

<u>17th March Shift II</u> SECTION – A

Incentre of $\triangle OPQ$.

$$I = \left(\frac{\frac{25}{4} \times \frac{25}{3}}{\frac{25}{3} + \frac{25}{4} + \frac{125}{12}}, \frac{\frac{25}{3} \times \frac{25}{4}}{\frac{25}{3} + \frac{25}{4} + \frac{125}{12}}\right).$$

$$\therefore I = \left(\frac{625}{75 + 100 + 125}, \frac{625}{75 + 100 + 125}\right) = \left(\frac{25}{12}, \frac{25}{12}\right).$$

 \because Distance from origin to incentre is r.

$$\therefore r^{2} = \left(\frac{25}{12}\right)^{2} + \left(\frac{25}{12}\right)^{2} = \frac{625}{72}$$

Therefore, the correct answer is (1)

3. Let a computer program generate only the digits 0 and 1 to form a string of binary numbers with probability of occurrence of 0 at even places be $\frac{1}{2}$ and probability of occurrence of 0 at the odd place be $\frac{1}{3}$. Then the probability that '10' is followed by '01' is equal to :

(1)
$$\frac{1}{6}$$
 (2) $\frac{1}{18}$

$$(3) \frac{1}{9}$$

Ans. (3)

Sol. P(0 at even place) = $\frac{1}{2}$, P(0 at odd place) = $\frac{1}{3}$ P(1 at even place) = $\frac{1}{2}$, P(1 at odd place) = $\frac{2}{3}$ P(10 is followed by 01) = $\left(\frac{2}{3} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{2}\right) + \left(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} \times \frac{2}{3}\right)$ = $\frac{1}{18} + \frac{1}{18}$ = $\frac{1}{9}$ (4) $\frac{1}{3}$

5. If the equation of plane passing through the mirror image of a point (2, 3, 1) with respect to line $\frac{x+1}{2} = \frac{y-3}{1} = \frac{z+2}{-1}$ and containing the line $\frac{x-2}{3} = \frac{1-y}{2} = \frac{z+1}{1}$ is $\alpha x + \beta y + \gamma z = 24$, then $\alpha + \beta + \gamma$ is equal to : (1) 21 (2) 19 (3) 18 (4) 20 Ans. (2) Sol. A(2, 3, 1) A(3, 1) A(3

в (image)

Let point M is $(2\lambda - 1, \lambda + 3, -\lambda - 2)$

D.R.'s of AM line are $2\lambda - 1 - 2$, $\lambda + 3 - 3$, $-\lambda - 2 - 1$

$$2\lambda - 3$$
, λ , $-\lambda - 3$

 $\mathsf{AM} \perp \mathsf{line} \ \mathsf{L}_1$

:
$$2(2\lambda - 3) + 1(\lambda) - 1(-\lambda - 3) = 0$$

$$6\lambda = 3, \lambda = \frac{1}{2} \therefore M \equiv \left(0, \frac{7}{2}, \frac{-5}{2}\right)$$

M is mid-point of A & B

$$M = \frac{A+B}{2}$$
$$B = 2 M - A$$
$$B \equiv (-2, 4, -6)$$

Now we have to find equation of plane passing through B (-2, 4, -6) & also containing the line

option (2)

Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} \left(2 - \sin\left(\frac{1}{x}\right)\right) |x|, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Then f is 6.

(1) monotonic on $(0, \infty)$ only

- (2) Not monotonic on $(-\infty, 0)$ and $(0, \infty)$
- (3) monotonic on $(-\infty, 0)$ only
- (4) monotonic on $(-\infty, 0) \cup (0, \infty)$

Ans. (2)

Sol.

$$f(x) = \begin{cases} -\left(2 - \sin\frac{1}{x}\right)x , & x < 0\\ 0 , & x = 0\\ \left(2 - \sin\frac{1}{x}\right)x , & x > 0 \end{cases}$$
$$f'(x) = \begin{cases} -x\left(-\cos\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right) - \left(2 - \sin\frac{1}{x}\right), & x < 0\\ x\left(-\cos\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right) + \left(2 - \sin\frac{1}{x}\right), & x > 0 \end{cases}$$

 $\begin{cases} -\frac{1}{x}\cos\frac{1}{x}+\sin\frac{1}{x}-2, & x<0\\ \frac{1}{x}\cos\frac{1}{x}-\sin\frac{1}{x}+2, & x>0 \end{cases}$

Then f is not monotonic on $(-\infty, 0)$ and $(0, \infty)$.

