

EXERCISE 6.2

PAGE NO: 6.28

```
1. Using laws of exponents, simplify and write the answer in exponential form
(i) 2^3 \times 2^4 \times 2^5
(ii) 5^{12} \div 5^3
(iii) (7<sup>2</sup>)<sup>3</sup>
(iv) (3^2)^5 \div 3^4
(v) 3^7 \times 2^7
(vi) (5^{21} \div 5^{13}) \times 5^7
Solution:
(i) Given 2^3 \times 2^4 \times 2^5
We know that first law of exponents states that a^m \times a^n \times a^p = a^{(m+n+p)}
Therefore above equation can be written as 2^3 \times 2^4 \times 2^5 = 2^{(3+4+5)}
= 2<sup>12</sup>
(ii) Given 5^{12} \div 5^3
According to the law of exponents we have a^m \div a^n = a^{m-n}
Therefore given question can be written as 5^{12} \div 5^3 = 5^{12-3} = 5^9
(iii) Given (7^2)^3
According to the law of exponents we have (a^m)^n = a^{mn}
Therefore given question can be written as (7^2)^3 = 7^6
(iv) Given (3^2)^5 \div 3^4
According to the law of exponents we have (a^m)^n = a^{mn}
Therefore (3^2)^5 \div 3^4 = 3^{10} \div 3^4
According to the law of exponents we have a^m \div a^n = a^{m-n}
3^{10} \div 3^4 = 3^{(10-4)} = 3^6
(v) Given 3^7 \times 2^7
We know that law of exponents states that a^m x b^m = (a x b)^m
3^7 \times 2^7 = (3 \times 2)^7 = 6^7
(vi) Given (5^{21} \div 5^{13}) \times 5^7
```

According to the law of exponents we have $a^m \div a^n = a^{m-n} = 5^{(21-13)} \times 5^7$

 $= 5^8 \times 5^7$

According to the law of exponents we have $a^m x a^n = a^{(m+n)} = 5^{(8+7)} = 5^{15}$

2. Simplify and express each of the following in exponential form:

(i) $\{(2^3)^4 \times 2^8\} \div 2^{12}$ (ii) $(8^2 \times 8^4) \div 8^3$ (iii) $(5^7/5^2) \times 5^3$ (iv) $(5^4 \times x^{10}y^5)/(5^4 \times x^7y^4)$

Solution:

(i) Given $\{(2^3)^4 \times 2^8\} \div 2^{12}$ $\{(2^3)^4 \times 2^8\} \div 2^{12} = \{2^{12} \times 2^8\} \div 2^{12}$ [According to the law of exponents we have $(a^m)^n = a^{mn}$] $= 2^{(12+8)} \div 2^{12}$ [According to the law of exponents we have $a^m \times a^n = a^{(m+n)}$] $= 2^{20} \div 2^{12}$ [According to the law of exponents we have $a^m \div a^n = a^{m-n}$] $= 2^{(20-12)}$ $= 2^8$

(ii) Given $(8^2 \times 8^4) \div 8^3$ $(8^2 \times 8^4) \div 8^3$ [According to the law of exponents we have $a^m \times a^n = a^{(m+n)}$] $= 8^{(2+4)} \div 8^3$ $= 8^6 \div 8^3$ [According to the law of exponents we have $a^m \div a^n = a^{m-n}$] $= 8^{(6-3)} = 8^3 = (2^3)^3 = 2^9$

(iii) Given $(5^7/5^2) \times 5^3$ = $5^{(7-2)} \times 5^3$ [According to the law of exponents we have $a^m \div a^n = a^{m-n}$] = $5^5 \times 5^3$ [According to the law of exponents we have $a^m \times a^n = a^{(m+n)}$] = $5^{(5+3)} = 5^8$

