}{125} \\
& r^{3}=\left(\frac{3}{5}\right)^{3}
\end{aligned}
$$

$$
\mathrm{r}=3 / 5
$$

Therefore, the common ratio is $3 / 5$.

