

18th March Shift - I Maths Question Paper

Section A

Multiple Choice Question:

1. If the functions are defined as $f(x) = \sqrt{x}$ and $g(x) = \sqrt{1-x}$, then what is the common domain of the

following functions: f + g, f - g, f/g, g/f, g - f where $(f \pm g)(x) = f(x) \pm g(x)$, $(f/g)(x) = f(x) \pm g(x)$, (f/g)(x) = f(x), (f/g)(x), (f/g)(x) = f(x), (f/g)(x), (f/g)(x) = f(x), (f/g)(x), (f/g)

- (1) $0 < x \le 1$ (2) $0 \le x < 1$ (3) $0 \le x \le 1$ (4) 0 < x < 1
- Ans. (4)
- Sol. $f + g = \sqrt{x} + \sqrt{1 x}$ $\Rightarrow x \ge 0 \& 1 - x \ge 0 \Rightarrow x \in [0, 1]$ $f - g = \sqrt{x} - \sqrt{1 - x}$ $\Rightarrow x \ge 0 \& 1 - x \ge 0 \Rightarrow x \in [0, 1]$ $f/g = \frac{\sqrt{x}}{\sqrt{1 - x}}$ $\Rightarrow x \ge 0 \& 1 - x > 0 \Rightarrow x \in [0, 1]$ $g/f = \frac{\sqrt{1 - x}}{\sqrt{x}}$ $\Rightarrow 1 - x \ge 0 \& x > 0 \Rightarrow x \in (0, 1]$ $g - f = \sqrt{1 - x} - \sqrt{x}$ $\Rightarrow 1 - x \ge 0 \& x \ge 0 \Rightarrow x \in [0, 1]$ $\Rightarrow x \in (0, 1)$

2. Let α , β , γ be the roots of the equations, $x^3 + ax^2 + bx + c = 0$, (a, b, $c \in \mathbb{R}$ and a, b and a, $b \neq 0$). system of the equations (in u, v, w) given by $\alpha u + \beta v + \gamma w = 0$; $\beta u + \gamma v + \alpha w = 0$; $\gamma u + \alpha v + \beta w = 0$ has non-trivial solutions, then the value of $\frac{a^2}{b}$ is

- (1) 5 (2) 1
- (3) 0 (4) 3

Ans. (4)

Copyright © Think and Learn Pvt. Lto

Sol.
$$x^3 + ax^2 + bx + c = 0$$
 $\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$

For non-trivial solutions,

$$\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix} = 0$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} - 3\alpha\beta\gamma = 0$$

$$\alpha + \beta + \gamma \left[\alpha + \beta + \alpha^{2} - 3 \sum \alpha\beta \right] = 0$$

$$(-a) [a^{2} - 3b] = 0$$

$$a^{2} = 3b \quad \because a \neq 0$$

$$\Rightarrow \quad \frac{a^{2}}{b} = 3$$

- **3.** If the equation $a |z|^2 + \overline{\alpha z} + \alpha \overline{z} + d = 0$ represents a circle where a, d are real constants, then which of the following condition is correct?
 - (1) | α |² − ad ≠ 0
 - (2) $\mid \alpha \mid^2 ad > 0$ and $a \in R \{0\}$

(3)
$$\alpha = 0$$
, a, d \in R

(4)
$$\mid \alpha \mid^2 -ad \ge 0$$
 and $a \in R$

Copyright © Think and Learn Pvt. Ltd.

Sol.
$$a |z|^2 + \alpha \overline{z} + \alpha \overline{z} + d = 0$$

$$z\overline{z} + \left(\frac{\alpha}{a}\right)\overline{z} + \left(\frac{\alpha}{a}\right)z + \frac{d}{a} = 0$$

Centre =
$$-\frac{\alpha}{a}$$

 $r = \sqrt{\left|\frac{\alpha}{a}\right|^2 - \frac{d}{a}}$
 $\Rightarrow \left|\frac{\alpha}{a}\right|^2 \ge \frac{d}{a}$
 $\Rightarrow |\alpha|^2 \ge ad$

4. $\frac{1}{3^2-1} + \frac{1}{5^2-1} + \frac{1}{7^2-1} + \dots + \frac{1}{(201)^2-1}$ is equal to: (1) $\frac{101}{404}$ (2) $\frac{101}{408}$ (3) $\frac{99}{400}$ (4) $\frac{25}{101}$

(4) Ans.

