
Section A

1.

Identify the reagent(s) 'A' and condition(s) for the reaction:

a. A = HCl; Anhydrous $AlCl_3$

b. $A = HCl, ZnCl_2$

c. A = Cl₂, dark, Anhydrous AlCl₃

d. $A = Cl_2$; UV Light

Ans: (d) Solution:

$$\begin{array}{c|c}
CI \\
CI_2 \\
\hline
hv
\end{array}$$

- 2. The INCORRECT statement regarding the structure of C_{60} is:
 - a. It contains 12 six-membered rings and 24 five-membered rings.
 - b. Each carbon atom forms three sigma bonds.
 - c. The five-membered rings are fused only to six-membered rings.
 - d. The six-membered rings are fused to both six and five-membered rings.

Ans: (a)

Solution:

It contains 12 five membered ring $\&\,20$ six membered rings.

JEE MAIN 16th March Shift-2 2021 (Chemistry)

Match List-I with List-II:

List-I

Test/Reagents/Observation(s)

- (a) Lassaigne's Test
- (b) Cu(II) oxide
- (c) Silver nitrate
- (d) The sodium fusion extract gives black

List-II

Species detected

- Carbon (i)
- (ii) Sulphur
- (iii) N, S, P and halogen
- Halogen Specifically (iv)

precipitate with acetic acid & lead acetate

- a. (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- c. (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
- b. (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
- d. (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)

Ans: (a)

Solution:

4.

$$\begin{array}{c}
\text{CN} \\
& \underbrace{\begin{array}{c}
\text{(i)}C_6H_5MgBr} \\
\text{(1.0equivalent),dry}
\end{array}}_{\text{Major Product}} X \\
\text{OCH}_3
\end{array}$$

The structure of X is:

a.

b.

c.

d.

$$NH_2$$
 C_6H_5

JEE MAIN 16th March Shift-2 2021(Chemistry)

Ans: (a) Solution:

$$C = N$$
 C_6H_5
 $C = NMgBr$
 $CH-CH_3$
 $CH-CH$

- 5. Ammonolysis of alkyl halides followed by the treatment with NaOH solution can be used to prepare primary, secondary and tertiary amines. The purpose of NaOH in the reaction is:
 - a. to remove basic impurities
 - b. to activate NH₃ used in the reaction
 - c. to increase the reactivity of alkyl halide
 - d. to remove acidic impurities

Ans: (d)

Solution:

$$R-X \xrightarrow{NH_3} R-NH_2 \xrightarrow{R-X} R_2NH$$

$$-HX \xrightarrow{-HX} R-X$$

$$R-X \xrightarrow{R-X} R_2NH$$

$$-HX \xrightarrow{R-X} R_3N$$

During the reaction HX (acid) is form.

Hence, we use NaOH to remove these acidic impurities.

6. Arrange the following metal complex/compounds in the increasing order of spin only magnetic moment. Presume all the three, high spin system.

(Atomic numbers Ce = 58, Gd = 64 and Eu = 63)

- $(1) (NH_4)_2[Ce(NO_3)_6]$ (2) $Gd(NO_3)_3$ and (3) $Eu(NO_3)_3$
- a. (1) < (3) < (2)

b. (1) < (2) < (3)

c. (3) < (1) < (2)

d. (2) < (1) < (3)

Ans: (a)

Solution:

$$(NH_4)_2 [Ce(NO_3)_6]$$
 $(n = 0) \Rightarrow \mu = 0 \text{ B.M}$
 $Eu (NO_3)_3$ $(n = 6) \Rightarrow \mu = 6.93 \text{ B.M}$
 $Gd(NO_3)_3$ $(n = 7) \Rightarrow \mu = 7.94 \text{ B.M}$

7. Identify the elements X and Y using the ionisation energy values given below: Ionization energy (kJ/mol)

b.
$$X = Mg$$
; $Y = F$

c.
$$X = Na$$
; $Y = Mg$

d.
$$X = Mg$$
; $Y = Na$

Ans: (c) Solution:

2nd I. E of Alkali metals very high as compared to 1st.

