1. Find the values of each of the following:
(i) 13^{2}
(ii) 7^{3}
(iii) $\mathbf{3}^{4}$

Solution:

(i) Given 13^{2}
$13^{2}=13 \times 13=169$
(ii) Given 7^{3}
$7^{3}=7 \times 7 \times 7=343$
(iii) Given 3^{4}
$3^{4}=3 \times 3 \times 3 \times 3$
$=81$
2. Find the value of each of the following:
(i) $(-7)^{2}$
(ii) $(-3)^{4}$
(iii) $(-5)^{5}$

Solution:

(i) Given $(-7)^{2}$

We know that $(-a)^{\text {even number }}=$ positive number
$(-a)^{\text {odd number }}=$ negative number
We have, $(-7)^{2}=(-7) \times(-7)$
$=49$
(ii) Given $(-3)^{4}$

We know that $(-a)^{\text {even number }}=$ positive number
$(-a)^{\text {odd number }}=$ negative number
We have, $(-3)^{4}=(-3) \times(-3) \times(-3) \times(-3)$
$=81$
(iii) Given $(-5)^{5}$

We know that $(-a)^{\text {even number }}=$ positive number
$(-a)^{\text {odd number }}=$ negative number
We have, $(-5)^{5}=(-5) \times(-5) \times(-5) \times(-5) \times(-5)$
$=-3125$
3. Simplify:
(i) 3×10^{2}
(ii) $2^{2} \times 5^{3}$
(iii) $3^{3} \times 5^{2}$

Solution:

(i) Given 3×10^{2}
$3 \times 10^{2}=3 \times 10 \times 10$
$=3 \times 100$
$=300$
(ii) Given $2^{2} \times 5^{3}$
$2^{2} \times 5^{3}=2 \times 2 \times 5 \times 5 \times 5$
$=4 \times 125$
$=500$
(iii) Given $3^{3} \times 5^{2}$
$3^{3} \times 5^{2}=3 \times 3 \times 3 \times 5 \times 5$
$=27 \times 25$
$=675$
4. Simply:
(i) $3^{2} \times 10^{4}$
(ii) $2^{4} \times 3^{2}$
(iii) $5^{2} \times 3^{4}$

Solution:

(i) Given $3^{2} \times 10^{4}$
$3^{2} \times 10^{4}=3 \times 3 \times 10 \times 10 \times 10 \times 10$
$=9 \times 10000$
$=90000$
(ii) Given $2^{4} \times 3^{2}$
$2^{4} \times 3^{2}=2 \times 2 \times 2 \times 2 \times 3 \times 3$
$=16 \times 9$
$=144$
(iii) Given $5^{2} \times 3^{4}$
$5^{2} \times 3^{4}=5 \times 5 \times 3 \times 3 \times 3 \times 3$
$=25 \times 81$
$=2025$

5. Simplify:

(i) $(-2) \times(-3)^{3}$
(ii) $(-3)^{2} \times(-5)^{3}$
(iii) $(-2)^{5} \times(-10)^{2}$

Solution:

(i) Given $(-2) \times(-3)^{3}$
$(-2) \times(-3)^{3}=(-2) \times(-3) \times(-3) \times(-3)$
$=(-2) \times(-27)$
$=54$
(ii) Given $(-3)^{2} \times(-5)^{3}$
$(-3)^{2} \times(-5)^{3}=(-3) \times(-3) \times(-5) \times(-5) \times(-5)$
$=9 \times(-125)$
$=-1125$
(iii) Given $(-2)^{5} \times(-10)^{2}$
$(-2)^{5} \times(-10)^{2}=(-2) \times(-2) \times(-2) \times(-2) \times(-2) \times(-10) \times(-10)$
$=(-32) \times 100$
$=-3200$
6. Simplify:
(i) $(3 / 4)^{2}$
(ii) $(-2 / 3)^{4}$
(iii) $(-4 / 5)^{5}$

Solution:

(i) Given $(3 / 4)^{2}$
$(3 / 4)^{2}=(3 / 4) \times(3 / 4)$
$=(9 / 16)$
(ii) Given $(-2 / 3)^{4}$
$(-2 / 3)^{4}=(-2 / 3) \times(-2 / 3) \times(-2 / 3) \times(-2 / 3)$
$=(16 / 81)$
(iii) Given $(-4 / 5)^{5}$
$(-4 / 5)^{5}=(-4 / 5) \times(-4 / 5) \times(-4 / 5) \times(-4 / 5) \times(-4 / 5)$
$=(-1024 / 3125)$
7. Identify the greater number in each of the following:
(i) 2^{5} or 5^{2}
(ii) 3^{4} or 4^{3}
(iii) 3^{5} or 5^{3}

