

SECTION - A

 Given below are two statements: Statement I: Bohr's theory accounts for the stability and line spectrum of Li⁺ ion. Statement II: Bohr's theory was unable to explain the splitting of spectral lines in the

presence of a magnetic field.

In the light of the above statements, choose the most appropriate answer from the options given below:

- a. Both statement I and statement II are true.
- b. Statement I is true but statement II is false.
- c. Statement I is false but statement II is true.
- d. Both statement I and statement II are false.

Ans: (c)

Solution: $S-1 \rightarrow false$ $S-2 \rightarrow True$ Hence option c is correct.

5. Match List-I with List-II:

List-I	List-II
a. Mercury	(i) Vapour phase refining
b. Copper	(ii) Distillation Refining
c. Silicon	(iii) Electrolytic Refining
d. Nickel	(iv) Zone Refining

Choose the most appropriate answer from the option given below:

a. (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv)

- c. (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)
- b. (a)-(ii), (b)-(iv), (c)-(iii),(d)-(ii)
- d. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

Ans: (d)

Solution:

- a. The pyrometallurgical extraction of mercury from its ore is essentially a distillation process.
- b. The purification of metals by electrolysis. It is commonly applied to copper. A large piece of impure copper is used as the anode with a thin strip of pure copper as the cathode
- c. Zone Refining. Zone refining is a very useful method to get metals with very high purity such as silicon and germanium. It is also referred to as zone melting, ...
- d. Mond's process for extraction of nickel and Van-Arkel Method for preparing ultra pure titanium are based on the principle of vapour phase refining.

6. Match List-I with List-II :

List-I (Class of Chemicals)

List-II

(Example) (i) Meprobamate

(ii) Alitame

- a. Antifertility drug
- b. Antibiotic
- c. Tranquilizer
- (iii) Norethindrone (iv) Salvarsan
- d. Artificial Sweetener

Options:

a. (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i) c. (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)

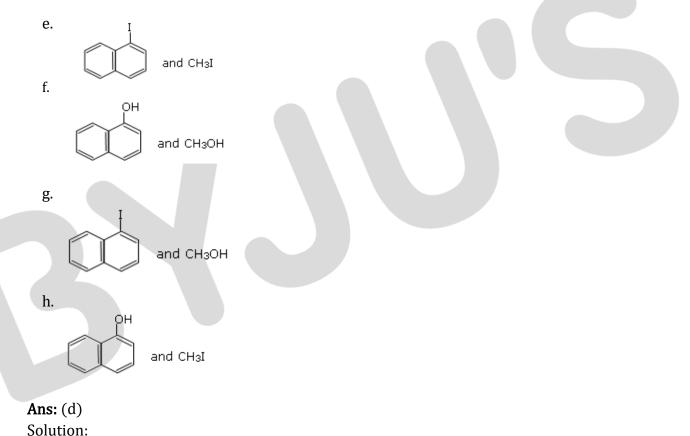
b. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i) d. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)

B

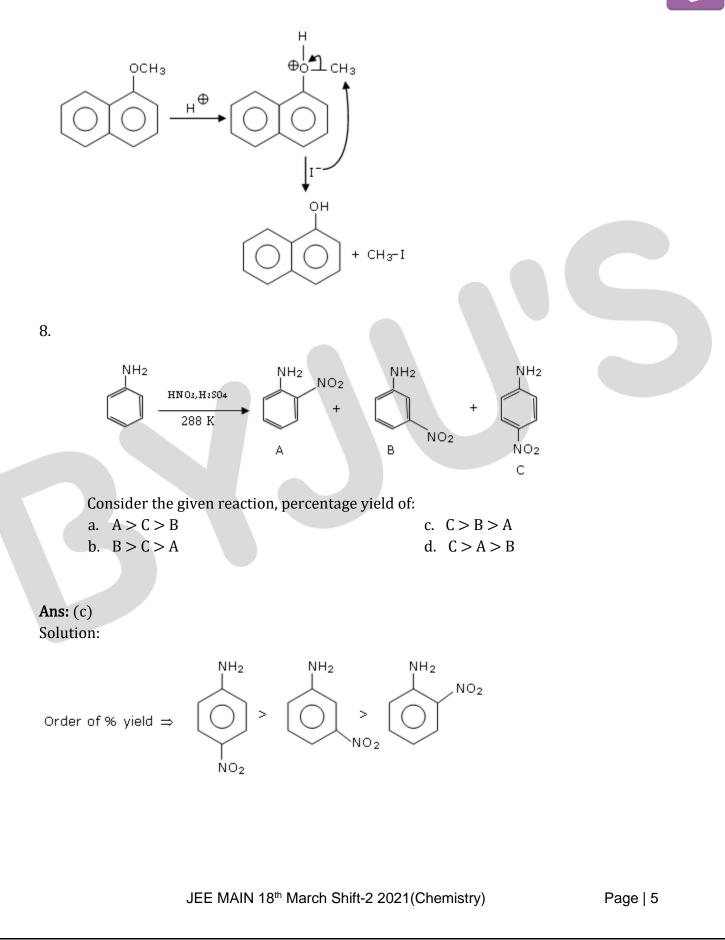
Ans: (4)

