BYJU'S

NCERT Solutions for Class 12 Chemistry Chapter 4 Chemical Kinetics

Q 1. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.

(a)
$$3 \ NO(g) \rightarrow N_2O(g) \ Rate = k [NO]^2$$

(b) $H_2O_2(aq) + 3I^-(aq) + 2H^+ \rightarrow 2H_2O(I) + I_3^- Rate = k [H_2O_2] [I^-]$
(c) $CH_3CHO(g) \rightarrow CH_4(g) + CO(g) \ Rate = k [CH_3CHO]^{\frac{3}{2}}$

(d) $C_2H_5Cl(g) \to C_2H_4(g) + HCl(g) Rate = k [C_2H_5Cl]$ Solution:

(a) Given rate = $k [NO]^2$

Therefore, order of the reaction = 2

Dimensions of $k = \frac{Rate}{[NO]^2}$

$$= \frac{mol \ L^{-1}s^{-1}}{(mol \ L^{-1})^2}$$

$$= \frac{mol \ L^{-1} s^{-1}}{mol^2 \ L^{-2}}$$

$$= L \ mol^{-1}s^{-1}$$

(b) Given rate = $k[H_2O_2][I^-]$

Therefore, order of the reaction = 2

Dimensions of $\ k=rac{Rate}{[H_2O_2][I^-]}$

$$= \frac{mol \ L^{-1}S^{-1}}{(mol \ L^{-1})(mol \ L^{-1})}$$

$$= L mol^{-1}s^{-1}$$

(c) Given rate =
$$k [CH_3 CHO]^{\frac{3}{2}}$$

Therefore, the order of reaction = $\frac{3}{2}$

Dimensions of
$$k = \frac{Rate}{[CH_3CHO]^{\frac{3}{2}}}$$

= $\frac{mol \ L^{-1} s^{-1}}{(mol \ L^{-1})^{\frac{3}{2}}}$
= $\frac{mol \ L^{-1} s^{-1}}{mol^{\frac{3}{2}} \ L^{\frac{3}{2}}}$
 $L^{\frac{1}{2}} \ mol^{-\frac{1}{2}} \ s^{-1}$

(d) Given rate = $k = [C_2 H_5 Cl]$

Therefore, order of the reaction = 1

Dimension of $k = \frac{Rate}{[C_2H_5Cl]}$

$$= \frac{mol \ L^{-1}s^{-1}}{mol \ L^{-1}}$$

 $= s^{-1}$

Q 2. For the reaction: $2A + B \rightarrow A_2 B$ is $k \left[A
ight] \left[B
ight]^2$ with $k = \ 2.0 imes \ 10^{-6} \ mol^{-2} L^2 \ s^{-1}$.

Calculate the initial rate of the reaction when $[A] = 0.1 \text{ mol } L^{-1}$, $[B] = 0.2 \text{ mol } L^{-1}$. Calculate the rate of reaction after [A] is reduced to 0.06 mol L^{-1}

Solution:

The initial rate of reaction is

Rate = $k [A] [B]^2$

$$= (2.0 imes 10^{-6} mol^{-2} L^2 s^{-1}) (0.1 mol \ L^{-1}) (0.2 mol \ L^{-1})^2$$

$$= 8.0 \times 10^{-9} mol^{-2} L^2 s^{-1}$$

When [A] is reduced from $0.1 \ mol \ L^{-1} \ to \ 0.06 \ mol \ L^{-1}$, the concentration of A reacted =

```
(0.1-0.06) mol L^{-1} = 0.04 mol L^{-1}
```


Therefore, concentration of B reacted = $rac{1}{2} imes~0.04~mol~L^{-1}=~0.02~mol~L^{-1}$

Then, concentration of B available, $[B]=~(0.2{-}0.02)~mol~L^{-1}=~0.18~mol~L^{-1}$

After [A] is reduced to $0.06 \ mol \ L^{-1}$, the rate of the reaction is given by,

Rate = $k [A] [B]^2$

$$= \left(2.0 imes 10^{-6} mol^{-2} L^2 s^{-1}
ight) \left(0.06 \; mol L^{-1}
ight) \left(0.18 \; mol \; L^{-1}
ight)^2$$

 $= ~3.89 ~ imes ~10^{-9} mol ~L^{-1} s^{-1}$

Q 3. The decomposition of NH₃ on platinum surface is zero order reaction. What are the rates of production of N₂ and H₂ if $k = 2.5 \times 10^{-4} \text{ mol}^{-1} \text{ L s}^{-1}$?