Solution:

(i) Given 2^{5} or 5^{2}
$2^{5}=2 \times 2 \times 2 \times 2 \times 2$
$=32$
$5^{2}=5 \times 5$
$=25$
Therefore, $2^{5}>5^{2}$
(ii) Given 3^{4} or 4^{3}
$3^{4}=3 \times 3 \times 3 \times 3$
$=81$
$4^{3}=4 \times 4 \times 4$
$=64$
Therefore, $3^{4}>4^{3}$
(iii) Given 3^{5} or 5^{3}
$3^{5}=3 \times 3 \times 3 \times 3 \times 3$
$=243$
$5^{3}=5 \times 5 \times 5$
$=125$

Therefore, $3^{5}>5^{3}$
8. Express each of the following in exponential form:
(i) $(-5) \times(-5) \times(-5)$
(ii) $(-5 / 7) \times(-5 / 7) \times(-5 / 7) \times(-5 / 7)$
(iii) $(4 / 3) \times(4 / 3) \times(4 / 3) \times(4 / 3) \times(4 / 3)$

Solution:

(i) Given $(-5) \times(-5) \times(-5)$

Exponential form of $(-5) \times(-5) \times(-5)=(-5)^{3}$
(ii) Given $(-5 / 7) \times(-5 / 7) \times(-5 / 7) \times(-5 / 7)$

Exponential form of $(-5 / 7) \times(-5 / 7) \times(-5 / 7) \times(-5 / 7)=(-5 / 7)^{4}$
(iii) Given $(4 / 3) \times(4 / 3) \times(4 / 3) \times(4 / 3) \times(4 / 3)$

Exponential form of $(4 / 3) \times(4 / 3) \times(4 / 3) \times(4 / 3) \times(4 / 3)=(4 / 3)^{5}$
9. Express each of the following in exponential form:
(i) $\mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{a} \times \mathbf{a} \times b \times b \times b$
(ii) $(-2) \times(-2) \times(-2) \times(-2) \times a \times a \times a$
(iii) $(-2 / 3) \times(-2 / 3) \times x \times x \times x$

Solution:

(i) Given $\mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{a} \times \mathrm{a} \times \mathrm{b} \times \mathrm{b} \times \mathrm{b}$

Exponential form of $x \times x \times x \times x \times a \times a \times b \times b \times b=x^{4} a^{2} b^{3}$
(ii) Given $(-2) \times(-2) \times(-2) \times(-2) \times a \times a \times a$

Exponential form of $(-2) \times(-2) \times(-2) \times(-2) \times a \times a \times a=(-2)^{4} a^{3}$
(iii) Given $(-2 / 3) \times(-2 / 3) \times x \times x \times x$

Exponential form of $(-2 / 3) \times(-2 / 3) \times x \times x \times x=(-2 / 3)^{2} x^{3}$
10. Express each of the following numbers in exponential form:
(i) 512
(ii) 625
(iii) 729

Solution:

(i) Given 512

Prime factorization of $512=2 \times 2 \times 2$
$=2^{9}$
(ii) Given 625

Prime factorization of $625=5 \times 5 \times 5 \times 5$
$=5^{4}$
(iii) Given 729

Prime factorization of $729=3 \times 3 \times 3 \times 3 \times 3 \times 3$
$=3^{6}$
11. Express each of the following numbers as a product of powers of their prime factors:
(i) 36
(ii) 675
(iii) 392

Solution:

(i) Given 36

Prime factorization of $36=2 \times 2 \times 3 \times 3$
$=2^{2} \times 3^{2}$
(ii) Given 675

Prime factorization of $675=3 \times 3 \times 3 \times 5 \times 5$
$=3^{3} \times 5^{2}$
(iii) Given 392

Prime factorization of $392=2 \times 2 \times 2 \times 7 \times 7$
$=2^{3} \times 7^{2}$
12. Express each of the following numbers as a product of powers of their prime factors:
(i) 450
(ii) 2800
(iii) 24000

Solution:

(i) Given 450

Prime factorization of $450=2 \times 3 \times 3 \times 5 \times 5$
$=2 \times 3^{2} \times 5^{2}$
(ii) Given 2800

Prime factorization of $2800=2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 7$
$=2^{4} \times 5^{2} \times 7$
(iii) Given 24000

Prime factorization of $24000=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 5 \times 5$
$=2^{6} \times 3 \times 5^{3}$
13. Express each of the following as a rational number of the form (p / q) :
(i) $(3 / 7)^{2}$
(ii) $(7 / 9)^{3}$
(iii) $(-2 / 3)^{4}$