7. Let O be the origin. Let
$$\overline{OP} = x\hat{i} + y\hat{j} - \hat{k}$$
 and $\overline{OQ} = -\hat{i} + 2\hat{j} + 3x\hat{k}$, $x, y \in R, x > 0$, be
such that $|\overline{PQ}| = \sqrt{20}$ and the vector \overline{OP} is perpendicular to \overline{OQ} . If $\overline{OR} = 3\hat{i} + z\hat{j} - 7\hat{k}$, $z \in R$, is coplanar with \overline{OP} and \overline{OQ} , then the value of $x^2 + y^2 + z^2$ is equal to :
(1) 2 (2) 9
(3) 1 (4) 7
Ans. (2)
Sol. $\overline{OP} = x\hat{i} + y\hat{j} - \hat{k} \overline{OP} \pm \overline{OQ}$
 $\overline{OQ} = -\hat{i} + 2\hat{j} + 3x\hat{k}$
 $\overline{PQ} = (-1 - x)\hat{i} + (2 - y)\hat{j} + (3x + 1)\hat{k}$
 $|\overline{PQ}| = \sqrt{(-1 - x)^2 + (2 - y)^2 + (3x + 1)^2}$
 $\therefore \overline{OP}, \overline{OQ} = 0$
 $47th March | Shift || -x + 2y = 3x \overline{p} \cdot \theta_0 | c$

"' March | Shift II 17

Page | 6

8. Let L be a tangent line to the parabola $y^2 = 4x - 20$ at (6, 2). If L is also a tangent to the ellipse $\frac{x^2}{2} + \frac{y^2}{b} = 1$, then the value of b is equal to : (1) 20 (2) 14 (3) 16 (4) 11 Ans. (2) Sol. Parabola $y^2 = 4x - 20$ Tangent at P(6, 2) will be $2y = 4\left(\frac{x+6}{2}\right) - 20$ 2y = 2x + 12 - 202y = 2x - 8

Copyright © Think and Learn Pvt. Ltd

v = x - 4

x - y - 4 = 0(1)

17th March | Shift II

Page | 7

10. If x, y, z are in arithmetic progression with common difference d, $x \neq 3d$, and the determinant of the matrix $\begin{bmatrix} 3 & 4\sqrt{2} & x \\ 4 & 5\sqrt{2} & y \\ 5 & k & z \end{bmatrix}$ is zero, then the value of k^2 is : (1) 6(2) 36(3) 72 (4) 12 Ans. (3) **Sol.** $\begin{vmatrix} 3 & 4\sqrt{2} & x \\ 4 & 5\sqrt{2} & y \\ 5 & k & z \end{vmatrix} = 0$ $R_1 \rightarrow R_1 + R_3 - 2R_2$ $0 \quad 4\sqrt{2} - k - 10\sqrt{2} \quad 0$ $\begin{vmatrix} 0 & 4\sqrt{2} & k & 10\sqrt{2} & 0 \\ 4 & 5\sqrt{2} & y \\ 5 & k & z \end{vmatrix} = 0 \qquad \{ \because 2y = x + z \}$ \Rightarrow $(k - 6\sqrt{2})(4z - 5y) = 0$ $k = 6\sqrt{2}$ or 4z = 5y (Not possible \therefore x, y, z in A.P.) So, $k^2 = 72$ \therefore Option (3) If the integral $\int_{0}^{10} \frac{[\sin 2\pi x]}{e^{x-[x]}} dx = \alpha e^{-1} + \beta e^{-\frac{1}{2}} + \gamma$, where α, β, γ are integers and [x] 11. denotes the greatest integer less than or equal to x, then the value of $\alpha + \beta + \gamma$ is equal to : (1) 20(2) 0(3) 25 (4) 10Ans. (2) Sol. Given integral $\int_{0}^{10} \frac{\left[\sin 2\pi x\right]}{e^{x-\left[x\right]}} dx = 10 \int_{0}^{1} \frac{\left[\sin 2\pi x\right]}{e^{\left[x\right]}} dx \quad \text{(using property of definite in.)}$ $= 10 \left[\int_{0}^{\frac{1}{2}} 0.dx + \int_{\frac{1}{2}}^{1} \frac{-1}{e^{x}} dx \right]$

$$= -10 \left[\frac{e^{-x}}{-1} \right]_{\frac{1}{2}}^{1} = 10 \left[e^{-1} - e^{-\frac{1}{2}} \right]$$

= $10e^{-1} - 10e^{-\frac{1}{2}}$ comparing with the given relation, $\alpha = 10, \beta = -10, \gamma = 0$ $\alpha + \beta + \gamma = 0$. therefore, the correct answer is (2).