Sol.
$$S = \sum_{r=1}^{100} \frac{1}{(2r+1)^2 - 1} = \sum_{r=1}^{100} \frac{1}{(2r+2) \cdot 2(r)}$$

 $\therefore S = \frac{1}{4} \sum_{r=1}^{100} \left[\frac{1}{r} - \frac{1}{r+1} \right]$
 $S = \frac{1}{4} \left[\left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots + \left(\frac{1}{100} - \frac{1}{101} \right) \right]$
 $\therefore S = \frac{1}{4} \left[\frac{100}{101} \right] = \frac{25}{101}$

The number of integral values of m so that the abscissa of point of intersection of lines 3x + 4y = 95. and y = mx + 1 is also an integer, is:

Ans. (2)

```
Sol. 3x + 4(mx + 1) = 9
```

x(3 + 4m) = 5

 $x=\frac{5}{(3+4\,m)}$ $(3 + 4m) = \pm 1, \pm 5$ $4m = -3 \pm 1, -3 \pm 5$ 4m = - 4, -2, -8, 2 m = -1, $-\frac{1}{2}$, -2, $\frac{1}{2}$ Two integral value of m 0

6.	The solutions of the equation $\begin{vmatrix} 1 + si \\ cos \\ 4 sir \end{vmatrix}$	$n^{2} x sin^{2} x$ $a^{2} x 1 + cos^{2} x$ $b^{2} x 4 sin 2x$	$\frac{\sin^2 x}{\cos^2 x} \\ 1 + 4 \sin 2x$	$=$ 0, (0 $<$ x $<$ π), are:
	(1) $\frac{\pi}{6}, \frac{5\pi}{6}$		(2) $\frac{7\pi}{12}, \frac{11\pi}{12}$	
	(3) $\frac{5\pi}{12}, \frac{7\pi}{12}$		(4) $\frac{\pi}{12}, \frac{\pi}{6}$	
Ans. Sol.	2) $R_1 \rightarrow R_1 + R_2$ $2 \qquad 2 \qquad 1$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 0		
	$ \begin{array}{c c} C_1 \to C_1 - C_2 \\ 0 & 2 & 1 \\ -1 & 1 + \cos^2 x & \cos^2 x \\ 0 & 4 \sin 2x & 1 + 4 \sin 2x \end{array} = 0 $			
	$\therefore 2 + 8\sin 2x - 4\sin 2x = 0$			
	$\Rightarrow \sin 2x = -\frac{1}{2}$ $7\pi 11\pi$			
	$\Rightarrow x = \frac{7\pi}{12}, \frac{4\pi}{12}$			
7.	If $f(x) = \begin{cases} \frac{1}{ x } & ; x \ge 1 \\ ax^2 + b & ; x < 1 \end{cases}$ is differentiated by the second	erentiable at eve	ery point of the	e domain, then the values of a
	and b are respectively:		(2) 1 3	
	$(1) \overline{2}, -\overline{2}$		$\binom{(2)}{2} - \frac{1}{2}, \frac{1}{2}$	
	(3) $\frac{1}{2}, \frac{1}{2}$		(4) $\frac{1}{2}, -\frac{3}{2}$	
Ans. Sol.	(2) $f(x)$ is continuous at $x = 1 \Rightarrow 1 = a + b$ $f(x)$ is differentiable at $x = 1 \Rightarrow -1 = 2$	a		
	$\Rightarrow a = -\frac{1}{2} \therefore b = \frac{3}{2}$			
8.	A vector \vec{a} has components 3p and 1 rotated through a certain angle about new system, \vec{a} has components p +1 (1) 1	with respect to a lit the origin in th and $\sqrt{10}$, then a	a rectangular C le counter cloc a value of p is e (2) –1	artesian system. This system is kwise sense. If with respect to equal to:

Copyright © Think and Learn Pvt. Ltd.