Solution:

(i) Given $(3 / 7)^{2}$
$(3 / 7)^{2}=(3 / 7) \times(3 / 7)$
$=(9 / 49)$
(ii) Given $(7 / 9)^{3}$
$(7 / 9)^{3}=(7 / 9) \times(7 / 9) \times(7 / 9)$
$=(343 / 729)$
(iii) Given $(-2 / 3)^{4}$
$(-2 / 3)^{4}=(-2 / 3) \times(-2 / 3) \times(-2 / 3) \times(-2 / 3)$
$=((16 / 81)$
14. Express each of the following rational numbers in power notation:
(i) $(49 / 64)$
(ii) $(-64 / 125)$
(iii) $(-12 / 16)$

Solution:

(i) Given (49/64)

We know that $7^{2}=49$ and $8^{2}=64$
Therefore $(49 / 64)=(7 / 8)^{2}$
(ii) Given (-64/125)

We know that $4^{3}=64$ and $5^{3}=125$
Therefore $(-64 / 125)=(-4 / 5)^{3}$
(iii) Given (-1/216)

We know that $1^{3}=1$ and $6^{3}=216$
Therefore $-1 / 216)=-(1 / 6)^{3}$
15. Find the value of the following:
(i) $(-1 / 2)^{2} \times 2^{3} \times(3 / 4)^{2}$
(ii) $(-3 / 5)^{4} \times(4 / 9)^{4} \times(-15 / 18)^{2}$

Solution:

(i) Given $(-1 / 2)^{2} \times 2^{3} \times(3 / 4)^{2}$
$(-1 / 2)^{2} \times 2^{3} \times(3 / 4)^{2}=1 / 4 \times 8 \times 9 / 16$
$=9 / 8$
(ii) Given $(-3 / 5)^{4} \times(4 / 9)^{4} \times(-15 / 18)^{2}$
$(-3 / 5)^{4} \times(4 / 9)^{4} \times(-15 / 18)^{2}=(81 / 625) \times(256 / 6561) \times(225 / 324)$
$=(64 / 18225)$
16. If $a=2$ and $b=3$, the find the values of each of the following:
(i) $(a+b)^{a}$
(ii) $(a b)^{b}$
(iii) $(b / a)^{b}$
(iv) $((a / b)+(b / a))^{a}$

Solution:

(i) Consider $(a+b)^{a}$

Given $a=2$ and $b=3$
$(a+b)^{a}=(2+3)^{2}$
$=(5)^{2}$
$=25$
(ii) Given $\mathrm{a}=2$ and $\mathrm{b}=3$

Consider, $(a b)^{b}=(2 \times 3)^{3}$

$$
\begin{aligned}
& =(6)^{3} \\
& =216
\end{aligned}
$$

(iii) Given $\mathrm{a}=2$ and $\mathrm{b}=3$

Consider, $(b / a)^{b}=(3 / 2)^{3}$

$$
=27 / 8
$$

(iv) Given $\mathrm{a}=2$ and $\mathrm{b}=3$

Consider, $((a / b)+(b / a))^{a}=((2 / 3)+(3 / 2))^{2}$

$$
=(4 / 9)+(9 / 4)
$$

LCM of 9 and 6 is 36

$$
=169 / 36
$$

1. Using laws of exponents, simplify and write the answer in exponential form
(i) $2^{3} \times 2^{4} \times 2^{5}$
(ii) $5^{12} \div 5^{3}$
(iii) $\left(7^{2}\right)^{3}$
(iv) $\left(3^{2}\right)^{5} \div 3^{4}$
(v) $3^{7} \times 2^{7}$
(vi) $\left(5^{21} \div 5^{13}\right) \times 5^{7}$

Solution:

(i) Given $2^{3} \times 2^{4} \times 2^{5}$

We know that first law of exponents states that $a^{m} \times a^{n} \times a^{p}=a^{(m+n+p)}$
Therefore above equation can be written as $2^{3} \times 2^{4} \times 2^{5}=2^{(3+4+5)}$
$=2^{12}$
(ii) Given $5^{12} \div 5^{3}$

According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$
Therefore given question can be written as $5^{12} \div 5^{3}=5^{12-3}=5^{9}$
(iii) Given $\left(7^{2}\right)^{3}$

According to the law of exponents we have $\left(a^{m}\right)^{n}=a^{m n}$
Therefore given question can be written as $\left(7^{2}\right)^{3}=7^{6}$
(iv) Given $\left(3^{2}\right)^{5} \div 3^{4}$

