MODEL QUESTION PAPER-1 For Reduced Syllabus 2020-21 MATHEMATICS :SECOND PUC Subject code: 35

Time: 3 hours 15 minute Instructions:

i. The question paper has five parts namely A, B, C, D and E. Answer all the parts.ii. Use the graph sheet for the question on linear programming in **PART – E**.

PART A

 $10 \times 1 = 10$

Max. Marks: 100

Answer ALL the questions 1. Define an empty relation.

- **2.** Write the domain of the function $y = \sec^{-1} x$.
- 3. If a matrix has 5 elements, what are the possible orders it can have?

4. Find the values of x for which $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$.

5. If $y = \tan \sqrt{x}$, find $\frac{dy}{dx}$.

6. Find $\int (2x^2 + e^x) dx$.

- 7. Define a negative vector.
- **8.** If a line makes angles 90°, 135° and 45° with the *x*, *y* and *z*-axis respectively, find its direction cosines.
- 9. Define Optimal solution in a linear programming problem.

10. If
$$P(A) = \frac{7}{13}$$
, $P(B) = \frac{9}{13}$ and $P(A \cap B) = \frac{4}{13}$, evaluate $P(A | B)$.

Answer any TEN questions:

- **11.** Let * be a binary operation on *Q* defined by $a * b = \frac{ab}{2}$, $\forall a, b \in Q$. Show that * is associative.
- **12.** Find the principal value of $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$.
- **13.** Find the area of the triangle whose vertices are (-2, -3), (3, 2) and (-1, -8) using determinants.
- **14.** Find $\frac{dy}{dx}$, if $y = \cos(\log x + e^x)$, x > 0
- **15.** Find $\frac{dy}{dx}$, if $\sin^2 x + \cos^2 y = 1$.
- **16.** If $y = x^3 + \tan x$, then find $\frac{d^2y}{dx^2}$.
- **17.** Find the slope of the tangent to the curve $y = x^3 x$ at x = 2.
- **18.** Find $\int_0^{\pi} (\sin^2 \frac{x}{2} \cos^2 \frac{x}{2}) dx$.
- **19.** Find $\int x \sec^2 x \, dx$.
- **20.** Find the order and degree of the differential equation, y'' + 2y' + y' = 0.
- **21.** Find the projection of the vector $\vec{a} = \hat{i} + 3j + 7k$ on the vector $\vec{b} = 7\hat{i} j + 8k$.
- 22. Find the area of the parallelogram whose adjacent sides are determined by

$\textbf{10} \times \textbf{2=20}$

the vectors $\vec{a} = \hat{i} - j + 3k$ and $\vec{b} = 2\hat{i} - 7j + k$.

- **23.** Find the equation of the plane with intercepts 2, 3 and 4 on *X*, *Y* and *Z* axes respectively.
- **24.** Assume that each child born in a family is equally likely to be a boy or girl. If a family has two children, what is the conditional probability that both are girls, given that the youngest is a girl.

PART C

$10 \times 3=30$

25. Show that the relation R defined in the set A of all triangles as $R=\{(T_1,T_2):T_1 \text{ is similar to } T_2\}$, is equivalence relation.

26. For the matrix $A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$, verify that

(i) A + A' is a symmetric matrix (ii) A - A' is a skew- symmetric matrix.

27. If
$$x = 2at^2$$
, $y = at^4$, then find $\frac{dy}{dx}$.

Answer any TEN questions:

- **28.** Find $\frac{dy}{dx}$, if $x^y = y^x$.
- **29.** Find the intervals in which the function f given by $f(x) = x^2 4x + 6$ is (a) strictly increasing (b) strictly decreasing.

30. Evaluate:
$$\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cdot \cos^2 x} dx$$

- **31.** Find $\int \frac{(x-3)e^x}{(x-1)^3} dx$.
- **32.** Evaluate: $\int \frac{dx}{(x+1)(x+2)}$.
- **33.** Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the *y*-axis in the first quadrant.
- **34.** Solve, $\frac{dy}{dx} = e^{x+y}$.
- **35**. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}|=3$, $|\vec{b}|=4$, $|\vec{c}|=5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.
- **36.** Show that the points $A(-2\hat{i}+3\hat{j}+5\hat{k})$, $B(\hat{i}+2\hat{j}+3\hat{k})$ and $C(7\hat{i}-\hat{k})$ are collinear.
- **37.** Find the equation of the plane through the intersection of the planes 3x-y+2z-4=0, x+y+z-2=0 and the point (2, 2, 1).
- **38.** A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

PART D

Answer any SIX questions:

39. Check the injectivity and surjectivity of the function $f : R \to R$ defined by f(x) = 3 - 4x. Is it a bijective function?

40. If $A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{bmatrix}$ then compute A+B and B-C

DPUE/MATHS/II PU/2020-21

6×5=30

Also, verify that A + (B - C) = (A + B) - C.

- **41.** Solve the system of equations by matrix method: 2x+3y+3z=5, x-2y+z=-4, 3x-y-2z=3.
- **42.** If $y = (\tan^{-1} x)^2$, show that $(1+x^2)^2 y_2 + 2x(1+x^2) y_1 = 2$.
- **43.** The length x of a rectangle is decreasing at the rate of 3 cm/minute and the width y is Increasing at the rate of 2 cm/minute. When x = 10 cm and y = 6 cm, find the rates of change of (i) the perimeter (ii) the area of the rectangle.
- **44.** Find the integral of $\frac{1}{\sqrt{a^2-x^2}}$ with respect to *x* and hence evaluate $\frac{1}{\sqrt{9-25x^2}}$. **45.** Using the method of integration, find the area enclosed by the circle $x^2 + y^2 = a^2$.
- **46.** Find the general solution of the differential equation $x \frac{dy}{dx} + 2y = x^2$ ($x \neq 0$).
- **47.** Derive the equation of the line in space passing through a given point and parallel to a given vector both in vector and Cartesian form.
- **48.** Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{2}$

respectively. If both try to solve the problem independently, find the probability that (i) the problem is solved (ii) exactly one of them solves the problem.

PART E

Answer any ONE question:

49. (a) Prove that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
 and hence evaluate $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} dx$. **6**

(b) Find the value of k if $f(x) = \begin{cases} kx+1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases}$ is continuous at $x = \pi$. 4

- **50.(a)** Miximise z = 4x + y subject to constraints $x + y \le 50$, $3x + y \le 90$, $x \ge 0$, $y \ge 0$ by graphical method. 6
 - **(b)** If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, satisfies the equation $A^2 5A + 7I = O$, then find the inverse of A using 4

this equation, where I is the identity matrix of order 2.

1 × 10=10