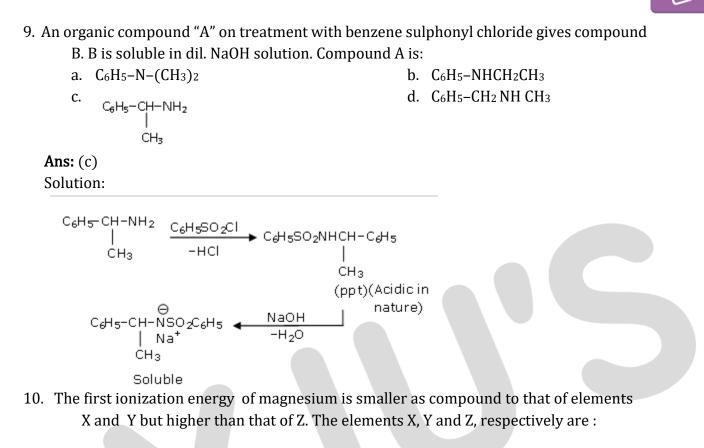
Solution:

- a. Antifertility drug
- b. Antibiotic
- → Salvarsan


 \rightarrow

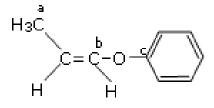
 \rightarrow


- c. Tranquilizer
- \rightarrow Meprobamate
- d. Artificial sweetener
- Alitame


Norethindrone

7. Main Products formed during a reaction of 1-methoxy naphthalene with hydroiodic acid are:

Solution



- a. argon, lithium and sodium
- b. chlorine, lithium and sodium
- c. neon, sodium and chlorine
- d. argon, chlorine and sodium

Ans: (d) Solution: Order of I.E. 3rd period \rightarrow Na < Al < Mg < Si < S < P < Cl < Ar

11. In the following molecule:

JEE MAIN 18th March Shift-2 2021(Chemistry)

Page | 6

Hybridisation of Carbon a, b and c respectively are:

a. sp ³ , sp ² , sp ² c. sp ³ , sp, sp	b. sp^3 , sp^2 , sp d. sp^3 , sp , sp^2
Ans: (a) Solution: a. \rightarrow sp ³ b. \rightarrow sp ² c. \rightarrow sp ²	
 12. In the reaction of hypobromite with a. HCO₃- c. CO₂ 	amide, the carbonyl carbon is lost as: b. CO3 ^{2–} d. CO
Ans: (b) Solution: CO3 ²⁻	
13. The oxidation states of nitrogen in N a. $NO_2 > NO_3^- > NO > N_2O$ c. $NO_3^- > NO_2 > NO > N_2O$ Ans: (c)	NO, NO ₂ , N ₂ O and NO ₃ ⁻ are in the order of b. N ₂ O > NO ₂ > NO > NO ₃ ⁻ d. NO > NO ₂ > NO ₃ ⁻ > N ₂ O
Solution: 0.S. of 'N' $NO \rightarrow +2$ $NO_2 \rightarrow +4$ $N_2O \rightarrow +1$	
NO_{3^-} → +5 Decreasing order of ox. state of 'N' is NO_{3^-} > NO_2 > NO > N_2O	s as follows