According to the law of exponents we have $\left(a^{m}\right)^{n}=a^{m n}$
Therefore $\left(3^{2}\right)^{5} \div 3^{4}=3^{10} \div 3^{4}$
According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$
$3^{10} \div 3^{4}=3^{(10-4)}=3^{6}$
(v) Given $3^{7} \times 2^{7}$

We know that law of exponents states that $a^{m} \times b^{m}=(a \times b)^{m}$
$3^{7} \times 2^{7}=(3 \times 2)^{7}=6^{7}$
(vi) Given $\left(5^{21} \div 5^{13}\right) \times 5^{7}$

According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$ $=5^{(21-13)} \times 5^{7}$
$=5^{8} \times 5^{7}$
According to the law of exponents we have $a^{m} x a^{n}=a^{(m+n)}$
$=5^{(8+7)}=5^{15}$

2. Simplify and express each of the following in exponential form:

(i) $\left\{\left(2^{3}\right)^{4} \times 2^{8}\right\} \div 2^{12}$
(ii) $\left(8^{2} \times 8^{4}\right) \div 8^{3}$
(iii) $\left(5^{7} / 5^{2}\right) \times 5^{3}$
(iv) $\left(5^{4} \times x^{10} y^{5}\right) /\left(5^{4} \times x^{7} y^{4}\right)$

Solution:

(i) Given $\left\{\left(2^{3}\right)^{4} \times 2^{8}\right\} \div 2^{12}$
$\left\{\left(2^{3}\right)^{4} \times 2^{8}\right\} \div 2^{12}=\left\{2^{12} \times 2^{8}\right\} \div 2^{12}$ [According to the law of exponents we have $\left(a^{m}\right)^{n}=a^{m n}$]
$=2^{(12+8)} \div 2^{12}$ [According to the law of exponents we have $a^{m} \times a^{n}=a^{(m+n)}$]
$=2^{20} \div 2^{12}$ [According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=2^{(20-12)}$
$=2^{8}$
(ii) Given $\left(8^{2} \times 8^{4}\right) \div 8^{3}$
$\left(8^{2} \times 8^{4}\right) \div 8^{3}$ [According to the law of exponents we have $a^{m} x a^{n}=a^{(m+n)}$]
$=8^{(2+4)} \div 8^{3}$
$=8^{6} \div 8^{3}$ [According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=8^{(6-3)}=8^{3}=\left(2^{3}\right)^{3}=2^{9}$
(iii) Given $\left(5^{7} / 5^{2}\right) \times 5^{3}$
$=5^{(7-2)} \times 5^{3}$ [According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=5^{5} \times 5^{3}$ [According to the law of exponents we have $a^{m} \times a^{n}=a^{(m+n)}$]
$=5^{(5+3)}=5^{8}$
(iv) Given $\left(5^{4} \times x^{10} y^{5}\right) /\left(5^{4} \times x^{7} y^{4}\right)$
$=\left(5^{4-4} \times x^{10-7} y^{5-4}\right)$ [According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=5^{0} x^{3} y^{1}\left[\right.$ since $\left.5^{0}=1\right]$
$=1 x^{3} y$
3. Simplify and express each of the following in exponential form:
(i) $\left\{\left(3^{2}\right)^{3} \times 2^{6}\right\} \times 5^{6}$
(ii) $(x / y)^{12} \times y^{24} \times\left(2^{3}\right)^{4}$
(iii) $(5 / 2)^{6} \times(5 / 2)^{2}$
(iv) $(2 / 3)^{5} \times(3 / 5)^{5}$

Solution:

(i) Given $\left\{\left(3^{2}\right)^{3} \times 2^{6}\right\} \times 5^{6}$
$=\left\{3^{6} \times 2^{6}\right\} \times 5^{6}$ [According to the law of exponents we have $\left.\left(a^{m}\right)^{n}=a^{m n}\right]$
$=6^{6} \times 5^{6}$ [since law of exponents states that $a^{m} \times b^{m}=(a \times b)^{m}$]
$=30^{6}$
(ii) Given $(x / y)^{12} \times y^{24} \times\left(2^{3}\right)^{4}$
$=\left(x^{12} / y^{12}\right) \times y^{24} \times 2^{12}$
$=x^{12} \times y^{24-12} \times 2^{12}$ [According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=x^{12} \times y^{12} \times 2^{12}$
$=(2 x y)^{12}$
(iii) Given $(5 / 2)^{6} \times(5 / 2)^{2}$
$=(5 / 2)^{6+2}$ [According to the law of exponents we have $\left.a^{m} \times a^{n}=a^{(m+n)}\right]$ $=(5 / 2)^{8}$
(iv) Given $(2 / 3)^{5} \times(3 / 5)^{5}$
$=(2 / 5)^{5}$ [since law of exponents states that $a^{m} \times b^{m}=(a \times b)^{m}$]
4. Write $9 \times 9 \times 9 \times 9 \times 9$ in exponential form with base 3 .

