CBSE Class 10 Maths Standard Sample Paper 2021

Class - X, Session 2020-21

Subject - Mathematics Standard

Sample Question Paper

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- 1. This question paper contains two parts A and B.
- 2. Both Part A and Part B have internal choices.

Part – A:

- 1. It consists three sections- I and II.
- 2. Section I has 16 questions of 1 mark each. Internal choice is provided in 3 questions.
- 3. Section II has 4 questions on case study. Each case study has 5 case-based sub-parts. An examinee is to attempt any 4 out of 5 sub-parts.

Part – B:

- 1. Question No 21 to 26 are Very short answer Type questions of 2 mark each,
- 2. Question No 27 to 33 are Short Answer Type questions of 3 marks each
- 3. Question No 34 to 36 are Long Answer Type questions of 5 marks each.
- 4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.

Question	Part-A	Marks
No.		allocated
	Section-I	
	Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.	
1	If xy=180 and HCF(x,y)=3, then find the LCM(x,y).	1
2	If the sum of the zeroes of the quadratic polynomial 3x ² -kx+6 is 3, then find the value of k.	1

3.	For what value of k, the pair of linear equations 3x+y=3 and 6x+ky=8 does not have a solution.	1
4.	If 3 chairs and 1 table costs Rs. 1500 and 6 chairs and 1 table costs Rs.2400. Form linear equations to represent this situation.	1
5.	Which term of the A.P. 27, 24, 21,is zero?	1
	OR	
	In an Arithmetic Progression, if $d = -4$, $n = 7$, $a_n = 4$, then find a.	
6.	For what values of k, the equation 9x ² +6kx+4=0 has equal roots?	
7.	Find the roots of the equation x ² +7x+10=0	1
	P22	
8.	If PQ=28cm, then find the perimeter of \triangle PLM	1
9.	If two tangents are inclined at 60° are drawn to a circle of radius 3cm then find length of each tangent.	1
	OR	
	PQ is a tangent to a circle with centre O at point P. If $\triangle OPQ$ is an isosceles triangle, then find $\angle OQP$.	
10.	In the $\triangle ABC$, D and E are points on side AB and AC respectively such that DE II BC. If AE=2cm, AD=3cm and BD=4.5cm, then find CE.	1

	In the figure, if B ₁ , B ₂ , B ₃ , and A ₁ ,A ₂ , A ₃ , have been marked at equal distances. In what ratio C divides AB?	1
	L S Sing P 98	
12.	Sin A + Cos B = 1, $A = 30^{\circ}$ and B is an acute angle, then find the value of B.	1
12. 13.	Sin A + Cos B = 1, $A = 30^{\circ}$ and B is an acute angle, then find the value of B. If x=2sin ² Θ and y=2cos ² Θ +1, then find x+y	1
13.	If x=2sin²⊖ and y=2cos²⊖+1, then find x+y In a circle of diameter 42cm,if an arc subtends an angle of 60° at the centre	1

	Find the probability of getting a black queen when a card is drawn at random from a well-shuffled pack of 52 cards.	
	Section-II Case study based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark	
17.	Case Study based-1 SUN ROOM The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using Four clear glass panels, trapezium in shape, all the same size One tinted glass panel, half a regular octagon in shape 	
	W	
(a)	Refer to Top View 1 Find the mid-point of the segment joining the points J (6, 17) and I (9, 16). 1 (i) (33/2,15/2) (ii) (3/2,1/2) (iii) (15/2,33/2) (iv) (1/2,3/2)	

(b)	Refer to Top View	1						
	The distance of the point P from the y-axis is							
	(i) 4							
	(ii) 15							
	(iii) 19							
	(iv) 25							
(C)	Refer to Front View	1						
	The distance between the points A and S is							
	(i) 4							
	(ii) 8							
	(iii)16							
	(iv)20							
(d)	Refer to Front View	1						
	Find the co-ordinates of the point which divides the line segment joining the							
	points A and B in the ratio 1:3 internally.							
	(i) (8.5,2.0)							
	(ii) (2.0,9.5)							
	(ii) (2.0,9.5) (iii) (3.0,7.5)							
	(iv) (2.0,8.5)							
(e)	Refer to Front View							
	If a point (x,y) is equidistant from the Q(9,8) and S(17,8), then							
	(i) x+y=13							
	(i) x-13=0							
	(iii) y-13=0							
	(iv)x-y=13							
18.	Case Study Based- 2							
	SCALE FACTOR AND SIMILARITY							
	SCALE FACTOR							
	A scale drawing of an object is the same shape as the object but a different							
	size.							
	The scale of a drawing is a comparison of the length used on a drawing to							
	the length it represents. The scale is written as a ratio.							
	SIMILAR FIGURES							
	The ratio of two corresponding sides in similar figures is called the scale							
	factor.							
	Length in image							
	Scale factor =							
	Corresponding length in object							
	If one shape can become another using Resizing then the							
	shapes are Similar							