12. Let y = y(x) be the solution of the differential equation

 $\cos(3\sin x + \cos x + 3) \, dy = (1 + y \sin(3\sin x + \cos x + 3))dx, \ 0 \le x \le \frac{\pi}{2}, \ y(0) = 0.$ Then, $y\left(\frac{\pi}{3}\right)$ is equal to : (1) $2\log_{e}\left(\frac{2\sqrt{3} + 10}{11}\right)$ (2) $2\log_{e}\left(\frac{\sqrt{3} + 7}{2}\right)$ (3) $2\log_{e}\left(\frac{3\sqrt{3} - 8}{4}\right)$ (4) $2\log_{e}\left(\frac{2\sqrt{3} + 9}{6}\right)$

Ans. (1)

Sol.
$$\cos x (3 \sin x + \cos x + 3) dy = (1 + y \sin x (3 \sin x + \cos x + 3)) dx ...(1)$$

 $(3 \sin x + \cos x + 3) (\cos x dy - y \sin x dx) = dx$

$$\int d(y.\cos x) = \int \frac{dx}{3\sin x + \cos x + 3}$$

y cos x =
$$\int \frac{1}{3\left(\frac{2 + \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right) + \left(\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right) + 3}$$

$$y \cos x = \int \frac{\sec^2 \frac{x}{2}}{6\tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2} + 3 + 3\tan^2 \frac{x}{2}}$$

$$y \cos x = \int \frac{\sec^2 \frac{x}{2}}{2\tan^2 \frac{x}{2} + 6\tan \frac{x}{2} + 4} = \int \frac{\frac{1}{2}\sec^2 \frac{x}{2}dx}{\tan^2 \frac{x}{2} + 3\tan \frac{x}{2} + 2}$$

 $y \cos x = \ln \left| \frac{\tan \frac{x}{2} + 1}{\tan \frac{x}{2} + 2} \right| + c$ Put x = 0 & y = 0 $C = -\ln\left(\frac{1}{2}\right) = \ln(2)$ $y\left(\frac{\pi}{3}\right) = 2 \ln \left|\frac{1+\sqrt{3}}{1+2\sqrt{3}}\right| + \ln 2$ $= 2 \ln \left| \frac{5 + \sqrt{3}}{11} \right| + \ln 2$ $= 2 \ln \left| \frac{2\sqrt{3} + 10}{11} \right|$ The value of the limit $\lim_{\theta \to 0} \frac{\tan(\pi \cos^2 \theta)}{\sin(2\pi \sin^2 \theta)}$ is equal to : 13. (2) $-\frac{1}{4}$ $(1) -\frac{1}{2}$ (4) $\frac{1}{4}$ (3) 0 Ans. (1) Sol. Given, $\lim_{\theta \to 0} \frac{\tan\left(\pi \cos^2 \theta\right)}{\sin\left(2\pi \sin^2 \theta\right)}$ $= \lim_{\theta \to 0} \frac{\tan(\pi - \pi \sin^2 \theta)}{\sin(2\pi \sin^2 \theta)} \qquad \left(\therefore \cos^2 \theta = 1 - \sin^2 \theta \right)$ $= \lim_{\theta \to 0} \frac{-\tan(\pi \sin^2 \theta)}{\sin(2\pi \sin^2 \theta)} \quad (\therefore \tan(\pi - \theta) = -\tan \theta)$ $= \lim_{\theta \to 0} - \frac{1}{2} \left(\frac{\tan(\pi \sin^2 \theta)}{\pi \sin^2 \theta} \right) \left(\frac{2\pi \sin^2 \theta}{\sin(2\pi \sin^2 \theta)} \right) = -\frac{1}{2}$ Therefore, the correct answer is (1).