14. Match List-I and List II:

List-I	List-II			
a. Be	(i) treatment	of cancer		
b. Mg	(ii) extraction	n of metals	5	
c. Ca	(iii) incendia	ry bombs a	and signals	
d. Ra	(iv) windows	of X-ray t	ubes	
	(v) bearings	for motor	engines	
Choose the most a	opropriate answer from	n the optic	on given below :	
Options :				
(a) (iii) (b) (ia)	(a) (a) (d) (a)	1.		(x) (x) (x)

- a. (a)-(iii), (b)-(iv), (c)-(ii), (d)-(v) c. (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- b. (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- d. (a)-(iii), (b)-(iv), (c)-(v), (d)-(ii)

Ans: (c)

Solution:

Fact (NCERT)

- a. Be is used in bearings of motor engine. The higher strength copper beryllium compared to alternative bronze landing gear materials allows the bearings to be made smaller and lighter.
- b. When combined with water while burning it releases gas and oxygen. Magnesium is used in either powdered or solid form as an incendiary agent for both illumination and antipersonnel purposes.
- c. Pure calcium metal is used as a reducing agent in the preparation of other types of metal, such as thorium and uranium and zirconium.
- d. Due to radioactive nature Ra- is used in treatment of cancer.

15. Deficiency of vitamin K causes:

- a. Cheilosis
- b. Increase in blood clotting time
- c. Increase in fragility of RBC's
- d. Decrease in blood clotting time

Ans: (b)

Solution:

Deficiency of vitamin "K" causes increase in blood clotting time.

16. Given below are two statements:

Statement I : C_2H_5OH and AgCN both can generate nucleophile. Statement II : KCN and AgCN both will generate nitrile nucleophile with all reaction condition.

Choose the most appropriate option:

- a. Statement I is false but statement II is true.
- b. Statement I is true but statement II is false.
- c. Both statement I and statement II are false.
- d. Both statement I and statement II are true.

Ans: (b)

Solution:

▶ C₂H₅OH & AgCN both can generate nucleophile

▶ AgCN & KCN both not generate nitrite nucleophile in all reaction condition.

17. Given below are two statements:

Statement I : Non-biodegradable wastes are generated by the thermal power plants. Statement II : Bio-degradable detergents leads to eutrophication.

In the light of the above statements, choose the most appropriate answer from the options given below.

Options :

- a. Statement I is false but statement II is true.
- b. Statement I is true but statement II is false.
- c. Both statement I and statement II are false.
- d. Both statement I and statement II are true.

Ans: (b) Solution: Fact (NCERT-Based)

Statement II – Bio – degradable detergents does not contain phosphate salts as phosphate salts lead to over enrichment of phosphate causes water bodies choked with algae and other plants **(eutrophication).** So,statement II is false.

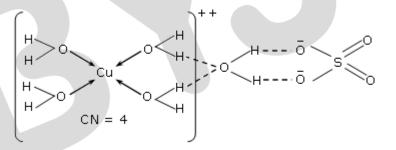
- 18. A hard substance melts at high temperature and is an insulator in both solid and in molten state. This solid is most likely to be a/an:
 - a. Metallic solid

b. Covalent solid

c. Ionic solid

d. Molecular solid

Ans: (2)


Solution:

If substance is insulator in solid & molten both phase, then it can't be ionic or metallic solid. If melting pt. is higher, then it can't be molecular solid. It should be covalent network solid.

- 19. The secondary valency and the number of hydrogen bounded water molecule(s) in CuSO₄.5H₂O, respectively, are:
 - a. 6 and 4
 - b. 4 and 1
 - c. 5 and 1
 - d. 6 and 5

Ans: (b)

Solution:

- 20. In basic medium, H₂O₂ exhibits which of the following reactions?
 - A. $Mn^{2+} \rightarrow Mn^{4+}$
 - B. $I_2 \rightarrow I^-$
 - C. $PbS \rightarrow PbSO_4$

a. (A), (C) only c. (B) only b. (A) onlyd. (A), (B) only

Ans: (d)

Solution:

- (1) Oxidising action in basic medium
 - 2Fe²⁺ + H₂O₂ ³/₄³/₄³/₃³/₃ 2Fe³⁺ + 2OH⁻ Mn²⁺ + H₂O₂ ³/₄³/₄³/₃ Mn⁴⁺ + 2OH⁻
- (2) Reducing action in basic medium
 - $I_2 + H_2O_2 + 2OH^{-3}_{43}_{43} = 2I^{-} + 2H_2O + O_2$
 - $2MnO_4 + 3H_2O_2$ 3/3/3/3 $2MnO_2 + 3O_2 + 2H_2O + 2OH^-$

SECTION - B

1. The solubility of CdSO₄ in water is 8.0×10^{-4} mol L⁻¹. Its solubility in 0.01 M H₂SO₄ solution is _____ × 10⁻⁶ mol L⁻¹. (Round off to the Nearest Integer). Assume that solubility is much less than 0.01 M)

Ans: 64 Solution: $CdSO_4(s) \square Cd^{+2} (aq) + SO_{4^{2-}} (aq)$ S S S $S = 8 \times 10^{-4} K_{sp} = S^2 = 64 \times 10^{-8}$ $CdSO_4(s) \square Cd^{+2} + SO_{4^{2-}}$ $S S + 10^{-2}$ $K_{sp}(CdSO_4) = 64 \times 10^{-8} = s(s + 10^{-2})$

 $64 \times 10^{-8} \sqcup s \times 10^{-2}$ $s = 64 \times 10^{-6}$

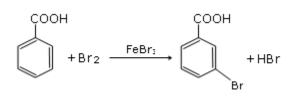
2. The molar conductivities at infinite dilution of barium chloride, sulphuric acid and hydrochloric acid are 280, 860 and 426 S cm² mol⁻¹ respectively. The molar conductivity at infinite dilution of barium sulphate is _____ S cm² mol⁻¹. (Round off to the Nearest Integer).

```
Ans: 288
Solution:
\lambda_{M}^{\infty}(BaCl_{2}) = 280
\lambda_{M}^{\infty}(H_{2}SO_{4}) = 860
\lambda_{M}^{\infty}(HCl) = 426
\lambda_{M}^{\infty}(BaSO_{4}) = ??
= \lambda_{M}^{\infty}(H_{2}SO_{4}) + \lambda_{M}^{\infty}(BaCl_{2}) - 2 \times \lambda_{M}^{\infty}(HCl)
= 860 + 280 - 2 \times 426 = 288
```


3. A reaction has a half life of 1 min. The time required for 99.9% completion of the reaction is _____ min. (Round off to the nearest integer) [Use $\ln 2 = 0.69$, $\ln 10 = 2.3$]

Ans: 10 Solution: $t_{99.9\%} = ?? = 10 \text{ x } t_{(1/2)} = 10 \text{ min}$

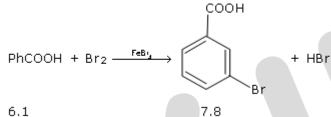
Derivation


$$t_{99.9\%} = \frac{1}{K} \ell n \left\{ \frac{100}{0.1} \right\} = \frac{1}{K} \ell n (1000)$$
$$= \frac{3}{K} \ell n (10) = 3 \frac{(t_{1/2})}{\ell n (2)} \times \ell n (10)$$
$$= 3 \times (1 \text{ min}) \times \frac{\ell n (10)}{\ell n (2)}$$
$$= \frac{3}{\log(2)} = \frac{3}{0.3}; \quad 10 \text{ min}$$

4. The gas phase reaction $2A (g) \rightarrow A_2(g)$ at 400 K has $DG^2 = +25.2 \text{ kJ mol}^{-1}$ The equilibrium contant K_C for this reaction is _____ × 10⁻². (Round off to the Nearest Integer). [Use : R = 8.3 J mol⁻¹ K⁻¹, ln 10 = 2.3 log₁₀ 2 = 0.30, 1 atm = 1 bar] [antilog (- 0.3) = 0.501] Ans: 2

Solution: Using formula $DG^\circ = -RTlnK_P$ $25200 = -2.3 \times 8.3 \times 400 \log (K_P)$ $K_P = 10^{-3.3} = 10^{-3} \times 0.501$ $= 5.01 \times 10^{-4} Bar^{-1}$ $= 5.01 \times 10^{-5} \times 10^{-4} Pa^{-1}$ $= \frac{K_C}{8.3 \times 400}$ $K_C = 1.66 \times 10^{-5}m^3/mole$ $= 1.66 \times 10^{-2} L/mol$

5.



