SET-1

MODEL PAPER - 1 S.S.C. PUBLIC EXAMINATIONS-2021 MATHEMATICS

(English Medium)

Class : X (Max. Marks : 100) Time : 2hr.45min.

Instructions to students:

- 1. There are four sections and 33 questions in this paper.
- 2. Answers should be written in a given answer sheets.
- 3. There is an internal choice in Section IV.
- 4. Write all the questions visible and legibly.
- 5. 15 Minutes are given for reading the question paper and 2hr 30min given for writing answers.

Section - I

Note: 1. Answer all the Questions. 2. Each Question carries 1mark $12 \times 1 = 12$ 1. Which of the following point lies in Q_3 ?) A) (3, -2)B) (3,2)C) (-3,-2) D) -3,2) 2. What are the zeroes of x^2 -1?) (D) $\sqrt{1}, \sqrt{1}$ C) -1,-1 A) 1,1 B) 1,-1 3. $\frac{7}{5}$ is the zero of 7x-5. Is it True / False? 4. If $Tan\theta = Cot\theta$ then value of acute angle ' θ '_____ 5. In 2, 4, 6, 8, 10 of A.P., common difference is 6. Choose the correct answer following Statement p: $\sin 45^\circ = \frac{1}{\sqrt{2}}$ Statement q: Tan30^o = $\frac{1}{\sqrt{3}}$ A) p true, q false B) p false, q true C) both p, q are true D) both p, q are false [Turn Over

7. How many number of zeroes exist f (A) 2 (B)0 (C) 3	for the following graph $(D) 4 \xrightarrow{(-)}$			
8. Match the following	() ()			
(a) Volume of cube	(i) 2π rh			
(b) Volume of Cuboid	(ii) a ³			
(c) Lateral Surface area of cylinder	r (iii) <i>lbh</i>			
(A) $A_{-}(i) B_{-}(ii) C_{-}(iii)$	(B) $A_{-}(ii) B_{-}(iii) C_{-}(i)$			
(C) $A_{-}(iii)$ $B_{-}(i)$ $C_{-}(iii)$	(D) A-(i) B-(ii) C-(iii)			
9 Match the following				
(A) value of $\log_{10} 10$	(i) $\frac{3}{2}$			
(B) Zero of $2x-3$	(ii) 3			
(C) Find the value of <i>y</i> ,	(iii) 1			
when $x = 2$ in $x + y = 5$				
(a) A-(i), B-(ii), C-(iii)	(b) A-(i), B-(iii), C-(ii)			
(c) A-(iii), B-(i), C-(ii)	(d) A-(ii), B-(iii), C-(i)			
10. If $A = \{1, 2\}$ and $B = \{3, 4\}$ the	$en A \cup B \dots$			
11. What is the mind point of line join	ning $(2, 2)$ and $(4, 4)$.			
12. In Mode = $l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times$	(h') represents ()			
A) lower limit B) u	pper limit			
C) lower boundery D) u	pper boundery			
Section - II				
Note: 1. Answer all the Questions.				
2. Each Question carries 2 Marks. $8 \times 2 = 16$				

[Contd... 3rd

- 3
- 13. Write all possible subsets of $C = \{x, y, z\}$.
- 14. Is 2t-1 = 2t+5 a linear equation in one variable?
- 15. If $P(x) = 5x^7 6x^5 3x + 8$, find (i) coefficient of x^5 (ii) degree of P(x)
- 16. 2,3,5,7,8,10,15.... is an arithometic progression? Why?
- 17. What is the probability for drawing out a 'red king' from a deck of cards?
- 18. Write the formula to find meadian of a grouped data?
- 19. Find the coordinate of centroid of a given triangle whose vertices are (3,-5), (-7,4), (10,-2).
- 20. Rinki obsrved a ball on the ground from the balcony of the first floor of a building at an angle of depression θ . If the height of the first floor of the building is 'x' meters. Draw the diagram for this data.

Section - III

Note : 1. Answer all the Questions.

2. Each Question carries 4 Marks

 $8 \times 4 = 32$

- 21. Write 2log3+3log5-5log2 as a single logarithm.
- 22. The area of rectangular plot 528m². The length of plot is one more than twise. It's breadth we used to find length and breadth of plot.
- 23. If A = {0,2,4}, find (i)A $\cap \phi$ (ii)A $\cap A$ (iii)A $\cup \phi$. Comment.
- 24. Find the Quadratic polynomial if the zeroes of it are 2 and $-\frac{1}{3}$ respectively?
- 25. Prove that the points A(-7,-3), B(5,10), C(15,8) and D(3,-5) taken in order are the vertices of a parallelogram.
- 26. Find the mode of the given data.

Family size	1-3	3-5	5-7	7-9	9-11
Number of families	7	8	2	2	1

[Turn Over

27. Show that
$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \operatorname{Sec} A + \tan A$$

- 28. A die is thrown once. Find the probability of getting
 - (i) a Prime Number

(ii) a number lying between 2 and 6

(iii) an odd number

(iv) multiple of 3.

Section - IV

Note: 1. Answer all the Questions.

2. Each Question carries 8 Marks

 $5 \times 8 = 40$

3. There is an <u>internal choice</u> for each question 29. $A = \{x:x \text{ Set of even Prime }\}$

 $B = \{x:x \text{ is a Natural number } < 12\}$

 $C = \{x:x \text{ is a multiple of } 4 \text{ less than or equal to } 12\}$

 $D = \{x:x \text{ is a factors of } 12\}$

Find (i) $A \cup B$ (ii) $B \cap C$ iii) C - D iv) A - D

OR

If
$$\log\left(\frac{x+y}{3}\right) = \frac{1}{2}(\log x + \log y)$$
, then find the value of $\frac{x}{y} + \frac{y}{x}$.

30. For which acute angle ' θ '

$$\frac{\cos\theta}{1-\sin\theta} + \frac{\cos\theta}{1+\sin\theta} = 4 \text{ is true?}$$

4

OR

Prove that $(Sin A + Cosec A)^2 + (Cos A + Sec A)^2 = 7 + Tan^2 A + Cot^2 A$

31. The mean pocket allowance is $\gtrless 18/-$. Find the missing frequences.

Daily pocket	11-13	13-15	15-17	17-19	19-21	21-23	23-25
allowance							
Number of	7	6	9	13	f	5	4
Children							

OR

Find the co-ordinates of the points of tri-section of the line segment joining (4,-1) and (-2,-3).

32. State and prove Pythagoras Theorem.

OR

Check whether the following are the Quadratic equation or not.

Justify your answer.

(i) $(x-2)^2 + 1 = 2x - 3$	(ii) $x(x+1) + 8 = (x+2)(x-2)$
(iii) $x(2x+3) = x^2 + 1$	(iv) $(x+2)^3 = x^3 - 4$

33. Draw the graph of $P(x) = x^2 - x - 12$ and find the zeroes. Justify your answer.

OR

Draw a circle of radius 6cm. From a point 10cm away from its centre construct the pair of tangents to the circle and measure their lengths. Verify by using pythogeras theorem.

- **Note:-** (1) Academic Standards are slightly deviated for this academic year due to Covid-19.
 - (2) Unit weightage is considered based on alternate academic calender.