Solution:

Given $9 \times 9 \times 9 \times 9 \times 9=(9)^{5}=\left(3^{2}\right)^{5}$
$=3^{10}$
5. Simplify and write each of the following in exponential form:
(i) $(25)^{3} \div 5^{3}$
(ii) $(81)^{5} \div\left(3^{2}\right)^{5}$
(iii) $9^{8} \times\left(x^{2}\right)^{5} /(27)^{4} \times\left(x^{3}\right)^{2}$
(iv) $3^{2} \times 7^{8} \times 13^{6} / 21^{2} \times 91^{3}$

Solution:

(i) Given $(25)^{3} \div 5^{3}$ $=\left(5^{2}\right)^{3} \div 5^{3}$ [According to the law of exponents we have $\left.\left(a^{m}\right)^{n}=a^{m n}\right]$
$=5^{6} \div 5^{3}$ [According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=5^{6-3}$
$=5^{3}$
(ii) Given $(81)^{5} \div\left(3^{2}\right)^{5}$ [According to the law of exponents we have $\left(a^{m}\right)^{n}=a^{m n}$]
$=(81)^{5} \div 3^{10}\left[81=3^{4}\right]$
$=\left(3^{4}\right)^{5} \div 3^{10}$ [According to the law of exponents we have $\left(a^{m}\right)^{n}=a^{m n}$]
$=3^{20} \div 3^{10}$
$=3^{20-10}$ [According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=3^{10}$
(iii) Given $9^{8} \times\left(x^{2}\right)^{5} /(27)^{4} \times\left(x^{3}\right)^{2}$
$=\left(3^{2}\right)^{8} \times\left(x^{2}\right)^{5} /\left(3^{3}\right)^{4} \times\left(x^{3}\right)^{2}$ [According to the law of exponents we have $\left(a^{m}\right)^{n}=a^{m n}$]
$=3^{16} \times x^{10} / 3^{12} \times x^{6}$
$=3^{16-12} \times x^{10-6}\left[\right.$ According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=3^{4} \times x^{4}$
$=(3 x)^{4}$
(iv) Given $\left(3^{2} \times 7^{8} \times 13^{6}\right) /\left(21^{2} \times 91^{3}\right)$
$=\left(3^{2} \times 7^{2} 7^{6} \times 13^{6}\right) /\left(21^{2} \times 13^{3} \times 7^{3}\right)$ [According to the law of exponents we have $\left(a^{m}\right)^{n}=a^{m n}$]
$=\left(21^{2} \times 7^{6} \times 13^{6}\right) /\left(21^{2} \times 13^{3} \times 7^{3}\right)$
$=\left(7^{6} \times 13^{6}\right) /\left(13^{3} \times 7^{3}\right)$
$=91^{6} / 91^{3}$ [According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=91^{6-3}$
$=91^{3}$

6. Simplify:

(i) $\left(3^{5}\right)^{11} \times\left(3^{15}\right)^{4}-\left(3^{5}\right)^{18} \times\left(3^{5}\right)^{5}$
(ii) $\left(16 \times 2^{n+1}-4 \times 2^{n}\right) /\left(16 \times 2^{n+2}-2 \times 2^{n+2}\right)$
(iii) $\left(10 \times 5^{n+1}+25 \times 5^{n}\right) /\left(3 \times 5^{n+2}+10 \times 5^{n+1}\right)$
(iv) $(16)^{7} \times(25)^{5} \times(81)^{3} /(15)^{7} \times(24)^{5} \times(80)^{3}$

Solution:

(i) Given $\left(3^{5}\right)^{11} \times\left(3^{15}\right)^{4}-\left(3^{5}\right)^{18} \times\left(3^{5}\right)^{5}$
$=(3)^{55} \times(3)^{60}-(3)^{90} \times(3)^{25}$ [According to the law of exponents we have $\left(a^{m}\right)^{n}=a^{m n}$]
$=3^{55+60}-3^{90+25}$
$=3^{115}-3^{115}$