Consider the above reaction where 6.1 g of benzoic acid is used to get 7.8 g of mbromo benzoic acid. The percentage yield of the product is _____

(Round off to the Nearest integer)

[Given : Atomic masses : C : 12.0 u, H : 1.0 u, O : 16.0 u, Br : 80.0 u] **Ans:** 78

Solution:

6.1

$$\frac{\text{molesofPhCOOH}}{1} = \frac{\text{MolesofC}_{6}\text{H}_{4}\text{COOHBr}}{1}$$
Moles of C₆H₄COOHBr = $\frac{6.1}{122} = \frac{1}{20}$ mol
mass of C₆H₄COOHBr = $201 \times \frac{1}{20}$ gm
% yield = $\frac{7.8}{201/20} \times 100$
= 77.612%
 \simeq 78 Nearest Integer

6. A solute A dimerizes in water. The boiling point of a 2 molal solution of A is 100.52°C. The percentage association of A is _____. (Round off to the Nearest integer.) $[Use : K_b \text{ for water} = 0.52 \text{ K kg mol}^{-1}]$ Boiling point of water = $100^{\circ}C$]

Ans: 1

Solution:

$$N = \frac{1}{2}$$

m = 2; T_b soln. = 100.52
DT_b = 0.52

 $= i \times K_b \times m$ $0.52 = i \times 0.52 \times 2$ $i = \frac{1}{2} = 1 + 1 + (\frac{1}{2} - 1)\alpha$ $\frac{\alpha}{2} = \frac{1}{2}$ a = 1

7. The number of species below that have two lone pairs of electrons in their central atom is _____. (Round off to the Nearest Integer.)

```
SF<sub>4</sub>, BF<sub>4</sub><sup>-</sup>, CIF<sub>3</sub>, AsF<sub>3</sub>, PCl<sub>5</sub>, BrF<sub>5</sub>, XeF<sub>4</sub>, SF<sub>6</sub>
Ans: 2
Solution:
ClF<sub>3</sub> and XeF<sub>4</sub> have two lp-in their central atom
```

8. 10.0 mL of Na₂CO₃ solution is titrated against 0.2 M HCl solution. The following litre values were obtained in 5 readings

```
4.8 mL, 4.9 mL, 5.0 mL, 5.0 mL and 5.0 mL
```

Based on these readings, and convention of titrimetric estimation the concentration of Na_2CO_3 solution is _____mM

Ans: 50

Solution:

```
Na<sub>2</sub>CO<sub>3</sub> + HCl <sup>3</sup>⁄<sub>4</sub> →

10ml 0.2M

M = ?? 5ml

M<sub>eq.</sub> of Na<sub>2</sub>CO<sub>3</sub> = M<sub>eq.</sub> of HCl

M × 10 × 2 = 0.2 × 5 × 1

M = 5 × 10<sup>-2</sup>M = 50 × 10<sup>-3</sup>M = 50 mM

Ans 50
```

9. In Tollen's test for aldehyde, the overall number of electron(s) transferred to the Tollen's reagent formula [Ag(NH₃)₂]⁺ per aldehyde group to form silver mirror is _____ (Round off to the Nearest Integer)

Ans: 2

Solution:

 $R - CHO \xrightarrow{2\left[Ag(NH_3)_2\right]^+OH^1} RCOOH + 2Ag + 2NH_3 + H_2OH^1$

 $2Ag^{+} \xrightarrow{2e^{-}} 2Ag$

10. A xenon compound 'A' upon partial hydrolysis gives XeO₂F₂. The number of lone pair of electrons presents in compound A is _____. (Round off to the Nearest Integer).

Ans: 19

Solution: Partial Hydrolysis $XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$ $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$ Complete hydrolysis $XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$