- 8. The INCORRECT statements below regarding colloidal solutions is:
 - a. A colloidal solution shows colligative properties.
 - b. An ordinary filter paper can stop the flow of colloidal particles.
 - c. A colloidal solution shows Brownian motion of colloidal particles.
 - d. The flocculating power of Al³⁺ is more than that of Na⁺.

Ans: (b)

Solution:

Colloidal solutions can pass through ordinary filter paper but cannot pass through special filter colloidal solution coated paper.

- 9. The characteristics of elements X, Y and Z with atomic numbers, respectively, 33, 53 and 83 are:
 - a. X and Z are non-metals and Y is a metalloid.
 - b. X and Y are metalloids and Z is a metal
 - c. X, Y and Z are metals.
 - d. X is a metalloid, Y is a non-metal and Z is a metal.

Ans: (d)

Solution

Atomic No.	Element		
(1) 33	\longrightarrow	As (Metalloid)	
(2) 53	\longrightarrow	I (Non-metal)	
(3) 83	\longrightarrow	Bi (Metal)	

- 10. The exact volumes of 1 M NaOH solution required to neutralise 50 mL of 1 M H₃PO₃ solution and 100 mL of 2 M H₃PO₂ solution, respectively, are:
 - a. 100 mL and 50 mL

b. 50 mL and 50 mL

c. 100 mL and 100 mL

d. 100 mL and 200 mL

Ans: (d) Solution:

- $(2) \quad \text{NaOH} \quad + \quad \text{H}_3\text{PO}_2 \quad \longrightarrow \quad \text{NaH}_2\text{PO}_2 \quad + \quad \text{H}_2\text{O}$ $200 \text{mmole} \quad 200 \text{mmole} = \text{M} \times \text{V}_{\text{ml}}$ $200 \text{ mmole} = 1 \times \text{V}_{\text{ml}}$ $\text{V}_{\text{ml}} = 200 \text{ ml}$
- 11. Which of the following reduction reaction CANNOT be carried out with coke?
 - a. $Fe_2O_3 \longrightarrow Fe$

 $b.\ ZnO \longrightarrow Zn$

c. $Al_2O_3 \longrightarrow Al$

d. $Cu_2O \longrightarrow Cu$

Ans: (c)

Solution:

Al is extracted by electrolytic reduction of Al₂O₃.

12. An unsaturated hydrocarbon X on ozonolysis gives A. Compound A when warmed with ammoniacal silver nitrate forms a bright silver mirror along the sides of the test tube. The unsaturated hydrocarbon X is:

Ans: (c)

Solution:

CH₃CH₂=CH
$$\xrightarrow{\text{(i) O}_3}$$
 CH₃CH₂COOH + H-C-OH
HCOOH $\xrightarrow{\text{[Ag(NH}_3)_2]^+}$ CO₂+ H₂O+2Ag \downarrow reagent

13. Statement-I: Sodium hydride can be used as an oxidising agent.

Statement-II: The lone pair of electrons on nitrogen in pyridine makes it basic.

Choose the CORRECT answer from the options given below:

- a. Statement I is true but statement II is false
- b. Both statement I and statement II are false
- c. Both statement I and statement II are true
- d. Statement I is false but statement II is true

Ans: (d)

Solution:

- ⇒ NaH is used as reducing agent.
- \Rightarrow The l.p. on nitrogen in pyridine makes it basic.

14.	Which of the	following po	lymer is u	sed in the	manufacture	of wood	laminates
-----	--------------	--------------	------------	------------	-------------	---------	-----------

a. Melamine formaldehyde resin

b. *cis-*poly isoprene

c. Phenol and formaldehyde resin

d. Urea formaldehyde resin

Ans: (a)

Solution:

Melamine formaldehyde resin is used in the manufacture of wood laminates.