(b)	What will effect the similarity of any two polygons?	1
	(i) They are flipped horizontally	
	(ii)They are dilated by a scale factor	
	(iii)They are translated down	
	(iv)They are not the mirror image of one another	
(C)	If two similar triangles have a scale factor of a: b. Which statement regarding	1
	the two triangles is true?	
	(i)The ratio of their perimeters is 3a : b	
	(ii)Their altitudes have a ratio a:b	
	(iii) Their medians have a ratio $\frac{a}{2}$: b	
	(iv) Their angle bisectors have $\stackrel{2}{a}$ ratio a^2 : b^2	
(d)	The shadow of a stick 5m long is 2m. At the same time the shadow of a tree	1
	12.5m high is	
	(i)3m (ii)3.5m (iii)4.5m (iv)5m	1
(e)	Below you see a student's mathematical model of a farmhouse roof with measurements. The attic floor, ABCD in the model, is a square. The beams that support the roof are the edges of a rectangular prism, EFGHKLMN. E is the middle of AT, F is the middle of BT, G is the middle of CT, and H is the middle of DT. All the edges of the pyramid in the model have length of 12 m.	1

	axis Vetex axis
(a)	If the highway overpass is represented by x^2-2x-8 . Then its zeroes are (i) (2,-4) (ii) (4,-2) (iii) (-2,-2) (iv) (-4,-4)
(b)	The highway overpass is represented graphically. Zeroes of a polynomial can be expressed graphically. Number of zeroes of polynomial is equal to number of points where the graph of polynomial (i) Intersects x-axis (ii) Intersects y-axis (iii) Intersects y-axis or x-axis (iv)None of the above

(c)	Graph of a quadratic polynomial is a (i) straight line (ii) circle (iii)parabola (iv)ellipse
(d)	The representation of Highway Underpass whose one zero is 6 and sum of the zeroes is 0, is (i) $x^2 - 6x + 2$ (ii) $x^2 - 36$ (iii) $x^2 - 6$ (iv) $x^2 - 3$
(e)	The number of zeroes that polynomial f(x) = (x - 2) ² + 4 can have is: (i)1 (ii) 2 (iii) 0 (iv) 3
20.	Case Study Based- 4 100m RACE A stopwatch was used to find the time that it took a group of students to run 100 m.
	Time 0-20 20-40 40-60 60-80 80-100 (in sec) Image: Compare the second se
	No. of 8 10 13 6 3 students

(a)	Estimate the mean time taken by a student to finish the race.	
	(i) 54	
	(ii) 63	
	(iii)43	
	(iv)50	
(b)	What wiil be the upper limit of the modal class ?	
	(i)20	
	(ii) 40	
	(iii)60	
	(iv)80	
(C)	The construction of cummulative frequency table is useful in determining the	
	(i)Mean	
	(ii)Median	
	(iii)Mode	
	(iv)All of the above	
(d)	The sum of lower limits of median class and modal class is	
	(i)60	
	(ii)100	
	(iii)80	
	(iv)140	
(e)	How many students finished the race within 1 minute?	
	(i) 18	
	(ii) 37	
	(iii) 31	
	(iv)8	
	Part –B	
	All questions are compulsory. In case of internal choices, attempt any one.	
21.	3 bells ring at an interval of 4,7 and 14 minutes. All three bell rang at 6 am,	2
	when the three balls will the ring together next?	
22.	Find the point on x-axis which is equidistant from the points (2,-2) and (-4,2)	2
	OR	
		1

