SECTION-A

1. Among the following, the aromatic compounds are:

JEE MAIN 16th March Shift-1 2021(Chemistry)

2. Given below are two statements:

Statement I: H₂O₂ can act as both oxidizing and reducing agent in basic medium.

Statement II: In the hydrogen economy, the energy is transmitted in the form of dihydrogen.

In the light of the above statements, choose the correct **Ans:** from the options given below:

- a. Statement I is false but statement II is true
- b. Both Statement I and Statement II are true
- c. Statement I is true but statement II is false
- d. Both Statement I and Statement II are false

Ans:: (b)

Solution:

 H_2O_2 can act as oxidizing & reducing agent in both acidic & basic medium.

- 3. Which of the following is Lindlar catalyst?
 - a. Zinc chloride and HCl
 - b. Partially deactivated palladised charcoal
 - c. Sodium and Liquid NH₃
 - d. Cold dilute solution of KMnO₄

Ans: (b)

Solution:

Lindlar's catalyst \Rightarrow Pd/CaCo₃ + (CH₃COO)₂ Pb + quinoline

- 4. In chromatography technique, the purification of compound is independent of:
 - a. Length of the column or TLC plate
 - b. Mobility or flow of solvent system
 - c. Physical state of the pure compound
 - d. Solubility of the compound

Ans:: (c) Solution: Based on NCERT

- 5. Which among the following pairs of Vitamins is stored in our body relatively for longer duration?
 - a. Ascorbic acid and Vitamin D

c. Vitamin A and Vitamin Dd. Thiamine and Vitamin A

- b. Thiamine and Ascorbic acid

JEE MAIN 16th March Shift-1 2021(Chemistry)

Ans:: (c) Solution: Based on NCERT

6.

In the above chemical reaction, intermediate "X" and reagent/condition "A" are: a.

Ans: (c)

Solution:

7. Which of the following reaction DOES NOT involve Hoffmann bromamide degradation?

JEE MAIN 16th March Shift-1 2021(Chemistry) Page | 4

Solution:

c.

- 8. A group 15 element, which is a metal and forms a hydride with strongest reducing power among group 15 hydrides. The element is:
 - a. Bi c. P b. As d. Sb

Ans: (a)

JEE MAIN 16th March Shift-1 2021(Chemistry) Page | 5

 NH_2

Solution:

 BiH_3 is strongest reducing agent among the hydrides of 15 group elements as Bi - H bond dissociation energy is very less.

9. Given below are two statement: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: Size of Bk^{3+} ion is less than Np^{3+} ion.

Reason R: The above is a consequence of the lanthanoid contraction.

In the light of the above statements, choose the correct **Ans**: from the options given below:

- a. A is false but R is true
- b. Both A and R are true but R is not the correct explanation of A
- c. A is true but R is false
- d. Both A and R are true and R is the correct explanation of A

Ans:: (c)

Solution:

₉₃Np³⁺ ₉₇BK³⁺ as atomic no. increase ionic size decreases. It is due to actinoid contraction.

10.

The products "A" and "B" formed in above reactions are:

JEE MAIN 16th March Shift-1 2021(Chemistry) Page | 7

12.

B

Solution:

13. Match List – I with List – II:

	List-I		List-II
	Industrial process		Application
(a)	Haber's process	(i)	HNO ₃ synthesis
(b)	Ostwald's process	(ii)	Aluminium extraction
(C)	Contact process	(iii)	NH ₃ synthesis
(d)	Hall-Heroult process	(iv)	H ₂ SO ₄ synthesis

Choose the correct **Ans:** from the options given below:

a. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

- b. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- c. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- d. (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Ans: (d)

Solution:

Haber's process is used for NH_3 manufacture.

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$

Ostwald's process is used for preparation of HNO_3 by catalytic oxidation of NH_3

Contact process is used for preparation of H_2SO_4 using V_2O_5 catalyst

Hall Heroult process is used for Al extraction.