15. The correct statements about H_2O_2 are:

- (1) used in the treatment of effluents.
- (2) used as both oxidizing and reducing agents.
- (3) the two hydroxyl groups lie in the same plane.
- (4) miscible with water.

Choose the correct answer from the options given below:

a. (1), (3) and (4) only

b. (1), (2) and (4) only

c. (1), (2), (3) and (4)

d. (2), (3) and (4) only

Ans: (b)

Solution:

- (1) Used in treatment of effluents as it is oxidizing agent.
- (2) In H₂O₂ oxidation of oxygen is-1. Therefore, it acts both as O.A and R.A.
- (3) H₂O₂ has open book structure in which both –OH group are not in same plane
- (4) H₂O₂ is miscible in water due to inter molecular H-Bonding.

16. The greenhouse gas/es is (are):

1. Carbon dioxide

2. Oxygen

3. Water vapour

4. Methane

Choose the most appropriate answer from the options given below:

a. (1) and (2) only

b. (1), (3) and (4) only

c. (1) and (3) only

d. (1) only

Ans: (b)

Solution:

The greenhouse gases are CO_2 , CH_4 & H_2O vapor.

JEE MAIN 16th March Shift-2 2021(Chemistry)

Page | 7

JEE MAIN 16th March Shift-2 2021 (Chemistry)

17.

$$CH_3$$
 $COOH$
 OCH_3
 OCH_3

In the above reaction, the reagent "A" is:

a. NaBH₄, H₃O⁺

b. HCl, Zn-Hg

c. Alkaline KMnO₄, H⁺

d. LiAlH₄

Ans: (c) Solution:

18. Which of the following is least basic?

1. (CH₃CO)₂ NH

2. (CH₃CO) NH_{C₂H₅}

3. (C₂H₅)₃ N

4. (C₂H₅)₂ NH

Ans: (a) Solution:

Due to higher resonance, lp of N is not available for accepting $H^{\scriptscriptstyle +}.$

So, it is least basic.

19. Fex₂ and Fey₃ are known when x and y are:

a. x=Cl, Br, I and y=F, Cl, Br, I

b. x=F, Cl, Br, I and y=F, Cl, Br

c. x=F, Cl, Br, I and y=F, Cl, Br, I

d. x=F, Cl, Br and y=F, Cl, Br, I

Ans: (b)

Solution:

FeI₃, does not form because of I⁻ being very good reducing agent.

- **20.** The secondary structure of protein is stabilized by:
 - a. van der Waals forces

b. Peptide bond

c. Hydrogen bonding

d. Glycosidic bond

Ans: (c)

Solution:

The secondary structure of protein is stabilized by H-bonding.

Section B

[Given: $R = 8.14 \text{ J mol}^{-1} \text{ K}^{-1}$. Assume, hydrogen is an ideal gas] [Atomic mass of Fe is 55.85 u]

Ans: 2218 Solution:

Fe + 2HCl
$$\longrightarrow$$
 FeCl₂ + H₂(g)

50g

Moles of Fe =
$$\frac{50}{55.85}$$
 mol = Moles of H₂

 $W_{irrev} = -P_{ext}.\,\Delta V$

$$=$$
 -moles of $H_2 \times RT$

$$= -\frac{50}{55.85} \times 8.314 \times 298$$

= -2218.05 J

Nearest integer = 2218

2. A 5.0 m moldm⁻³ aqueous solution of KCl has a conductance of 0.55 mS when measured in a cell of cell constant 1.3 cm⁻¹. The molar conductivity of this solution is _____ mSm²mol¹. (Round off to the nearest integer).