(3)
$$\frac{4}{5}$$

(4) – <mark>5</mark>

Ans. (2)

Sol. $|\vec{a}|_{old} = |\vec{a}|_{new}$ $(3p)^2 + 1 = (P+1)^2 + 10$ $9p^2 - p^2 - 2p - 10 = 0$ $8p^2 - 2p - 10 = 0$ $4p^2 - p - 5 = 0$ $4p^2 - 5p + 4p - 5 = 0$ (4p - 5) (p + 1) = 0 $p = \frac{5}{4}, -1$

9. The sum of all the 4-digit distinct numbers that can be formed with the digits 1, 2, 2 and 3 is:

- (1) 26664
- (3) 122234

Ans.	(1)
Ans.	(1)

-	· /			
Sol.	1	2	2	3
	1	2	3	2
	1	3	2	2
	3	1	2	2
	3	2	1	2
	3	2	2	1
	2	1	3	2
	2	3	1	2
	2	2	1	3
	2	2	3	1
	2	3	2	1
	2	1	2	3
	266	64		

e formed wi (2) 122664

(4) 22264

10. Choose the correct statement about two circles whose equations are given below:

 $x^2 + y^2 - 10x - 10y + 41 = 0$

 $x^2 + y^2 - 22x - 10y + 137 = 0$

(1) circles have no meeting point

- (2) circles have two meeting points
- (3) circles have only one meeting point
- (4) circles have same centre

Ans. (3) **Sol.** Let $S_1 : x^2 + y^2 - 10x - 10y + 41 = 0$ \Rightarrow (x - 5)² + (y - 5)² = 9 Centre $(C_1) = (5, 5)$ Radius $r_1 = 3$ $S_2: x^2 + y^2 - 22x - 10y + 137 = 0$ \Rightarrow (x - 11)² + (y - 5)² = 9 Centre $(C_2) = (11, 5)$ radius $r_2 = 3$ distance (C₁ C₂) = $\sqrt{(5-11)^2 + (5-5)^2}$ distance $(C_1 C_2) = 6$ $:: r_1 + r_2 = 3 + 3 = 6$ ∴ circles touch externally Hence, circle have only one meeting point. If α , β are natural numbers such that $100^{\alpha} - 199\beta = (100)(100) + (99)(101) + (98)(102) + + (1)(199)$, 11. then the slope of the line passing through (α, β) and origin is: (1) 510(2) 550 (3) 540 (4) 530 Ans. (2) RHS = $\sum_{r=0}^{99} (100 - r)(100 + r)$ Sol. $= (100)^3 - \frac{99 \times 100 \times 199}{6} = (100)^3 - (1650)199$ LHS = $(100)^{\alpha} - (199)\beta$ So, α = 3, β = 1650 Slope = tan $\theta = \frac{\beta}{\alpha}$ $\tan \theta = 550$ The value of $3 + \frac{1}{4 + \frac{1}{3 + \frac{1}{4 + \frac{1}{3 + \frac{$ 12. (1) $3 + 2\sqrt{3}$ (2) $4 + \sqrt{3}$ (3) $2 + \sqrt{3}$ (4) $1.5 + \sqrt{3}$ Ans. (4)

13. The integral $\int \frac{(2x-1)\cos\sqrt{(2x-1)^2+5}}{\sqrt{4x^2-4x+6}} dx$ is equal to: (where c is a constant of integration) (1) $\frac{1}{2}\sin\sqrt{(2x+1)^2+5} + c$ (2) $\frac{1}{2}\sin\sqrt{(2x-1)^2+5} + c$ (3) $\frac{1}{2}\cos\sqrt{(2x+1)^2+5} + c$ (4) $\frac{1}{2}\cos\sqrt{(2x-1)^2+5} + c$ Ans. (2) Sol. $\int \frac{(2x-1)\cos\sqrt{(2x-1)^2+5}}{\sqrt{(2x-1)^2+5}} dx$ Put $(2x-1)^2 + 5 = t^2$ 2(2x-1) dx = 2tdt

$$\Rightarrow \int \frac{\cos t}{t} \times \frac{t}{2} dx = \frac{1}{2} \sin t + C$$
$$= \frac{1}{2} \sin \sqrt{(2x-1)^2 + 5} + C$$

Copyright © Think and Learn Pvt. Ltd

14. The differential equations satisfied by the system of parabolas $y^2 = 4a(x+a)$ is:

(1)
$$y\left(\frac{dy}{dx}\right) + 2x\left(\frac{dy}{dx}\right) - y = 0$$

(2) $y\left(\frac{dy}{dx}\right)^2 + 2x\left(\frac{dy}{dx}\right) - y = 0$
(3) $y\left(\frac{dy}{dx}\right)^2 - 2x\left(\frac{dy}{dx}\right) - y = 0$
(4) $y\left(\frac{dy}{dx}\right)^2 - 2x\left(\frac{dy}{dx}\right) + y = 0$