14. If the curve y = y(x) is the solution of the different equation

 $2(x^2 + x^{5/4})dy - y(x + x^{1/4})dx = 2x^{9/4}dx$, x > 0 which passes through the point $\left(1,1-\frac{4}{3}\log_{e}2\right)$, then the value of y(16) is equal to : (1) $\left(\frac{31}{3} - \frac{8}{3}\log_e 3\right)$ (2) $4\left(\frac{31}{3} + \frac{8}{3}\log_e 3\right)$ $(3)\left(\frac{31}{3}+\frac{8}{3}\log_{e}3\right)$ (4) $4\left(\frac{31}{3} - \frac{8}{3}\log_e 3\right)$ Ans. (4) **Sol.** $\frac{dy}{dx} - \frac{y}{2x} = \frac{x^{9/4}}{x^{5/4}(x^{3/4} + 1)}$ If = $e^{-\int \frac{dx}{2x}} = e^{-\frac{1}{2}\ln x} = \frac{1}{x^{1/2}}$ $y.x^{-1/2} = \int \frac{x^{9/4}.x^{-1/2}}{x^{5/4}(x^{3/4}+1)} dx$ $\int \frac{x^{1/2}}{(x^{3/4}+1)} dx$ $x = t^4 \Rightarrow dx = 4t^3dt$ $\int \frac{t^2 \cdot 4t^3 dt}{(t^3 + 1)}$ $4\int \frac{t^2(t^3+1-1)}{(t^3+1)} dt$ $4\int t^2 dt - 4\int \frac{t^2}{t^3+1} dt$ $\frac{4t^3}{3} - \frac{4}{3}\ln(t^3 + 1) + C$ $yx^{-1/2} = \frac{4x^{3/4}}{3} - \frac{4}{3}\ln(x^{3/4} + 1) + C$ $1 - \frac{4}{3} \log_e 2 = \frac{4}{3} - \frac{4}{3} \log_e 2 + C$ \Rightarrow C = $-\frac{1}{3}$ $y = \frac{4}{3} x^{5/4} - \frac{4}{3} \sqrt{x} \ln(x^{3/4} + 1) - \frac{\sqrt{x}}{3}$

$$y(16) = \frac{4}{3} \times 32 - \frac{4}{3} \times 4\ln 9 - \frac{4}{3}$$
$$= \frac{124}{3} - \frac{32}{3}\ln 3 = 4\left(\frac{31}{3} - \frac{8}{3}\ln 3\right)$$

Let, $z = x + iy$	
$S_1 \equiv (x-1)^2 + \gamma^2 \leq 2$	(1)
$S_2 \equiv \ x + y \geq 1$	(2)
$S_3\equiv y\leq 1$	(3)

 \Rightarrow S1 \cap S2 \cap S3 has infinitely many elements.

16. If the sides AB, BC, and CA of a triangle ABC have, 3, 5 and 6 interior points respectively, then the total number of triangles that can be constructed using these points as vertices, is equal to:

- (1) 360 (2) 240 (4) 364
- (3) 333

Ans. (3)

Sol.

Total number of triangles

$$= {}^{3}C_{1} \times {}^{5}C_{1} \times {}^{6}C_{1}$$

$$+ {}^{3}C_{1} \times {}^{5}C_{2} + {}^{5}C_{1} \times {}^{3}C_{2}$$

$$+ {}^{3}C_{1} \times {}^{6}C_{2} + {}^{6}C_{1} \times {}^{3}C_{2}$$

$$+ {}^{5}C_{1} \times {}^{6}C_{2} + {}^{6}C_{1} \times {}^{5}C_{2}$$

$$= 90 + 30 + 15 + 45 + 18 + 75 +$$

$$= 333$$

17. The value of

$$\lim_{x\to\infty}\frac{\lfloor r\rfloor+\lfloor 2r\rfloor+\ldots+\lfloor nr\rfloor}{n^2},$$

Where r is a non-zero real number and [r] denotes the greatest integer less than or equal to r, is equal to :

60

JEE MAIN 2021 (1) 0(2) r (4) 2r (3) $\frac{r}{2}$ Ans. (3) Sol. We know that $r \le [r] < r + 1$ $2r \leq [2r] < 2r + 1$ and $3r \leq [3r] < 3r + 1$; $nr \leq [nr] < nr + 1$ r + 2r + + nr \leq [r] + [2r] ++ [nr] < (r + 2r ++ nr) + n $\frac{\frac{n(n+1)}{2}.r}{\frac{n^2}{n^2}} \le \frac{[r] + [2r] + \dots + [nr]}{n^2} < \frac{\frac{n(n+1)}{2}r + n}{\frac{n^2}{n^2}}$ Now, $\lim_{n\to\infty}\frac{n(n+1).r}{2.n^2}=\frac{r}{2}$ $\lim_{n\to\infty}\frac{\frac{n(n+1)r}{2}+n}{n^2}=\frac{r}{2}$ and So, by Sandwich Theorem, we can conclude that $\lim_{n\to\infty}\frac{[r]+[2r]+\ldots+[nr]}{n^2}=\frac{r}{2}$ The value of $\sum_{r=0}^{6} ({}^{6}C_{r} \cdot {}^{6}C_{6-r})$ is equal to : 18. (1) 1124(2) 924 (3) 1324(4) 1024 (2) Ans. $\sum_{r=1}^{6} {}^{6}C_{r} {}^{6}C_{6-r}$ Sol. $={}^{6}C_{0}.{}^{6}C_{6} + {}^{6}C_{1}.{}^{6}C_{5} + \dots + {}^{6}C_{6}.{}^{6}C_{0}$ Now, $(1 + x)^6 (1 + x)^6 = ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_1x + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_6x^6) ({}^6C_0 + {}^6C_1x + {}^6C_2x^2 + \dots + {}^6C_1x + {}^6C_$ ${}^{6}C_{6}x^{6}$) Comparing coefficient of x^6 both sides

= 924

Therefore, the correct answer is (2).