$=0$

(ii) Given $\left(16 \times 2^{n+1}-4 \times 2^{n}\right) /\left(16 \times 2^{n+2}-2 \times 2^{n+2}\right)$
$=\left(2^{4} \times 2^{(n+1)}-2^{2} \times 2^{n}\right) /\left(2^{4} \times 2^{(n+2)}-2^{2+1} \times 2^{2}\right)$ [According to the law of exponents we have $\left(a^{m}\right)^{n}=a^{m n}$]
$\left.=2^{2} \times 2^{(n+3-2 n)} /\right) 2^{2} \times 2^{(n+4-2 n+1)}$
$=2^{n} \times 2^{3}-2^{n} / 2^{n} \times 2^{4}-2^{n} \times 2$
$=2^{n}\left(2^{3}-1\right) / 2^{n}\left(2^{4}-1\right)$ [According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=8-1 / 16-2$
$=7 / 14$
$=(1 / 2)$
(iii) Given $\left(10 \times 5^{n+1}+25 \times 5^{n}\right) /\left(3 \times 5^{n+2}+10 \times 5^{n+1}\right)$
$=\left(10 \times 5^{n+1}+5^{2} \times 5^{n}\right) /\left(3 \times 5^{n+2}+(2 \times 5) \times 5^{n+1}\right)$
$=\left(10 \times 5^{n+1}+5 \times 5^{n+1}\right) /\left(3 \times 5^{n+2}+(2 \times 5) \times 5^{n+1}\right)$ [According to the law of exponents we have $\left(a^{m}\right)^{n}=a^{m n}$]
$=5^{n+1}(10+5) / 5^{n+1}(10+15)$ [According to the law of exponents we have $a^{m} \div a^{n}=a^{m-n}$]
$=15 / 25$
$=(3 / 5)$
(iv) Given $(16)^{7} \times(25)^{5} \times(81)^{3} /(15)^{7} \times(24)^{5} \times(80)^{3}$
$=(16)^{7} \times\left(5^{2}\right)^{5} \times\left(3^{4}\right)^{3} /(3 \times 5)^{7} \times(3 \times 8)^{5} \times(16 \times 5)^{3}$
$=(16)^{7} \times\left(5^{2}\right)^{5} \times\left(3^{4}\right)^{3} / 3^{7} \times 5^{7} \times 3^{5} \times 8^{5} \times 16^{3} \times 5^{3}$
$=(16)^{7} / 8^{5} \times 16^{3}$
$=(16)^{4} / 8^{5}$
$=(2 \times 8)^{4} / 8^{5}$
$=2^{4} / 8$
$=(16 / 8)$
$=2$
7. Find the values of \mathbf{n} in each of the following:
(i) $5^{2 n} \times 5^{3}=5^{11}$
(ii) $9 \times 3^{n}=3^{7}$
(iii) $8 \times 2^{n+2}=32$
(iv) $7^{2 n+1} \div 49=7^{3}$
(v) $(3 / 2)^{4} \times(3 / 2)^{5}=(3 / 2)^{2 n+1}$
(vi) $(2 / 3)^{10} \times\left\{(3 / 2)^{2}\right\}^{5}=(2 / 3)^{2 n-2}$

Solution:

(i) Given $5^{2 n} \times 5^{3}=5^{11}$
$=5^{2 n+3}=5^{11}$
On equating the coefficients, we get
$2 n+3=11$
$\Rightarrow 2 n=11-3$
$\Rightarrow 2 n=8$
$\Rightarrow \mathrm{n}=(8 / 2)$
$\Rightarrow n=4$
(ii) Given $9 \times 3^{n}=3^{7}$
$=(3)^{2} \times 3^{n}=3^{7}$
$=(3)^{2+n}=3^{7}$
On equating the coefficients, we get
$2+n=7$
$\Rightarrow \mathrm{n}=7-2=5$
(iii) Given $8 \times 2^{n+2}=32$
$=(2)^{3} \times 2^{n+2}=(2)^{5} \quad\left[\right.$ since $2^{3}=8$ and $\left.2^{5}=32\right]$
$=(2)^{3+n+2}=(2)^{5}$
On equating the coefficients, we get
$3+n+2=5$
$\Rightarrow \mathrm{n}+5=5$
$\Rightarrow n=5-5$
$\Rightarrow \mathrm{n}=0$
(iv) Given $7^{2 n+1} \div 49=7^{3}$
$=7^{2 n+1} \div 7^{2}=7^{3}$ [since 49 $=7^{2}$]
$=7^{2 n+1-2}=7^{3}$
$=7^{2 n-1}=7^{3}$
On equating the coefficients, we get
$2 n-1=3$
$\Rightarrow 2 n=3+1$
$\Rightarrow 2 \mathrm{n}=4$
$\Rightarrow \mathrm{n}=4 / 2=2$
(v) Given $(3 / 2)^{4} \times(3 / 2)^{5}=(3 / 2)^{2 n+1}$
$=(3 / 2)^{4+5}=(3 / 2)^{2 n+1}$
$=(3 / 2)^{9}=(3 / 2)^{2 n+1}$
On equating the coefficients, we get
$2 n+1=9$
$\Rightarrow 2 n=9-1$
$\Rightarrow 2 \mathrm{n}=8$
$\Rightarrow n=8 / 2=4$
(vi) Given $(2 / 3)^{10} \times\left\{(3 / 2)^{2}\right\}^{5}=(2 / 3)^{2 n-2}$
$=(2 / 3)^{10} \times(3 / 2)^{10}=(2 / 3)^{2 n-2}$
$=2^{10} \times 3^{10} / 3^{10} \times 2^{10}=(2 / 3)^{2 n-2}$
$=1=(2 / 3)^{2 n-2}$
$=(2 / 3)^{0}=(2 / 3)^{2 n-2}$
On equating the coefficients, we get
$0=2 n-2$
$2 n-2=0$
$2 n=2$
$\mathrm{n}=1$

