CBSE Class 10 Maths Standard Sample Paper 2021

Class - X, Session 2020-21

Subject - Mathematics Standard
 Sample Question Paper

Time Allowed: 3 Hours
Maximum Marks: $\mathbf{8 0}$

General Instructions:

1. This question paper contains two parts A and B.
2. Both Part A and Part B have internal choices.

Part - A:

1. It consists three sections-I and II.
2. Section I has 16 questions of 1 mark each. Internal choice is provided in 3 questions.
3. Section II has 4 questions on case study. Each case study has 5 case-based sub-parts. An examinee is to attempt any 4 out of 5 sub-parts.
Part - B:
4. Question No 21 to 26 are Very short answer Type questions of 2 mark each,
5. Question No 27 to 33 are Short Answer Type questions of 3 marks each
6. Question No 34 to 36 are Long Answer Type questions of 5 marks each.
7. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.

Question No.	Part-A	Marks allocated
	Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.	1
1	If $x y=180$ and $\operatorname{HCF}(x, y)=3$, then find the LCM (x, y).	1
2	If the sum of the zeroes of the quadratic polynomial $3 x^{2}-k x+6$ is 3, then find the value of k.	1

3.	For what value of k, the pair of linear equations $3 x+y=3$ and $6 x+k y=8$ does not have a solution.	1
4.	If 3 chairs and 1 table costs Rs. 1500 and 6 chairs and 1 table costs Rs.2400. Form linear equations to represent this situation.	1
5.	Which term of the A.P. 27, 24, 21,.....is zero? OR In an Arithmetic Progression, if $d=-4, n=7, a_{n}=4$, then find a.	1
6.	For what values of k, the equation $9 \mathrm{x}^{2}+6 \mathrm{kx}+4=0$ has equal roots?	
7.	Find the roots of the equation $\mathrm{x}^{2}+7 \mathrm{x}+10=0$	1
8.	If $\mathrm{PQ}=28 \mathrm{~cm}$, then find the perimeter of $\Delta \mathrm{PLM}$	1
9.	If two tangents are inclined at 60° are drawn to a circle of radius 3 cm then find length of each tangent. OR $P Q$ is a tangent to a circle with centre O at point P. If $\triangle O P Q$ is an isosceles triangle, then find $\angle O Q P$.	1
10.	In the $\triangle A B C, D$ and E are points on side $A B$ and $A C$ respectively such that $D E$ II $B C$. If $A E=2 \mathrm{~cm}, A D=3 \mathrm{~cm}$ and $B D=4.5 \mathrm{~cm}$, then find $C E$.	1

11.	In the figure, if $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \ldots .$. and $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$. . have been marked at equal distances. In what ratio C divides $A B$?	1
12.	$\operatorname{Sin} \mathrm{A}+\operatorname{Cos} \mathrm{B}=1, A=30^{\circ}$ and B is an acute angle, then find the value of B .	1
13.	If $x=2 \sin ^{2} \theta$ and $y=2 \cos ^{2} \Theta+1$, then find $x+y$	1
14.	In a circle of diameter 42cm, if an arc subtends an angle of 60° at the centre where $\Pi=22 / 7$, then what will be the length of arc.	1
15.	12 solid spheres of the same radii are made by melting a solid metallic cylinder of base diameter 2 cm and height 16 cm . Find the diameter of the each sphere.	1
16.	Find the probability of getting a doublet in a throw of a pair of dice. OR	1

	Find the probability of getting a black queen when a card is drawn at random from a well-shuffled pack of 52 cards.	
	Section-II Case study based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark	
17.	Case Study based-1 SUN ROOM The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using - Four clear glass panels, trapezium in shape, all the same size - One tinted glass panel, half a regular octagon in shape Not to scale Scale $1 \mathrm{~cm}=1 \mathrm{~m}$	
(a)	Refer to Top View Find the mid-point of the segment joining the points $J(6,17)$ and $I(9,16)$. (i) $(33 / 2,15 / 2)$ (ii) $(3 / 2,1 / 2)$ (iii) $(15 / 2,33 / 2)$ (iv) $(1 / 2,3 / 2)$	1