14. Given below are two statements:

Statement I: The E° value for Ce^{4+}/Ce^{3+} is +1.74 V.

Statement II: Ce is more stable in Ce⁴⁺ state than Ce³⁺ state.

In the light of the above statements, choose the correct **Ans**: from the options given below:

- a. Both Statement I and Statement II are correct
- b. Statement I is incorrect but statement II is correct
- c. Both Statement I and Statement II are incorrect
- d. Statement I is correct but statement II is incorrect

Ans: (d) Solution: Ce^{4+} is good oxidising agent as Ce^{3+} is more stable $Ce^{4-} + e^- \rightarrow Ce^{3+}$ $E^{0} = 1.74$ volt

15. Given below are two statements:

Statement I: Both CaCl₂.6H₂O and MgCl₂.8H₂O undergo dehydration on heating.

Statement II: BeO is amphoteric whereas the oxides of other elements in the same group are acidic.

In the light of the above statements, choose the correct **Ans:** from the options given below:

- a. Statement I is true but statement II is false
- b. Both Statement I and Statement II are false
- c. Statement I is false but statement II is true
- d. Both Statement I and Statement II are true

```
Ans:: (b)
```

Solution:

16. Assertion A: Enol form acetone [CH₃COCH₃] exists in <0.1% quantity. However, the enol forms the acetyl acetone [CH₃COCH₂OCCH₃] exists in approximately 15% quantity.
Reason R: Enol form of acetyl acetone is stabilized by intramolecular hydrogen bonding, which is not possible in enol form of acetone.

Choose the correct statement:

- a. A is true but R is false
- b. Both A and R are true but R is the correct explanation of A
- c. A is false but R is true
- d. Both A and R are true but R is not the correct explanation of A

Ans: (b) Solution:

Stable due to intramolecular H-bonding

17. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R

Assertion A: The H–O–H bond angle in water molecule is 104.5°

Reason R: The lone pair – lone pair repulsion of electrons is higher than the bond pairbond pair repulsion.

In the light of the above statements, choose the correct **Ans:** from the options given below:

- a. A is false but R is true
- b. A is true but R is false
- c. Both A and R are true, and R is the correct explanation of A
- d. Both A and R are true, but R is not the correct explanation of A

Ans: (c)

Solution:

L.p-L.p repulsion Н

2bp & 2-L.P.

In water O atom is sp³ hybridized with 2 B.P & 2 L.P

18. Match List – I with List – II:

	List-I		List-II
	Name of oxo acid		Oxidation state of 'P'
(a)	Hypophosphorous acid	(i)	+5
(b)	Orthophosphoric acid	(ii)	+4
(c)	Hypophosphoric acid	(iii)	+3
(d)	Orthophosphorous acid	(iv)	+2
		(v)	+1

Choose the correct answer from the options given below:

a. (a)-(iv), (b)-(v), (c)-(ii), (d)-(iii)

b. (a)-(v), (b)-(iv), (c)-(ii), (d)-(iii)

c. (a)-(v), (b)-(i), (c)-(ii), (d)-(iii)

d. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

Ans: (c) Solution:

	+1
Hypophosphorous acid	H_3PO_2
	+5
Orthophosphoric acid	H_3PO_4
	+4
Hypophosphoric acid	$H_4P_2O_6$
	+3
Orthophosphorous acid	H_3PO_3

19. The process that involves the removal of sulphur from the ores is:

- a. Refining
- b. Roasting

- c. Smelting
- d. Leaching

Ans: (b) Solution: Roasting removes S as SO_2 S + $O_2 \rightarrow SO_2$

20. The functions of antihistamine are:

- a. Antiallergic and Analgesic
- c. Antiallergic and antidepressant
- b. Antacid and antiallergic
- d. Analgesic and antacid

Ans: (b) Solution: Based on NCERT

<u>SECTION-B</u>

1.

$$2MnO_4^- + bC_2O_4^{2-} + cH^+ \rightarrow xMn^{2+} + yCO_2 + zH_2O_2$$

If the above equation is balanced with integer coefficients, the value of c is_____. (Round off to the nearest integer)

Ans: 16

Solution: $16H^+ + 2MnO_4^- + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$

2. Complete combustion of 750 g of an organic compound provides 420 g of CO_2 and 210 g of H_2O . The percentage composition of carbon and hydrogen in organic compound is 15.3 and _____ respectively. (Round off to the Nearest Integer).