Two tangents are drawn from a point P to the circle $x^2 + y^2 - 2x - 4y + 4 = 0$, such 19. that the angle between these tangents is $\tan^{-1}\left(\frac{12}{15}\right)$, where $\tan^{-1}\left(\frac{12}{5}\right) \in (0, \pi)$. If the centre of the circle is denoted by C and these tangents touch the circle at points A and B, then the ratio of the areas of $\triangle PAB$ and $\triangle CAB$ is : (2) 9:4 (1) 11 : 4(3) 2 : 1(4) 3 : 1Ans. (2) Sol. L r=1 $\theta/2$ В Let $\theta = \tan^{-1}\left(\frac{12}{5}\right)$ $\Rightarrow \tan \theta = \frac{12}{5}$ $\Rightarrow \frac{2\tan\frac{\theta}{2}}{1-\tan^2\frac{\theta}{2}} = \frac{12}{5}$ $\Rightarrow \tan \frac{\theta}{2} = \frac{2}{3} \qquad \Rightarrow \sin \frac{\theta}{2} = \frac{2}{\sqrt{3}} \qquad \text{and} \ \cos \frac{\theta}{2} = \frac{3}{\sqrt{13}}$ In $\triangle CAP$, $\tan \frac{\theta}{2} = \frac{1}{\Delta P}$

 $\Rightarrow AP = \frac{3}{2}$ In $\triangle APM$, $\sin \frac{\theta}{2} = \frac{AM}{AP}$, $\cos \frac{\theta}{2} = \frac{PM}{AP}$ \Rightarrow AM = $\frac{3}{\sqrt{13}}$ \Rightarrow PM = $\frac{9}{2\sqrt{13}}$ $\therefore AB = \frac{6}{\sqrt{1.3}}$ $\therefore \text{ Area of } \triangle \mathsf{PAB} = \frac{1}{2} \times \mathsf{AB} \times \mathsf{PM}$ $=\frac{1}{2}\times\frac{6}{\sqrt{13}}\times\frac{9}{2\sqrt{13}}=\frac{27}{26}$ Now, $\phi = 90^{\circ} - \frac{\theta}{2}$. In $\triangle CAM$, $\cos \phi = \frac{CM}{CA}$ \Rightarrow CM = 1.cos $\left(\frac{\pi}{2} - \frac{\theta}{2}\right)$ $= 1.\sin\frac{\theta}{2} = \frac{2}{\sqrt{13}}$ $\therefore \text{ Area of } \triangle \text{CAB} = \frac{1}{2} \times \text{AB} \times \text{CM}$ $=\frac{1}{2}\times\frac{6}{\sqrt{13}}\times\frac{2}{\sqrt{13}}=\frac{6}{13}$ $\therefore \quad \frac{\text{Area of } \triangle \text{PAB}}{\text{Area of } \triangle \text{CAB}} = \frac{27 / 26}{6 / 13} = \frac{9}{4}$ Therefore, the correct answer is (2).

Aliter

 $\therefore \sin^{-1}(0) + \cos^{-1}(-1) = x^{2}$ $\Rightarrow 0 + \pi = x^{2} \qquad \Rightarrow x = \pm\sqrt{\pi} \rightarrow \text{(Reject)}$ Case III : $x \in \left(\sqrt{\frac{2}{3}}, 1\right)$ $\therefore \sin^{-1}(0) + \cos^{-1}(0) = x^{2}$ $\Rightarrow x^{2} = \pi \Rightarrow x = \pm\sqrt{\pi} \text{ (Reject)}$ $\therefore \text{ No solution. There, the correct answer is (1)}$

SECTION - B

1. Let the coefficients of third, fourth and fifth terms in the expansion of

 $\left(x + \frac{a}{x^2}\right)^{n}$, $x \neq 0$, be in the ration 12:8:3. Then the term independent of x in the expansion, is equal to