(b)	Refer to Top View The distance of the point P from the y-axis is (i) 4 (ii) 15 (iii) 19 (iv) 25	1
(c)	Refer to Front View The distance between the points A and S is (i) 4 (ii) 8 (iii) 16 (iv)20	1
(d)	Refer to Front View Find the co-ordinates of the point which divides the line segment joining the points A and B in the ratio 1:3 internally. (i) $(8.5,2.0)$ (ii) $(2.0,9.5)$ (iii) $(3.0,7.5)$ (iv) $(2.0,8.5)$	1
(e)	Refer to Front View If a point (x, y) is equidistant from the $Q(9,8)$ and $S(17,8)$,then (i) $x+y=13$ (ii) $x-13=0$ (iii) $\mathrm{y}-13=0$ (iv) $x-y=13$	1
18.	Case Study Based-2 SCALE FACTOR AND SIMILARITY SCALE FACTOR A scale drawing of an object is the same shape as the object but a different size. The scale of a drawing is a comparison of the length used on a drawing to the length it represents. The scale is written as a ratio. SIMILAR FIGURES The ratio of two corresponding sides in similar figures is called the scale factor. $\text { Scale factor }=\frac{\text { Length in image }}{\text { Corresponding length in object }}$ If one shape can become another using Resizing then the shapes are Similar	

	Rotation or Turn Reflection or Flip Translation or Slide Hence, two shapes are Similar when one can become the other after a resize, flip, slide or turn.	
(a)	A model of a boat is made on the scale of 1:4. The model is 120 cm long. The full size of the boat has a width of 60 cm . What is the width of the scale model? (i) 20 cm (ii) 25 cm (iii) 15 cm (iv) 240 cm	1

(b)	What will effect the similarity of any two polygons? (i) They are flipped horizontally (ii)They are dilated by a scale factor (iii)They are translated down (iv)They are not the mirror image of one another	1
(c)	If two similar triangles have a scale factor of $\mathrm{a}: \mathrm{b}$. Which statement regarding the two triangles is true? (i)The ratio of their perimeters is $3 \mathrm{a}: \mathrm{b}$ (ii)Their altitudes have a ratio $a: b$ (iii) Their medians have a ratio $\frac{a}{2}$: b (iv) Their angle bisectors have a ratio $a^{2}: b^{2}$	1
(d)	The shadow of a stick 5 m long is 2 m . At the same time the shadow of a tree 12.5 m high is (i) 3 m (ii) 3.5 m (iii) 4.5 m (iv) 5 m	1
(e)	Below you see a student's mathematical model of a farmhouse roof with measurements. The attic floor, $A B C D$ in the model, is a square. The beams that support the roof are the edges of a rectangular prism, EFGHKLMN. E is the middle of AT, F is the middle of $B T, G$ is the middle of $C T$, and H is the middle of DT. All the edges of the pyramid in the model have length of 12 m .	1

| | |
| :--- | :--- | :--- | :--- | :--- |
| | |
| | |
| | |
| | |

(a)	Estimate the mean time taken by a student to finish the race. (i) 54 (ii) 63 (iii) 43 (iv) 50	
(b)	What wiil be the upper limit of the modal class ? (i) 20 (ii) 40 (iii)60 (iv) 80	
(c)	The construction of cummulative frequency table is useful in determining the (i)Mean (ii)Median (iii)Mode (iv)All of the above	
(d)	The sum of lower limits of median class and modal class is (i)60 (ii)100 (iii)80 (iv) 140	
(e)	How many students finished the race within 1 minute? (i) 18 (ii) 37 (iii) 31 (iv)8	
	Part -B All questions are compulsory. In case of internal choices, attempt any one.	
21.	3 bells ring at an interval of 4,7 and 14 minutes. All three bell rang at 6 am, when the three balls will the ring together next?	2
22.	Find the point on x-axis which is equidistant from the points $(2,-2)$ and $(-4,2)$ OR	2

	$P(-2,5)$ and $Q(3,2)$ are two points. Find the co-ordinates of the point R on $P Q$ such that $P R=2 Q R$	
23.	Find a quadratic polynomial whose zeroes are $5-3 \sqrt{ } 2$ and $5+3 \sqrt{ } 2$.	2
24.	Draw a line segment $A B$ of length 9 cm . With A and B as centres, draw circles of radius 5 cm and 3 cm respectively. Construct tangents to each circle from the centre of the other circle.	2
25.	If $\tan A=3 / 4$, find the value of $1 / \sin A+1 / \cos A$ OR If $\sqrt{ } 3 \sin \Theta-\cos \Theta=0$ and $0^{\circ}<\Theta<90^{\circ}$, find the value of Θ	2
26.	In the figure, quadrilateral $A B C D$ is circumscribing a circle with centre O and $A D \perp A B$. If radius of incircle is 10 cm , then the value of x is	2
27..	Prove that $2-\sqrt{ } 3$ is irrational, given that $\sqrt{ } 3$ is irrational.	3
28.	If one root of the quadratic equation $3 x^{2}+p x+4=0$ is $2 / 3$, then find the value of p and the other root of the equation. OR The roots α and β of the quadratic equation $x^{2}-5 x+3(k-1)=0$ are such that $\alpha-\beta=1$. Find the value k.	3

Section V