Ans: 3 Solution: Liebeig method: % of H-element = $\frac{2}{18} \times \frac{MassofH_20}{Massofcompound} \times 100$ = $\frac{2}{18} \times \frac{210}{750} \times 100 = 3.11 \approx 3$

3. AB₂ is 10% dissociated in water to A²⁺ and B⁻. The boiling point of a 10.0 molal aqueous solution of AB₂ is ______ °C. (Round off to the Nearest Integer). [Given: Molal elevation constant of water $K_b = 0.5 \text{ K kg mol}^{-1}$ boiling point of pure water = 100°C]

Ans:: 106 Solution: $\Delta T_{b} = iK_{b}m$ $\alpha = \frac{i-1}{n-1}$ $0.1 = \frac{i-1}{3-1} \{AB_{2} \rightleftharpoons A^{2+} + 2B^{-}\}$ i = 1.2 $\Delta T_{b} = 1.2 \times 0.5 \times 10 = 6$ $(T_{b})_{solution} = 106^{\circ}C$

4. A certain element crystallizes in a bcc lattice of unit cell edge length 27Å. If the same element under the same conditions crystallises in the fcc lattice, the edge length of the unit cell in Å will be _____. (Round off to the Nearest Integer). [Assume each lattice point has a single atom]

[Assume $\sqrt{3} = 1.73$, $\sqrt{2} = 1.41$]

Ans:: 33

Solution: For BCC unit cell, $\sqrt{3}a = 4R$ $a = \frac{4R}{\sqrt{3}} = 27$ $R = \frac{27\sqrt{3}}{4}$ For fcc unit cell $\sqrt{2}a = 4R$ $a = \frac{4}{\sqrt{2}} \left(\frac{27\sqrt{3}}{4}\right)$ $a = 27 \frac{\sqrt{3}}{\sqrt{2}}$ $a = 33.12 \approx 33$

JEE MAIN 16th March Shift-1 2021(Chemistry)

5. The equivalents of ethylene diamine required to replace the neutral ligands from the coordination sphere of the trans-complex of CoCl₃.4NH₃ is _____. (Round off to the nearest Integer).

6. For the reaction A(g) ≈ B(g) at 495 K, Δ_rG^o = -9.478 kJ mol⁻⁽¹⁾ If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B in the equilibrium mixture is _____millimoles. (Round off to the nearest Integer). [R = 8.314] mol⁻¹ K⁻¹; ln 10 = 2.303]

```
Ans:: 20
Solution:
\Delta G^{\circ} = -RT \ln Keq
 -9.478 \times 10^{3} = -495 \times 8.314 \ln \text{Keq}
\ln \text{Keq} = 2.303 = \ln 10
 So, Keq = 10
 Now,
                 A(g) \rightleftharpoons B(g)
 t = 0
                 22
                              0
                22-x
 t = t
                              х
\text{Keq} = \frac{[B]}{[A]} = \frac{x}{(22-x)} = 10
 x = 20
 So, millimoles of B = 20
```

JEE MAIN 16th March Shift-1 2021(Chemistry)

 When light of wavelength 248 nm falls on a metal of threshold energy 3.0 eV, the de-Broglie wavelength of emitted electrons is _____Å. (Round off to the Nearest Integer).