Ans. (4)
Sol.
$$T_{r+1} = n_{cr} x^{n-r} \cdot \left(\frac{a}{x^2}\right)^r$$

 $= {}^{n}C_{r}a^{r}x^{n-3r}$
 $T_3 = {}^{n}C_2a^2x^{n-6}$, $T_4 = {}^{n}C_3a^3x^{n-9}$
 $T_5 = {}^{n}C_4a^4x^{n-12}$
Now, $\frac{\text{coefficient of } T_3}{\text{coefficient of } T_4} = {}^{n}\frac{c_2.a^2}{c_3.a^3} = \frac{3}{a(n-2)} = \frac{3}{2}$
 $\Rightarrow a(n-2) = 2$ (i)
and $\frac{\text{coefficient of } T_4}{\text{coefficient of } T_5} = {}^{n}\frac{c_3.a^3}{n_{c_4.a}4} = \frac{4}{a(n-3)} = \frac{8}{3}$
 $\Rightarrow a(n-3) = \frac{3}{2}$ (ii)
by (i) and (ii) $n = 6$, $a = \frac{1}{2}$
for term independent of 'x'
 $n - 3r = 0 \Rightarrow r = \frac{n}{3} \Rightarrow r = \frac{6}{3} = 2$
 $T_3 = {}^{6}c_2 \left(\frac{1}{2}\right)^2 x^0 = \frac{15}{4} = 3.75 \approx 4$

2.	Let A = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and B $\begin{bmatrix} \alpha \\ \rho \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ such that AB = B and a + d = 2021, then the value
	of ad-bc is equal to
Ans.	(2020)
Sol.	$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, B = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$
	AB = B
	$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$
	$\begin{bmatrix} a\alpha + b\beta \\ c\alpha + d\beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \implies \begin{array}{c} a\alpha + b\beta = \alpha & \dots & (1) \\ and & c\alpha + d\beta = \beta & \dots & (2) \end{array}$
	$\alpha(a-1) = -b\beta$ and $c\alpha = \beta(1-d)$
	$\frac{\alpha}{\beta} = \frac{-b}{a-1} \& \frac{\alpha}{\beta} = \frac{1-d}{c}$
	$\therefore \frac{-b}{a-1} = \frac{1-d}{c}$
	-bc = (a - 1)(1 - d)
	-bc = a - ad - 1 + d
	ad - bc = a + d - 1
	= 2021 - 1 = 2020
	- 2020
3.	Let $f : [-1,1] \rightarrow \mathbb{R}$ be defined as $f(x) = ax^2 + bx + c$ for all $x \in [-1, 1]$, where a, b, $c \in \mathbb{R}$
	such that $f(-1) = 2$, $f'(-1) = 1$ and for $x \in [-1, 1]$ the maximum value of $f''(x)$ is $\frac{1}{2}$.
	If $f(x) \leq lpha$, $x \in [-1, 1]$, then the least value of $lpha$ is equal to
Ans.	(5)
Sol.	$f(x) = ax^2 + bx + c$
	f'(x) = 2ax + b,
	f''(x) = 2a
	Given f''(-1) = $\frac{1}{2}$ \Rightarrow a = $\frac{1}{4}$
	$f'(-1) = 1 \implies b - 2a = 1 \implies b = \frac{3}{2}$
	$f(-1) = a = b + c = 2$ $\Rightarrow c = \frac{13}{2}$
	4
	Now $f(x) = \frac{1}{4} (x^2 + 6x + 13), x \in [-1, 1]$

 $f'(x) = \frac{1}{4} (2x + 6) = 0 \qquad \Rightarrow x = -3 \notin [-1, 1]$ f(1) = 5, f(-1) = 2 $f(x) \leq 5$ So $\alpha_{minimum} = 5$ Let $I_n = \int_1^e x^{19} \left(\log |x| \right)^n dx$, where $n \in \mathbb{N}$. If $(20)I_{10} = \alpha I_9 + \beta I_8$, for natural numbers 4. α and $\beta,$ then $\alpha{-}\beta$ equal to Ans. (1) **Sol.** $I_n = \int_{-\infty}^{e} x^{19} (\ell n x)^n . dx$ $= (\ell nx)^{n} \cdot \frac{x^{20}}{20} \bigg|_{0}^{e} \int_{0}^{e} n \frac{(\ell nx)^{n-1}}{x} \frac{x^{20}}{20} dx$ $I_{n} = \frac{e^{20}}{20} - \frac{n}{20} (I_{n-1})$ $20I_n = e^{20} - n I_{n-1}$ $20I_{10} = \left(e^{20} - 10I_9\right)$(1) $20I_9 = e^{20} - 9I_8$(2) $20I_{10}=10I_9+9I_8$

 $\alpha = 10, \beta = 9 \implies \alpha - \beta = 1$

Let $f: [-3, 1] \rightarrow \mathbb{R}$ be given as $f(x) = \begin{cases} \min\{(x+6), x^2\}, \ -3, \le x \le 0 \\ \max\{\sqrt{x}, x^2\}, \ 0 \le x \le 1. \end{cases}$

If the area bounded by y = f(x) and x-axis is A, then the value of 6A is equal to

Ans. (41) Sol.