(iv) Given $(5^4 \times x^{10}y^5)/(5^4 \times x^7y^4)$ = $(5^{4-4} \times x^{10-7}y^{5-4})$ [According to the law of exponents we have $a^m \div a^n = a^{m-n}$] = $5^0x^3y^1$ [since $5^0 = 1$] = $1x^3y$

3. Simplify and express each of the following in exponential form: (i) $\{(3^2)^3 \times 2^6\} \times 5^6$ (ii) $(x/y)^{12} \times y^{24} \times (2^3)^4$

(iii) $(5/2)^6 \times (5/2)^2$ (iv) $(2/3)^5 \times (3/5)^5$

Solution:

(i) Given $\{(3^2)^3 \times 2^6\} \times 5^6$ = $\{3^6 \times 2^6\} \times 5^6$ [According to the law of exponents we have $(a^m)^n = a^{mn}$] = $6^6 \times 5^6$ [since law of exponents states that $a^m \times b^m = (a \times b)^m$] = 30^6

(ii) Given $(x/y)^{12} \times y^{24} \times (2^3)^4$ = $(x^{12}/y^{12}) \times y^{24} \times 2^{12}$ = $x^{12} \times y^{24-12} \times 2^{12}$ [According to the law of exponents we have $a^m \div a^n = a^{m-n}$] = $x^{12} \times y^{12} \times 2^{12}$ = $(2xy)^{12}$

(iii) Given $(5/2)^6 \times (5/2)^2$ = $(5/2)^{6+2}$ [According to the law of exponents we have $a^m x a^n = a^{(m+n)}$] = $(5/2)^8$

(iv) Given $(2/3)^5 \times (3/5)^5$ = $(2/5)^5$ [since law of exponents states that $a^m \times b^m = (a \times b)^m$]

4. Write 9 × 9 × 9 × 9 × 9 in exponential form with base 3.

Solution: Given $9 \times 9 \times 9 \times 9 \times 9 = (9)^5 = (3^2)^5$ = 3^{10}

5. Simplify and write each of the following in exponential form:
(i) (25)³ ÷ 5³
(ii) (81)⁵ ÷ (3²)⁵
(iii) 9⁸ × (x²)⁵/ (27)⁴ × (x³)²
(iv) 3² × 7⁸ × 13⁶/ 21² × 91³

Solution:

(i) Given $(25)^3 \div 5^3$ = $(5^2)^3 \div 5^3$ [According to the law of exponents we have $(a^m)^n = a^{mn}$]


```
= 5^6 \div 5^3 [According to the law of exponents we have a^m \div a^n = a^{m-n}]
= 5^{6-3}
= 5^{3}
(ii) Given (81)^5 \div (3^2)^5 [According to the law of exponents we have (a^m)^n = a^{mn}]
= (81)^5 \div 3^{10}[81 = 3^4]
= (3^4)^5 \div 3^{10} [According to the law of exponents we have (a^m)^n = a^{mn}]
= 3^{20} \div 3^{10}
= 3^{20-10} [According to the law of exponents we have a^m \div a^n = a^{m-n}]
= 3^{10}
(iii) Given 9^8 \times (x^2)^5 / (27)^4 \times (x^3)^2
= (3^2)^8 \times (x^2)^5 / (3^3)^4 \times (x^3)^2 [According to the law of exponents we have (a^m)^n = a^{mn}]
= 3^{16} \times x^{10}/3^{12} \times x^{6}
= 3^{16-12} \times x^{10-6} [According to the law of exponents we have a^m \div a^n = a^{m-n}]
= 3^4 \times x^4
= (3x)^4
(iv) Given (3^2 \times 7^8 \times 13^6) / (21^2 \times 91^3)
= (3^2 \times 7^2 7^6 \times 13^6)/(21^2 \times 13^3 \times 7^3)[According to the law of exponents we have (a^m)^n = a^{mn}]
= (21^2 \times 7^6 \times 13^6)/(21^2 \times 13^3 \times 7^3)
= (7^6 \times 13^6) / (13^3 \times 7^3)
= 91^{6}/91^{3}[According to the law of exponents we have a^{m} \div a^{n} = a^{m-n}]
= 91^{6-3}
= 91^{3}
6. Simplify:
(i) (3^5)^{11} \times (3^{15})^4 - (3^5)^{18} \times (3^5)^5
(ii) (16 \times 2^{n+1} - 4 \times 2^n)/(16 \times 2^{n+2} - 2 \times 2^{n+2})
(iii) (10 \times 5^{n+1} + 25 \times 5^n)/(3 \times 5^{n+2} + 10 \times 5^{n+1})
(iv) (16)<sup>7</sup>×(25)<sup>5</sup>× (81)<sup>3</sup>/(15)<sup>7</sup>×(24)<sup>5</sup>× (80)<sup>3</sup>
Solution:
(i) Given (3^5)^{11} \times (3^{15})^4 - (3^5)^{18} \times (3^5)^5
= (3)^{55} \times (3)^{60} - (3)^{90} \times (3)^{25}[According to the law of exponents we have (a^m)^n = a^{mn}]
= 3 <sup>55+60</sup> - 3<sup>90+25</sup>
= 3^{115} - 3^{115}
```



```
= 0
(ii) Given (16 \times 2^{n+1} - 4 \times 2^n)/(16 \times 2^{n+2} - 2 \times 2^{n+2})
= (2^4 \times 2^{(n+1)} - 2^2 \times 2^n)/(2^4 \times 2^{(n+2)} - 2^{2+1} \times 2^2) [According to the law of exponents we have
(a^{m})^{n} = a^{mn}
= 2^{2} \times 2^{(n+3-2n)}/2^{2} \times 2^{(n+4-2n+1)}
= 2^{n} \times 2^{3} - 2^{n} / 2^{n} \times 2^{4} - 2^{n} \times 2
= 2^{n}(2^{3}-1)/2^{n}(2^{4}-1) [According to the law of exponents we have a^{m} \div a^{n} = a^{m-n}]
= 8 - 1 / 16 - 2
= 7/14
=(1/2)
(iii) Given (10 \times 5^{n+1} + 25 \times 5^n)/(3 \times 5^{n+2} + 10 \times 5^{n+1})
= (10 \times 5^{n+1} + 5^2 \times 5^n) / (3 \times 5^{n+2} + (2 \times 5) \times 5^{n+1})
= (10 \times 5^{n+1} + 5 \times 5^{n+1})/(3 \times 5^{n+2} + (2 \times 5) \times 5^{n+1}) [According to the law of exponents we
have (a^m)^n = a^{mn}]
= 5^{n+1} (10+5)/ 5^{n+1} (10+15)[According to the law of exponents we have a^m \div a^n = a^{m-n}]
= 15/25
= (3/5)
(iv) Given (16)^7 \times (25)^5 \times (81)^3 / (15)^7 \times (24)^5 \times (80)^3
= (16)^7 \times (5^2)^5 \times (3^4)^3 / (3 \times 5)^7 \times (3 \times 8)^5 \times (16 \times 5)^3
= (16)^7 \times (5^2)^5 \times (3^4)^3 / 3^7 \times 5^7 \times 3^5 \times 8^5 \times 16^3 \times 5^3
= (16)^7 / 8^5 \times 16^3
=(16)^4/8^5
= (2 \times 8)^4 / 8^5
= 2^4/8
=(16/8)
= 2
7. Find the values of n in each of the following:
(i) 5^{2n} \times 5^3 = 5^{11}
(ii) 9 \times 3^n = 3^7
(iii) 8 x 2^{n+2} = 32
(iv) 7^{2n+1} \div 49 = 7^3
(v) (3/2)^4 \times (3/2)^5 = (3/2)^{2n+1}
(vi) (2/3)^{10} \times {(3/2)^2}^5 = (2/3)^{2n-2}
```