[Use : $\sqrt{3} = 1.73$, h = 6.63×10⁻³⁴ Js

 $m_e = 9.1 \times 10^{-31}$ kg; $c = 3.0 \times 10^8 ms^{-1}$; $1eV = 1.6 \times 10^{-19} J$]

Ans: 9 Solution: $\lambda = 248 \times 10^{-9} \text{m}$ $w_0 = 3 \times 1.6 \times 10^{-19} \text{J}$ $E = w_0 + \text{K.E.}$ $\frac{hc}{\lambda} = W_0 + \text{K.E.}$ $\text{K.E} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{248 \times 10^{-19}} - 3 \times 1.6 \times 10^{-19}$ $= 3.2 \times 10^{-19} \text{J}$ $P = \sqrt{2mK.E.}$ $P = \sqrt{2} \times 9.1 \times 10^{-31} \times 3.2 \times 10^{-19}$ $P = 7.63 \times 10^{-25}$ $\therefore \lambda = \frac{h}{p} = \frac{6.626 \times 10^{-34}}{7.63 \times 10^{-25}}$ $\lambda = 8.7 \times 10^{-10} = 8.7 \text{Å} \approx 9$

A 6.50 molal solution of KOH (aq.) has a density of 1.89 g cm⁻³The molarity of the solution is _____ moldm⁻³ (Round off to the Nearest Integer). [Atomic masses : K : 39.0 u; 0: 16.0 u; H: 1.0 u]

Ans: 9

Solution:

 $m = \frac{1000 \times M}{1000 \times d - M \times M_{solute}}$ $6.5 = \frac{1000 \times M}{1890 - M \times 56}$ 12285 - 364M = 1000M 1364 M = 12285M = 9

- B
- 9. Two salts A₂X and MX have the same value of solubility product of 4.0×10^{-12} . The ratio of their molar solubilities i.e. $\frac{S(A_2X)}{S(MX)} =$ ______. (Round off to the Nearest Integer).

Ans: 50

Solution: $A_{2}X(s) \rightleftharpoons 2A^{+}(aq) + X^{2-}(aq)$ Solubility: (x) $\frac{mole}{L}$ (2x) (x) $\Rightarrow K_{sp} = 4 \times 10^{-12} = [A^{+}]^{2} [X^{-}] = 4x^{3}$ $\Rightarrow x = 10^{-4} = S_{A_{2}X}$ MX(s) $\rightleftharpoons M^{+}(aq) + X^{-}(aq)$ Solubility: (y) $\frac{mole}{L}$ (y) (y) $\Rightarrow K_{sp} = 4 \times 10^{-12} = [M^{+}][X^{-}] = y^{2}$ $\Rightarrow y = 2 \times 10^{-6} = S_{MX}$ $\Rightarrow \frac{S_{A_{2}X}}{S_{MX}} = \frac{10^{-4}}{2 \times 10^{-6}} = 50$

10. The decomposition of formic acid on gold surface follows first order kinetics. If the rate constant at 300 K is 1.0×10^{-3} s⁻¹ and the activation energy $E_a = 11.488$ kJ mol⁻¹, the rate constant at 200 K is _____ $\times 10^{-5}$ s⁻¹.(Round off to the Nearest Integer).

Ans: 10

Solution:

$$log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

$$log \frac{1.0 \times 10^{-3} s^{-1}}{K_1} = \frac{11.488 \times 1000}{2.303 \times 8.314} \left[\frac{1}{200} - \frac{1}{300} \right]$$

$$log \frac{10^{-3}}{K_1} = 600 \times \frac{3-2}{600}$$

$$log \frac{10^{-3}}{K_1} = 1$$

$$\Rightarrow 10 = \frac{10^{-3}}{K_1}$$

$$\Rightarrow K_1 = 10^{-4}$$
So, x × 10⁻⁵ = 10⁻⁴ ⇒ x = 10
(Given: R = 8.314 J Mol^{-1} K^{-1})

JEE MAIN 16th March Shift-1 2021(Chemistry)