.....

5.

JEE MAIN 2021 ANH HITHHHHHHHHH . HHH<u>HH</u> Area is $\int_{-3}^{-2} (x+6)dx + \int_{-3}^{0} x^2 dx + \int_{0}^{1} \sqrt{x} dx = A$ $= \frac{7}{2} + \left[\frac{x^{3}}{3}\right]_{-2}^{0} + \left[\frac{2}{3}x^{3/2}\right]_{0}^{1}$ $=\frac{7}{2}+\frac{8}{3}+\frac{2}{3}=\frac{41}{6}$ So, 6A = 41Let \vec{X} be a vector in the plane containing vectors $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$. If the 6.

6. Let $\vec{\mathbf{X}}$ be a vector in the plane containing vectors $\vec{a} = 2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{b} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$. If the vector $\vec{\mathbf{X}}$ is perpendicular to $(3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}})$ and its projection on \vec{a} is $\frac{17\sqrt{6}}{2}$, then the value of $|\vec{\mathbf{X}}|^2$ is equal to

Ans. (486)

Sol. Let, $\vec{\mathbf{x}} = \mathbf{k}(\mathbf{a} + \lambda \mathbf{b})$

I. $\vec{\mathbf{x}}$ is perpendicular to $3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$

 $k\{(2 + \lambda)3 + (2\lambda - 1)2 + (1 - \lambda)(-1) = 0$

$$\Rightarrow 8\lambda + 3 = 0$$

$$\lambda = \frac{-3}{8}$$

II. Also projection of $\vec{\mathbf{x}}$ on \bar{a} is therefore

$$\frac{\vec{x}.\vec{a}}{|\vec{a}|} = \frac{17\sqrt{6}}{2}$$

$$\Rightarrow k \left\{ \frac{(\ddot{a} + \lambda \ddot{b}).\ddot{a}}{\sqrt{6}} \right\} = \frac{17\sqrt{6}}{2}$$

$$\Rightarrow k \left\{ 6 + \left(\frac{3}{8}\right) \right\} = \frac{17 \times 6}{2}$$

$$\Rightarrow k = \frac{51}{51} \times 8$$

$$k = 8$$

$$\vec{x} = 8 \left(\frac{13}{8} \hat{i} - \frac{14}{8} \hat{j} + \frac{11}{8} \hat{k} \right)$$

$$= 13\hat{i} - 14\hat{j} + 11\hat{k}$$

$$|\vec{x}|^2 = 169 + 196 + 121 = 486$$

7. Consider a set of 3n numbers having variance 4. In this set, the mean of first 2n numbers is 6 and the mean of the remaining n numbers is 3. A new set is constructed by adding 1 into each of first 2n numbers, and subtracting 1 from each of the remaining n numbers. If the variance of the new set is k, then 9k is equal to

......

Sol. Let first 2n observations ae X₁, X₂, X_{2n0}
and last n observations are y₁, y₂, y_n
Now,
$$\sum_{2n} x_i = 6$$
, $\sum_{n} y_i = 3$
 $\Rightarrow \sum x_i = 12n$, $\sum y_i = 3n$. $\sum \frac{x_i + \sum y_i}{3n} = \frac{15n}{3n} = 5$
Now, $\frac{\sum x_i^2 + \sum y_i^2}{3n} - 5^2 = 4$
 $\Rightarrow \sum x_i^2 + \sum y_i^2 = 29 \times 3n = 87n$
Now, mean is $\frac{\sum (x_i + 1) + \sum (y_i - 1)}{3n} = \frac{15n + 2n - n}{3n} = \frac{16}{3}$
Now, variance is $\frac{\sum (x_i + 1)^2 + \sum (y_i - 1)^2}{3n} - (\frac{16}{3})^2$
 $= \frac{\sum x_i^2 + \sum y_i^2 + 2(\sum x_i - \sum y_i) + 3n}{3n} - (\frac{16}{3})^2$
 $= \frac{87n + 2(9n) + 3n}{3n} - (\frac{16}{3})^2$

 $29+6+1-\left(\frac{16}{3}\right)^2$ $=\frac{324-256}{9}=\frac{68}{9}=k$ $\Rightarrow 9k=68$

()

Therefore, the correct answer is 68.