Sol. $y^2 = 4a(x + a)$ (1) 2yy' = 4a $\therefore yy' = 2a$ $\therefore by(1) y^2 = 2yy' \left(x + \frac{yy'}{2}\right)$ $y^2 = 2yy'x + (yy')2$ $\Rightarrow y(y')^2 + 2xy' - y = 0$ (as y ≠ 0)

15. The real valued function $f(x) = \frac{\cos ec^{-1}x}{\sqrt{x - [x]}}$, where [x] denotes the greatest integer less than or

equal to x, is defined for all x belonging to:

(1) all non- integers except the interval [-1, 1]

(2) all integers except 0, -1, 1

(3) all reals except integers

(4) all reals except the interval [-1, 1]

Ans. (1)

Sol.
$$f(x) = \frac{\csc c^{-1} x}{\sqrt{x - [x]}}$$
$$x \in (-\infty, -1] \cup [1, \infty)$$
$$\& \{x\} \neq 0$$
$$x \neq \text{Integer}$$
$$\Rightarrow x \in (-\infty, -1) \cup (1, \infty) - \text{all integers}$$

16. If $\lim_{x \to 0} \frac{\sin^{-1} x - \tan^{-1} x}{3x^3}$ is equal to L, then the value of (6L + 1) is: (1) $\frac{1}{2}$ (2) 2
(3) $\frac{1}{6}$ (4) 6

Ans. (2)

Sol.
$$L = \lim_{x \to 0} \frac{\left(x + \frac{x^3}{6} + \dots\right) - \left(x - \frac{x^3}{3} \dots\right)}{3x^3}$$

 $L = \frac{1}{3} \left(\frac{1}{6} + \frac{1}{3}\right) = \frac{1}{6}$
 $\Rightarrow 6L + 1 = 6 \cdot \frac{1}{6} + 1 = 2$

17. For all four circles M, N, O and P, following four equations are given:

Circle M : $x^2 + y^2 = 1$ Circle N : $x^2 + y^2 - 2x = 0$ Circle O : $x^2 + y^2 - 2x - 2y + 1 = 0$ Circle P : $x^2 + y^2 - 2y = 0$

If the centre of circle M is joined with centre of the circle N, further centre of circle N is joined with centre of the circle O, centre of circle O is joined with the centre of circle P and lastly, centre of circle P is joined with centre of circle M, then these lines form the sides of a:

(1) Rectangle

(3) Parallelogram

(2) Square

(4) Rhombus

Ans. (2)

Sol. C_M = (0, 0)

- $C_N = (1, 0)$
- C₀ = (1, 1)
- $C_{P} = (0, 1)$

18. Let $(1 + x + 2x^2)^{20} = a_0 + a_1x + a_2x^2 + \dots + a_{40}x^{40}$. Then, $a_1 + a_3 + a_5 + \dots + a_{37}$ is equal to:

$(1) 2^{20} (2^{20} + 21)$	(2) $2^{19}(2^{20} + 21)$
$(3) 2^{20} (2^{20} - 21)$	(4) $2^{19}(2^{20}-21)$

Ans. (4)

Sol. Put x = 1, -1and subtract $4^{20} - 2^{20} = (a_0 + a_1 + \dots + a_{40}) - (a_0 - a_1 + \dots)$ $\Rightarrow 4^{20} - 2^{20} = 2 (a_1 + a_3 + \dots + a_{39})$ $\Rightarrow a_1 + a_3 + \dots + a_{37} = 2^{39} - 2^{19} - a_{39}$ $a_{39} = \text{coeff of } x^{39} \text{ in } (1 + x + 2x^2)^{20} = {}^{20}\text{C}_1 2^{19}$ $\Rightarrow a_1 + a_3 + \dots + a_{37} = 2^{39} - 2^{19} - 20(2^{19})$ $= 2^{39} - 21 (2^{19}) = 2^{19}(2^{20} - 21)$

19. Let
$$A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix}$$
 and $2A - B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$. It Tr(A) denotes the sum of all diagonal

elements

of the matrix A, then Tr(A) - Tr(B) has value equal to: (1) 0 (2) 1 (3) 3 (4) 2 Ans. (4) Sol. $t_r (A + 2B) \equiv t_r (A) + 2 t_r (B) = -1$ (1) and $t_r (2A - B) \equiv 2t_r (A) - t_r (B) = 3$ (2) on solving (1) and (2) we get $t_r (A) = 1$, $t_r(B) = -1$