	P (-2, 5) and Q (3, 2) are two points. Find the co-ordinates of the point R on PQ such that PR=2QR	
23.	Find a quadratic polynomial whose zeroes are 5-3 $\sqrt{2}$ and 5+3 $\sqrt{2}$.	2
24.	Draw a line segment AB of length 9cm. With A and B as centres, draw circles of radius 5cm and 3cm respectively. Construct tangents to each circle from the centre of the other circle.	2
25.	If tanA=3/4, find the value of 1/sinA+1/cosA	2
	OR	
	If $\sqrt{3} \sin\Theta$ -cos Θ =0 and 0°< Θ <90°, find the value of Θ	
26.	In the figure, quadrilateral ABCD is circumscribing a circle with centre O and AD \perp AB. If radius of incircle is 10cm, then the value of x is	2
27	Prove that 2- $\sqrt{3}$ is irrational, given that $\sqrt{3}$ is irrational.	3
28.	If one root of the quadratic equation $3x^2+px+4=0$ is 2/3, then find the value of p and the other root of the equation.	3
	OR	
	The roots α and β of the quadratic equation x ² -5x+3(k-1)=0 are such that $\alpha - \beta = 1$. Find the value k.	

In the figure, ABCD is a square of side 14 cm. Semi-circles are drawn with each side of square as diameter. Find the area of the shaded region.						3			
			A		B				
one side of t	he firs	t triangl		-				-	3
				OR					
In an equilateral triangle ABC, D is a point on side BC such that $BD = 1/3$ BC. Prove that 9 AD ² = 7 AB ²									
The median of the following data is 16. Find the missing frequencies a and b, if the total of the frequencies is 70.							3		
Class	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	
Frequency	12	а	12	15	b	6	6	4	
C.C.									
Contraction of the second seco		,		8	B				3
If the angles of elevation of the top of the candle from two coins distant "a" cm and "b" cm (a>b) from its base and in the same straight line from it are 30° and 60°, then find the height of the candle.									
	each side of The perimet one side of to of the secon In an equilat BC. Prove th The median if the total of Class Frequency	each side of squar	each side of square as dia The perimeters of two sime one side of the first triangle of the second triangle. In an equilateral triangle A BC. Prove that $9 \text{ AD}^2 = 7$ The median of the following if the total of the frequence Class 0-5 5-10 Frequency 12 a If the angles of elevation of the following If the angle of the following If the	each side of square as diameter. F A A D D D D D D D D D D D D D	each side of square as diameter. Find the analysis of the second triangle is 9cm, find the of the second triangle. The perimeters of two similar triangles are one side of the first triangle is 9cm, find the of the second triangle. OR In an equilateral triangle ABC, D is a point BC. Prove that $9 \text{ AD}^2 = 7 \text{ AB}^2$ The median of the following data is 16. Find if the total of the frequencies is 70. $\frac{Class}{Frequency} \frac{0-5}{5} \frac{5 \cdot 10}{10} \frac{10 \cdot 15}{15} \frac{15 \cdot 20}{15}$ Frequency 12 a 12 15	each side of square as diameter. Find the area of the second triangle is 9 cm, find the length of the second triangle. The perimeters of two similar triangles are 25 cm arrone side of the first triangle is 9 cm, find the length of the second triangle. OR In an equilateral triangle ABC, D is a point on side BC. Prove that $9 \text{ AD}^2 = 7 \text{ AB}^2$ The median of the following data is 16. Find the mising if the total of the frequencies is 70. $\frac{Class}{Frequency} \frac{0.5}{12} \frac{5-10}{10-15} \frac{15-20}{12} \frac{20-25}{15}$ Frequency 12 a 12 15 b If the angles of elevation of the top of the candle frequencies for the top of the candle for the top of the top of the candle for the top of the top of the candle for the top of the top of the candle for the top of the top of the candle for the top of the to	each side of square as diameter. Find the area of the shade $ \begin{array}{c} $	each side of square as diameter. Find the area of the shaded region $ \begin{array}{c} $	each side of square as diameter. Find the area of the shaded region. A = B = B = B = B = B = B = B = B = B =

			Se	ection V					
33.	The mode of the	The mode of the following data is 67. Find the missing frequency x.							
	Class	40-50	50-60	60-70	70-80	80-90	7		
	Frequency	5	X	15	12	7	_		
34.	The two palm other on either between them are 60° and 30 distances of th	r side of the on the rive 0°, respecti	e river, whi er the angle ively. Find	lich is 80 les of elev the heigl	m wide. I vation of	From a point the top of t	int O the trees	5	
	The angles of high as observ Find the heigh building and th	ved from th nt of the tow	e top of a	tower are	e 30° and	d 60° respe	ctively.		
35.	Water is flowin cylindrical tank much will the v	k of base ra	adius 40 cr	m at the i	rate of 0.			5	
36.	A motorboat co in 6 hours. In t 36km downstro stream.	the same ti	me it cove	ers a dista	ance of 1	2 km upstr	ream and	5	