8. If 1, log₁₀(4^x-2) and log₁₀
$$\left(4^{x} + \frac{18}{5}\right)$$
 are in arithmetic progression for a real number
x, then the value of the determinant $\begin{vmatrix} 2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0 \end{vmatrix}$ is equal to :

Ans. (2)
Sol. 1,
$$\log_{10} (4^{x} - 2)$$
, $\log_{10} (4^{x} + \frac{18}{5})$ in AP.
2. $\log_{10} (4^{x} - 2) = 1 + \log_{10} (4^{x} + \frac{18}{5})$
 $\log_{10} (4^{x} - 2)^{2} = \log_{10} (10.(4^{x} + \frac{18}{5}))$
 $(4^{x} - 2)^{2} = 10.(4^{x} + \frac{18}{5})$
 $(4^{x})^{2} + 4 - 4.4^{x} = 10.4^{x} + 36$
 $(4^{x})^{2} - 14.4^{x} - 32 = 0$
 $(4^{x})^{2} + 2.4^{x} - 16.4^{x} - 32 = 0$
 $(4^{x} + 2) - 16.(4^{x} + 2) = 0$
 $(4^{x} + 2)(4^{x} - 16) = 0$
 $4^{x} = -2$ $4^{x} = 16$
rejected $x = 2$
Therefore $\begin{vmatrix} 2(x - 1/2) & x - 1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0 \end{vmatrix}$
 $= \begin{vmatrix} 3 & 1 & 4 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{vmatrix}$
 $= 3(-2) - 1(0 - 4) + 4(1 - 0)$
 $= -6 + 4 + 4$

= 2

9. Let P be an arbitrary point having sum of the squares of the distances from the planes x + y + z = 0, /x - nz = 0 and x - 2y + z = 0, equal to 9. If the locus of the point P is $x^2 + y^2 + z^2 = 9$, then the value of /-n is equal to

Ans. (0)

Sol. Let point P is
$$(\alpha, \beta, \gamma)$$

$$\left(\frac{\alpha+\beta+\gamma}{\sqrt{3}}\right)^{2} + \left(\frac{\ell\alpha-n\gamma}{\sqrt{\ell^{2}+n^{2}}}\right)^{2} + \left(\frac{\alpha-2\beta+\gamma}{\sqrt{6}}\right)^{2} = 9$$
Locus is $\frac{(x+y+z)^{2}}{3} + \frac{(\ell n-nz)^{2}}{\ell^{2}+n^{2}} + \frac{(x-2y+z)^{2}}{6} = 9$

$$x^{2}\left(\frac{1}{2} + \frac{\ell^{2}}{\ell^{2}+n^{2}}\right) + y^{2} + z^{2}\left(\frac{1}{2} + \frac{n^{2}}{\ell^{2}+n^{2}}\right) + 2zx\left(\frac{1}{2} - \frac{\ell n}{\ell^{2}+n^{2}}\right) - 9 = 0$$
Since its given that $x^{2} + y^{2} + z^{2} = 9$
After solving $\ell = n$,

then $\ell - n = 0$

10. Let $\tan \alpha$, $\tan \beta$ and $\tan \gamma$; $\alpha, \beta, \gamma \neq \frac{(2n-1)\pi}{2}$, $n \in N$ be the slopes of three line

segment OA, OB and OC, respectively, where O is origin. If circumcentre of $\triangle ABC$ coincides with origin and its orthocentre lies on y-aixs, then the value of

 $\left(\frac{\cos 3\alpha + \cos 3\beta + \cos 3\gamma}{\cos \alpha \cos \beta \cos \gamma}\right)^2$ is equal to

Ans. (144)

Sol. Since orthocentre and circumcentre both lies on y-axis

 $\Rightarrow \text{ Centroid also lies on y-axis}$ $\Rightarrow \Sigma \cos \alpha = 0$ $\cos \alpha + \cos \beta + \cos \gamma = 0$ $\Rightarrow \cos^{3} \alpha + \cos^{3} \beta + \cos^{3} \gamma = 3\cos \alpha \cos \beta \cos \gamma$ $\therefore \frac{\cos 3\alpha + \cos 3\beta + \cos 3\gamma}{\cos \alpha \cos \beta \cos \gamma}$ $= \frac{4(\cos^{3} \alpha + \cos^{3} \beta + \cos^{3} \gamma) - 3(\cos \alpha + \cos \beta + \cos \gamma)}{\cos \alpha \cos \beta \cos \gamma} = 12$ then, $\left(\frac{\cos 3\alpha + \cos 3\beta + \cos 3\gamma}{\cos \alpha \cos \beta \cos \gamma}\right)^{2} = 144$