: $t_r(A) - t_r(B) = 1 + 1 = 2$

20. The equations of one of the straight lines which passes through the point (1, 3) and makes an angle $\tan^{-1} \sqrt{2}$ with the straight line, $y + 1 = 3\sqrt{2} x$ is:

(1)
$$5\sqrt{2}x + 4y - 15 + 4\sqrt{2} = 0$$

(2)
$$4\sqrt{2} x - 5y - 5 + 4\sqrt{2} = 0$$

$$(3) \ 4\sqrt{2} \ x + 5y - 4\sqrt{2} = 0$$

(4)
$$4\sqrt{2} x + 5y - 15 + 4\sqrt{2} = 0$$

Ans. (4)

Sol.
$$\tan \tan^{-1} \sqrt{2} = \left| \frac{m - 3\sqrt{2}}{1 + 3m\sqrt{2}} \right|$$

$$\sqrt{2} = \left| \frac{m - 3\sqrt{2}}{1 + 3m\sqrt{2}} \right|$$

$$(+)$$

$$6m + \sqrt{2} = m - 3\sqrt{2}$$

$$5m = -4\sqrt{2}$$

$$m = -\frac{4\sqrt{2}}{5}$$

$$m = -\frac{4\sqrt{2}}{5}$$

$$m = -\frac{4\sqrt{2}}{7}$$

SECTION – B

1. The numbers of times al digit 3 will be written when listing the integers from 1 to 1000 is _____.

Ans. (300) Sol. $\boxed{3}$ 10 10 \uparrow 9 $\boxed{3}$ 10 + 9 $\boxed{3}$ 10 + 9 \uparrow 10 $\boxed{3}$ $\Rightarrow 100 + 90 + 90$ $\Rightarrow 280$ $\left(-\frac{10}{\uparrow} \right) + \left(\frac{9}{\uparrow} - \frac{1}{\uparrow_3} \right) \Rightarrow \boxed{19}$ $3 \rightarrow 1$ 280 + 19 + 1 = 300

3. The equation of the planes parallel to the plane x - 2y + 2z - 3 = 0 which are at unit distance from the

point (1, 2, 3) is ax + by + cz + d = 0. If (b - d) = K(c - a), then the positive value of K is _____.

```
Sol. x - 2y + 2z + \lambda = 0
```

Now given

```
d = \frac{|1 - 4 + 6 + \lambda|}{\sqrt{9}} = 1|\lambda + 3| = 3\lambda + 3 = \pm 3 \Rightarrow \lambda = 0, -6So planes are: x - 2y + 2z - 6 = 0x - 2y + 2z = 0b - d = -2 + 6 = 4c - a = 2 - 1 = 1\Rightarrow \frac{b - d}{c - a} = k\Rightarrow k = 4
```

4. Let f(x) and g(x) be two functions satisfying $f(x^2) + g(4 - x) = 4x^3$ and g(4 - x) + g(x) = 0, then the value of

$$\int_{-4}^{4} f(x^{2}) \, dx \ \text{ is } ___.$$

Ans. (512)

Sol.	$I=2\int_{0}^{4}f(x^{2})dx$	(1)
	$\Rightarrow I = 2 \int_{0}^{4} f((4-x)^{2}) dx$	(2)
	Adding equation (1) & (2)	
	$2I = 2\int_{0}^{4} \left[f(x)^{2} + f(4-x)^{2}\right] dx$	(3)
	Now using $f(x^2) + g(4 - x) = 4x^3$	(4)
	$x \rightarrow 4 - x$	
	$f((4-x)^2) + g(x) = 4(4-x)^3$	(5)
	Adding equation (4) & (5)	
	$f(x^2) + f(4 - x^2) + g(x) + g(4 - x) = 4(x^3 + (4 - x)^3)$	
	$\implies f(x^2) + f(4 - x^2) = 4(x^3 + (4 - x)^3]$	
	Now, $I = 4 \int_{0}^{4} x^{3} + (4 - x)^{3} dx = 512$	

4. The mean age of 25 teachers in a school is 40 years. A teacher retires at the age of 60 years and a new teacher is appointed in his place. If the mean age of the teachers in this school now is 39 years, then the age (in years) of the newly appointed teacher is _____.