Ans: 14

Solution:

$$\begin{split} &G_{KCl} = 0.55 \text{ mS} = 55 \times 10^{-5} \text{ s} \\ &\text{Cell constant} = l/A = 1.3 \text{ cm}^{-1} \\ &\lambda_{M} = ?? \\ &K = G(l/A) = 55 \times 10^{-5} \times 1.3 \text{ Scm}^{-1} \\ &\lambda_{M} = \frac{K \times 1000}{\text{Molarity}} = \frac{55 \times 1.3 \times 10^{-5} \times 1000}{5 \times 10^{-3}} \\ &\lambda_{M} = 11 \times 1.3 \times 10 = 11 \times 13 = 143 \text{ Scm}^{2} \text{mol}^{-1} \\ &\lambda_{M} = \frac{143 \times 1000 \times 10^{-3} \text{ S}}{(10^{-2} \text{ m})^{-2}} \text{mol}^{-1} \\ &\lambda_{M} = 143 \times 1000 \times 10^{-4} \text{ (m.S)} \text{m}^{2} \text{.mol}^{-1} \\ &\lambda_{M} = 14.3 \text{ (m.S)} \text{m}^{2} \text{.mol}^{-1} \end{split}$$

3. The number of orbitals with n=5, $m_1=+2$ is ______. (Round off to the nearest integer).

Ans: 3

Solution:

For
$$n = 5$$

$$l = 0, 1, 2, 3, 4$$

Nearest integer = 14

$$l = 2 \longrightarrow m = -2, -1, 0, +1, +2$$

$$l = 3 \longrightarrow m = -3, -2, -1, 0, +1, +2, +3$$

$$l = 4 \longrightarrow m = -4, -3, -2, -1, 0, +1, +2, +3, +4$$

Total no. of orbitals = 3

4. A and B decompose via first order kinetics with half-lives 54.0 min and 18.0 min respectively. Starting from an equimolar non-reactive mixture of A and B, the time taken for the concentration of A to become 16 times that of B is _____ min. (Round off to the nearest integer).

Ans: 108

Solution:

$$A \xrightarrow{1^{st} \text{ order}} t_{1/2} (A) = 54$$

$$A_0 = B_0 = N_0$$

$$B \xrightarrow{1^{st} \text{ order}} t_{1/2} (B) = 18$$

 $B_t = \frac{B_0}{2^t/18}$

$$A_t = \frac{A_0}{2^t/54}$$

$$\Rightarrow A_t = 16.B_t$$

$$\Rightarrow \frac{A_0}{2^t/54} = 16 \times \frac{B_0}{2^t/18}$$

$$\Rightarrow 2^{t/18 - t/54} = 16$$

$$\Rightarrow 2^{2t/54} = 16 = 2^4$$

$$\Rightarrow \frac{2t}{54} = 4$$

$$\Rightarrow$$
 t = 108 min

5. $[Ti(H_2O)_6]^{3+}$ absorbs light of wavelength 498 nm during a d-d transition. The octahedral splitting energy for the above complex is _____ × 10^{-19} J. (Round off to the nearest integer).

 $h = 6.626 \times 10^{-34} \text{ Js; } c = 3 \times 10^8 \text{ ms}^{-1}.$

Ans: 4

Solution:

$$\begin{split} \Delta_0 = & \frac{hc}{I_{abs}} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{498 \times 10^{-9}} \\ = & \frac{6.626 \times 3}{498} \times 10^{-17} = 3.99 \times 10^{-19} \end{split}$$

Nearest integer = 4×10^{-19} J

6. Sulphurous acid (H_2SO_3) has $K_{a1}=1.7\times 10^{-2}$ and $K_{a2}=6.4\times 10^{-8}$. The pH of 0.588 M H_2SO_3 is _____. (Round off to the nearest integer)