8. If $\left(9^{n} \times 3^{2} \times 3^{n}-(27)^{n}\right) /\left(3^{3}\right)^{5} \times 2^{3}=(1 / 27)$, find the value of n.

Solution:

Given $\left(9^{n} \times 3^{2} \times 3^{n}-(27)^{n}\right) /\left(3^{3}\right)^{5} \times 2^{3}=(1 / 27)$
$=\left(3^{2}\right)^{n} \times 3^{3} \times 3^{n}-\left(3^{3}\right)^{n} /\left(3^{15} \times 2^{3}\right)=(1 / 27)$
$=3^{(2 n+2+n)}-\left(3^{3}\right)^{n} /\left(3^{15} \times 2^{3}\right)=(1 / 27)$
$=3^{(3 n+2)}-\left(3^{3}\right)^{n} /\left(3^{15} \times 2^{3}\right)=(1 / 27)$
$=3^{3 n} \times 3^{2}-3^{3 n} /\left(3^{15} \times 2^{3}\right)=(1 / 27)$
$=3^{3 n} \times\left(3^{2}-1\right) /\left(3^{15} \times 2^{3}\right)=(1 / 27)$
$=3^{3 n} \times(9-1) /\left(3^{15} \times 2^{3}\right)=(1 / 27)$
$=3^{3 n} \times(8) /\left(3^{15} \times 2^{3}\right)=(1 / 27)$
$=3^{3 n} \times 2^{3} /\left(3^{15} \times 2^{3}\right)=(1 / 27)$
$=3^{3 n} / 3^{15}=(1 / 27)$
$=3^{3 n-15}=(1 / 27)$
$=3^{3 n-15}=\left(1 / 3^{3}\right)$
$=3^{3 n-15}=3^{-3}$
On equating the coefficients, we get
$3 n-15=-3$

$$
\begin{aligned}
& \Rightarrow 3 n=-3+15 \\
& \Rightarrow 3 n=12 \\
& \Rightarrow n=12 / 3=4
\end{aligned}
$$

Express the following numbers in the standard form:
(i) 3908.78
(ii) 5,00,00,000
(iii) $3,18,65,00,000$
(iv) 846×10^{7}
(v) 723×10^{9}

Solution:

(i) Given 3908.78
$3908.78=3.90878 \times 10^{3}$ [since the decimal point is moved 3 places to the left]
(ii) Given 5,00,00,000
$5,00,00,000=5,00,00,000.00=5 \times 10^{7}$ [since the decimal point is moved 7 places to the left]
(iii) Given 3,18,65,00,000
$3,18,65,00,000=3,18,65,00,000.00$
$=3.1865 \times 10^{9}$ [since the decimal point is moved 9 places to the left]
(iv) Given846 $\times 10^{7}$
$846 \times 10^{7}=8.46 \times 10^{2} \times 10$ [since the decimal point is moved 2 places to the left] $=8.46 \times 10^{9}\left[\right.$ since $\left.a^{m} \times a^{n}=a^{m+n}\right]$
(v) Given 723×10^{9}
$723 \times 10^{9}=7.23 \times 10^{2} \times 10^{9}$ [since the decimal point is moved 2 places to the left] $=7.23 \times 10^{11}\left[\right.$ since $\left.a^{m} \times a^{n}=a^{m+n}\right]$
2. Write the following numbers in the usual form:
(i) 4.83×10^{7}
(ii) 3.21×10^{5}
(iii) 3.5×10^{3}

Solution:

(i) Given 4.83×10^{7}
$4.83 \times 10^{7}=483 \times 10^{7-2}$ [since the decimal point is moved two places to the right]
$=483 \times 10^{5}$
$=4,83,00,000$
(ii) Given 3.21×10^{5}
$3.21 \times 10^{5}=321 \times 10^{5-2}$ [since the decimal point is moved two places to the right]
$=321 \times 10^{3}$
$=3,21,000$
(iii) Given 3.5×10^{3}
$3.5 \times 10^{3}=35 \times 10^{3-1}$ [since the decimal point is moved one place to the right]
$=35 \times 10^{2}$
$=3,500$
3. Express the numbers appearing in the following statements in the standard form:
(i) The distance between the Earth and the Moon is 384,000,000 meters.
(ii) Diameter of the Earth is $1,27,56,000$ meters.
(iii) Diameter of the Sun is $1,400,000,000$ meters.
(iv) The universe is estimated to be about 12,000,000,000 years old.

Solution:

(i) Given the distance between the Earth and the Moon is $384,000,000$ meters.

The distance between the Earth and the Moon is 3.84×10^{8} meters.
[Since the decimal point is moved 8 places to the left.]
(ii) Given diameter of the Earth is 1, 27, 56,000 meters.

The diameter of the Earth is 1.2756×10^{7} meters.
[Since the decimal point is moved 7 places to the left.]
(iii) Given diameter of the Sun is $1,400,000,000$ meters.

The diameter of the Sun is 1.4×10^{9} meters.
[Since the decimal point is moved 9 places to the left.]
(iv) Given the universe is estimated to be about $12,000,000,000$ years old.

The universe is estimated to be about 1.2×10^{10} years old.
[Since the decimal point is moved 10 places to the left.]

1. Write the following numbers in the expanded exponential forms:
(i) 20068
(ii) 420719
(iii) 7805192
(iv) 5004132
(v) 927303

Solution:

(i) Given 20068
$20068=2 \times 10^{4}+0 \times 10^{3}+0 \times 10^{2}+6 \times 10^{1}+8 \times 10^{0}$
(ii) Given 420719
$420719=4 \times 10^{5}+2 \times 10^{4}+0 \times 10^{3}+7 \times 10^{2}+1 \times 10^{1}+9 \times 10^{0}$
(iii) Given 7805192
$7805192=7 \times 10^{6}+8 \times 10^{5}+0 \times 10^{4}+5 \times 10^{3}+1 \times 10^{2}+9 \times 10^{1}+2 \times 10^{0}$
(iv) Given 5004132
$5004132=5 \times 10^{6}+0 \times 10^{5}+0 \times 10^{4}+4 \times 10^{3}+1 \times 10^{2}+3 \times 10^{1}+2 \times 10^{0}$
(v) Given 927303
$927303=9 \times 10^{5}+2 \times 10^{4}+7 \times 10^{3}+3 \times 10^{2}+0 \times 10^{1}+3 \times 10^{0}$
2. Find the number from each of the following expanded forms:
(i) $7 \times 10^{4}+6 \times 10^{3}+0 \times 10^{2}+4 \times 10^{1}+5 \times 10^{0}$
(ii) $5 \times 10^{5}+4 \times 10^{4}+2 \times 10^{3}+3 \times 10^{0}$
(iii) $9 \times 10^{5}+5 \times 10^{2}+3 \times 10^{1}$
(iv) $3 \times 10^{4}+4 \times 10^{2}+5 \times 10^{0}$

Solution:

(i) Given $7 \times 10^{4}+6 \times 10^{3}+0 \times 10^{2}+4 \times 10^{1}+5 \times 10^{0}$
$=7 \times 10000+6 \times 1000+0 \times 100+4 \times 10+5 \times 1$
$=70000+6000+0+40+5$
$=76045$

$$
\begin{aligned}
& \text { (ii) Given } 5 \times 10^{5}+4 \times 10^{4}+2 \times 10^{3}+3 \times 10^{0} \\
& =5 \times 100000+4 \times 10000+2 \times 1000+3 \times 1 \\
& =500000+40000+2000+3 \\
& =542003
\end{aligned}
$$

(iii) Given $9 \times 10^{5}+5 \times 10^{2}+3 \times 10^{1}$

$$
\begin{aligned}
& =9 \times 100000+5 \times 100+3 \times 10 \\
& =900000+500+30 \\
& =900530
\end{aligned}
$$

(iv) Given $3 \times 10^{4}+4 \times 10^{2}+5 \times 10^{0}$

$$
\begin{aligned}
& =3 \times 10000+4 \times 100+5 \times 1 \\
& =30000+400+5 \\
& =30405
\end{aligned}
$$