Sol.
$$x_1 + x_2 + \dots + x_{25} = 25 \times 40 = 1000$$

$$\frac{x_1 + x_2 + \dots + x_{25} - 60 + a}{25} = 39$$

100 - 60 + a = 25 × 39
a = -940 + 975
a = 35

5. A square ABCD has all its vertices on the curve $x^2y^2 = 1$. The midpoints of its sides also lie on the same

curve. Then, the square of area of ABCD is _____.

Ans. (80)

6. The missing value in the following figure is _____.

Ans. (4)

Sol. 4²⁴ has base 4 (= 12 - 8) 36 has base 3 (= 7 - 4) (?) will have base 2 (= 5 - 3) Power 24 = 6 × 4 = (no. of divisor of 12) × (no. of divisor of 8) Power 6 = 2 × 3 = (no. of divisor of 7) × (no. of divisor of 4) (?) will have power = (no. of divisor of 3) × (no. of divisor of 5) = 2 × 2 = 4

7. The numbers of solutions of the equation $|\cot x| = \cot x + \frac{1}{\sin x}$ in the interval $[0, 2\pi]$ is _____.

Ans. (1)

Sol. Case I:
$$x \in \left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right]$$

 $\cot x = \cot x + \frac{1}{\sin x} \implies \text{not possible}$
Case II: $x \in \left[\frac{\pi}{2}, \pi\right] \cup \left[\frac{3\pi}{2}, 2\pi\right]$
 $-\cot x = \cot x + \frac{1}{\sin x}$
 $\Rightarrow \frac{-2\cos x}{\sin x} = \frac{1}{\sin x}$
 $\Rightarrow \cos x = \frac{-1}{2}$
 $\Rightarrow x = \frac{2\pi}{3}, \frac{4\pi}{3}$
 $= 1$

8. Let z_1 , z_2 be the roots of the equations $z^2 + az + 12 = 0$ and z_1 , z_2 form an equilateral triangle with origin.

Then, the value of |a| is _____.

Ans. (6)

Sol. In equilateral Δ ,

$$z_{1}^{2} + z_{2}^{2} + z_{3}^{2} = z_{1}z_{2} + z_{2}z_{3} + z_{3}z_{1}$$

$$B(z_{2})$$

$$A(z_{1})$$

$$z_{1}^{2} + z_{2}^{2} = z_{1}z_{2}$$

$$(z_{1} + z_{2})^{2} = 3z_{1}z_{2}$$

$$a^{2} = 36$$

$$|a| = 6$$

9. Let the plane ax + by + cz + d = 0 bisect the line joining the points (4, -3, 1) and (2, 3, -5) at the right angles.

If a, b, c, d are integers, then the minimum value of $(a^2 + b^2 + c^2 + d^2)$ is _____.

Ans. (28)

Sol. normal of plane = \overrightarrow{PQ}

 $= -2\hat{i} + 6\hat{j} - 6\hat{k}$ a = -2, b = 6, c = -6 & equation of plane is -2x + 6y - 6z + d = 0 $\Downarrow M(3, 0, -2)$ d = -6

Now equation of plane is

$$-2x + 6y - 6z - 6 = 0$$

x - 3y + 3z + 3 = 0
$$\Rightarrow (a^{2} + b^{2} + c^{2} + d^{2})_{min} = 1^{2} + 9 + 9 + 9 = 28$$

10. If
$$f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} dx$$
, $(x \ge 0)$, $f(0) = 0$ and $f(1) = \frac{1}{k}$, then the value of K is _____

Sol.
$$\int \frac{5x^8 + 7x^6}{(2x^7 + x^2 + 1)^2} dx = \int \frac{5x^8 + 7x^6}{x^{14} \left(2 + \frac{1}{x^5} + \frac{1}{x^7}\right)^2} dx$$
$$\int \frac{\frac{5}{x^6} + \frac{7}{x^8}}{\left(2 + \frac{1}{x^5} + \frac{1}{x^7}\right)^2} dx$$

$$put 2 + \frac{1}{x^5} + \frac{1}{x^7} = t$$

$$\Rightarrow -\left(\frac{5}{x^6} + \frac{7}{x^8}\right)dx = dt$$

$$\int \frac{-dt}{t^2} = \frac{1}{t} + c$$

$$\Rightarrow f(x) = \frac{1}{2 + \frac{1}{x^5} + \frac{1}{x^7}} + C = \frac{x^7}{2x^7 + 1 + x^2} + C$$

 $f(0) = 0 \Longrightarrow C = 0$

Copyright © Think and Learn Pvt. Ltd.