Ans: 5

Solution:

$$H_2SO_3$$
 (aq.) \Rightarrow HSO_3^- (aq.) $+$ H^+ (aq.) $0.588M = C$ $C\alpha_1$ $C\alpha_1 + C\alpha_1\alpha_2$ HSO_3^- (aq.) \Rightarrow H^+ (aq.) $+$ $SO_3^{2^-}$ (aq.) $C\alpha_1(1-\alpha_2)$ $C\alpha_1\alpha_2$ $C\alpha_1\alpha_2$ $+$ $C\alpha_1$ $\alpha_1 = \sqrt{\frac{1.7 \times 10^{-2}}{0.588}} = \sqrt{\frac{17}{289 \times 2}}$ $C\alpha_1 = 1$ $C\alpha_1 =$

$$\begin{split} & \div \left[H^{+} \right] = C\alpha_{1} \\ & = \sqrt{K_{a1} \times C} = \sqrt{17 \times 10^{-3} \times 0.588} \\ & = 0.099 \\ & pH = -log_{10}0.099 = 1 \end{split}$$

Nearest integer = 1

7. In Duma's method of estimation of nitrogen, 0.1840 g of an organic compound gave 30 mL of nitrogen collected at 287 K and 758 mm of Hg pressure. The percentage composition of nitrogen in the compound is ______. (Round off to the nearest integer). [Given: Aqueous tension at 287 K = 14 mm of Hg]

Ans: 19 Solution:

$$\begin{split} \text{Moles of N}_2 &= \frac{758 - 14}{760} \times \frac{30 \times 10^{-3}}{0.0821 \times 287} \\ &= 1.246 \times 10^{-3} \text{ mol} \\ \text{Mass of N} &= 1.246 \times 10^{-3} \times 28 \\ \text{Mass % of 'N'} &= \frac{\text{mass of N}}{\text{total mass}} \times 100 \\ &= \frac{1.246 \times 28 \times 10^{-3}}{0.184} \times 100 \\ &= \frac{124.6 \times 28}{0.184} \% = 18.96\% \end{split}$$

Nearest integer = 19%

8. Ga (atomic mass 70 u) crystallizes in a hexagonal close packed structure. The total number of voids in 0.581 g of Ga is _____ \times 10²¹. (Round off to the nearest integer). [Given: N_A = 6.023 \times 10²³]

Ans: 15 Solution:

No. of moles of Ga =
$$\frac{0.581}{70}$$

No. of atoms of Ga = $\frac{0.581}{70} \times N_A$

∴ Total number of voids =
$$\frac{0.581}{70} \times N_A \times 3$$

= $0.0249 \times 6 \times 10^{23}$
= 15×10^{21}

(As there is one octahedral void and two tetrahedral voids per atom)

9. When 35 mL of 0.15 M lead nitrate solution is mixed with 20 mL of 0.12 M chromic sulphate solution, $____$ × 10^{-5} moles of lead sulphate precipitate out. (Round off to the nearest integer).

Ans: 525
Solution:

$$3Pb(NO_3)_2 + Cr_2(SO_4)_3$$

 35 ml 20 ml
 0.15 M 0.12 M
= 5.25 mmol = 2.4 mmol

 $3PbSO_4 \downarrow + 2Cr(NO_3)_3$

Moles of $PbSO_4 = moles of Pb(NO_3)_2$

- = 5.25 mmol
- $= 525 \times 10^{-5} \, \text{mol}$
- = 525
- 10. At 363 K, the vapour pressure of A is 21 kPa and that of B is 18 kPa. One mole of A and 2 moles of B are mixed. Assuming that this solution is ideal, the vapour pressure of the mixture is _____ kPa. (Round off to the nearest integer).

Ans: 19

Solution:

$$X_{A} = \frac{1}{1+2} = \frac{1}{3}$$

$$P_{A}^{0} = 21 \text{ kPa}$$

$$P_{total} = P_{A}^{0} X_{A} + P_{B}^{0} X_{B}$$

$$= 21 \times \frac{1}{3} + 18 \times \frac{2}{3}$$

$$= 7 + 12$$

$$= 19 \text{ kPa}$$

$$X_{A} = \frac{2}{3}$$

$$P_{B}^{0} = 18 \text{ kPa}$$