Solution: (i) Given $5^{2n} \times 5^3 = 5^{11}$ $= 5^{2n+3} = 5^{11}$ On equating the coefficients, we get 2n + 3 = 11⇒2n = 11- 3 ⇒2n = 8 \Rightarrow n = (8/2) \Rightarrow n = 4 (ii) Given $9 \times 3^n = 3^7$ $= (3)^2 \times 3^n = 3^7$ $= (3)^{2+n} = 3^7$ On equating the coefficients, we get 2 + n = 7 \Rightarrow n = 7 - 2 = 5 (iii) Given $8 \times 2^{n+2} = 32$ $= (2)^3 \times 2^{n+2} = (2)^5$ [since $2^3 = 8$ and $2^5 = 32$] $= (2)^{3+n+2} = (2)^5$ On equating the coefficients, we get 3 + n + 2 = 5 \Rightarrow n + 5 = 5 \Rightarrow n = 5 -5 \Rightarrow n = 0 (iv) Given $7^{2n+1} \div 49 = 7^3$ $= 7^{2n+1} \div 7^2 = 7^3$ [since 49 = 7²] $= 7^{2n+1-2} = 7^3$ $= 7^{2n-1} = 7^3$ On equating the coefficients, we get 2n - 1 = 3 $\Rightarrow 2n = 3 + 1$ $\Rightarrow 2n = 4$ \Rightarrow n =4/2 =2 (v) Given $(3/2)^4 \times (3/2)^5 = (3/2)^{2n+1}$

= $(3/2)^{4+5} = (3/2)^{2n+1}$ = $(3/2)^9 = (3/2)^{2n+1}$ On equating the coefficients, we get 2n + 1 = 9 ⇒ 2n = 9 - 1 ⇒ 2n = 8 ⇒ n = 8/2 = 4

(vi) Given $(2/3)^{10} \times {(3/2)^2}^5 = (2/3)^{2n-2}$ = $(2/3)^{10} \times (3/2)^{10} = (2/3)^{2n-2}$ = $2^{10} \times 3^{10}/3^{10} \times 2^{10} = (2/3)^{2n-2}$ = $1 = (2/3)^{2n-2}$ = $(2/3)^0 = (2/3)^{2n-2}$ On equating the coefficients, we get 0 = 2n - 22n - 2 = 02n = 2n = 1

8. If $(9^n \times 3^2 \times 3^n - (27)^n)/(3^3)^5 \times 2^3 = (1/27)$, find the value of n.

Solution:

```
Given (9^n \times 3^2 \times 3^n - (27)^n)/(3^3)^5 \times 2^3 = (1/27)
= (3^2)^n \times 3^3 \times 3^n - (3^3)^n/(3^{15} \times 2^3) = (1/27)
= 3^{(2n+2+n)} - (3^3)^n/(3^{15} \times 2^3) = (1/27)
= 3^{(3n+2)} - (3^3)^n/(3^{15} \times 2^3) = (1/27)
= 3^{3n} \times 3^2 - 3^{3n}/(3^{15} \times 2^3) = (1/27)
= 3^{3n} \times (3^2 - 1)/(3^{15} \times 2^3) = (1/27)
= 3^{3n} \times (9 - 1)/(3^{15} \times 2^3) = (1/27)
= 3^{3n} \times (8)/(3^{15} \times 2^3) = (1/27)
= 3^{3n} \times (3^2/(3^{15} \times 2^3)) = (1/27)
= 3^{3n} \times 2^3/(3^{15} \times 2^3) = (1/27)
= 3^{3n-15} = (1/27)
= 3^{3n-15} = (1/27)
= 3^{3n-15} = (1/3^3)
= 3^{3n-15} = 3^{-3}
On equating the coefficients, we get
3n - 15 = -3
```


 $\Rightarrow 3n = -3 + 15$ $\Rightarrow 3n = 12$ $\Rightarrow n = 12/3 = 4$