Solution:

The decomposition of NH₃ on platinum surface is represented by the following equation.

$$2NH_{3 (g)} \stackrel{Pt}{
ightarrow} N_{2(g)} + 3H_{2(g)}$$

Therefore,

$$Rate = -\frac{1}{2} \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt}$$

However, it is given that the reaction is of zero order. Therefore,

$$-rac{1}{2}rac{d[NH_3]}{dt} = rac{d[N_2]}{dt} = rac{1}{3}rac{d[H_2]}{dt} = k$$

$$=~2.5 imes~10^{-4}~molL^{-1}s^{-1}$$

Therefore, the rate of production of N_2 is

$$rac{d[N_2]}{dt} = ~2.5 imes ~10^{-4} mol ~L^{-1} s^{-1}$$

And, the rate of production of H_2 is

$$rac{d[H_2]}{dt} = ~3 imes ~2.5 imes ~10^{-4} mol ~L^{-1} s^{-1}$$

 $=~7.5 imes~10^{-4}~mol~L^{-1}s^{-1}$

Q 4. The decomposition of dimethyl ether leads to the formation of $CH_4, H_2, and CO$ and the

reaction rate is given by $Rate = k [CH_3 O CH_3]^{\frac{3}{2}}$

The rate of reaction is followed by an increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.,

 $Rate = k (P_{CH_3O CH_3})^{\frac{3}{2}}$

If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?

Solution:

If pressure is measured in bar and time in minutes, then

Unit of rate = bar min^{-1} $Rate = k \left(P_{CH_3O CH_3} \right)^{\frac{3}{2}}$

$$\Rightarrow k = \frac{Rate}{k(P_{CH_3 O CH_3})^{\frac{3}{2}}}$$

Therefore, unit of rate constants $(k) = \frac{bar \min^{-1}}{bar^{\frac{3}{2}}}$

$$= bar^{-1\over 2}min^{-1}$$

Q 5. Mention the factors that affect the rate of a chemical reaction.

Solution:

The factors which are responsible for the effect in chemical reaction's rate are:

- (a) Reaction temperature
- (b) Presence of a catalyst

- (c) The concentration of reactants (pressure in case of gases)
- (d) Nature of the products and reactants
- (e) Radiation exposure
- (f) Surface area

Q 6. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is (i) doubled (ii) reduced to half?

Solution:

Let the concentration of the reactant be [A] = a

Rate of reaction, $R = k[A]^2$

$$= ka^2$$

(a) If the concentration of the reactant is doubled, i.e [A] = 2a, then the rate if the reaction would be

$$R' = k \left(A \right)^2$$

 $= 4ka^{2}$

= 4 R

Therefore, the rate of the reaction now will be 4 times the original rate.

(b) If the concentration of the reactant is reduced to half, i.e $[A] = \frac{1}{2}a$, then the rate of the reaction would be

$$R'' = k \left(\frac{1}{2}a\right)^2$$
$$= \frac{1}{4}ka$$

 $= \frac{1}{4}R$

Therefore, the rate of the reaction will be reduced to $\frac{1}{4}^{th}$

Q 7. What is the effect of temperature on the rate constant of a reaction? How can this effect of temperature on rate constant be represented quantitatively?

Solution:

When a temperature of 10° rises for a chemical reaction then the rate constant increases and becomes near to

double of its original value.

The temperature effect on the rate constant can be represented quantitatively by Arrhenius equation,

 $k = A e^{-E_a/RT}$

Where,

- k = rate constant,
- A = Frequency factor / Arrhenius factor,
- R = gas constant

T = temperature

 E_a = activation energy for the reaction.

Q 8. In a pseudo-first-order reaction in water, the following results were obtained:

t/s	0	30	60	90
[Ester]mol / L	0.55	0.31	0.17	0.085

Calculate the average rate of reaction between the time interval 30 to 60 seconds.

Solution:

(a) Avg rate of reaction between the time intervals, 30 to 60 seconds,

$$= \frac{d[Ester]}{dt}$$

$$= \frac{0.31-0.17}{60-30}$$

$$= \frac{0.14}{30}$$

$$= 4.67 imes 10^{-3} \ mol \ l^{-1} \ s^{-1}$$

(b) For a pseudo first order reaction,

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$

For t = 30 s

 $k_1 = \frac{2.303}{30} \log \frac{0.55}{0.31}$

= 1.911 imes 10⁻² s^{-1}

For t = 60 s

 $k_2 = \frac{2.303}{60} \log \frac{0.55}{0.17}$

= 1.957 imes 10⁻² s^{-1}

For t = 90 s

 $k_3 = \frac{2.303}{90} \log \frac{0.55}{0.085}$

 $= 2.075 imes 10^{-2} s^{-1}$

Then, avg rate constant, $k=rac{k_1+k_2+k_3}{3}$

 $= \frac{(1.911 \times 10^{-2}) + (1.957 \times 10^{-2}) + (2.075 \times 10^{-2})}{3}$

= 1.98 imes 10⁻² s^{-1}

Q 9. A reaction is first order in A and second order in B.

(i) Write the differential rate equation.

(ii) How is the rate affected on increasing the concentration of B three times?

(iii) How is the rate affected when the concentrations of both A and B are doubled?

Solution:

(a) The differential rate equation will be

$$-rac{d[R]}{dt}=~k\left[A
ight]\left[B
ight]^2$$

(b) If the concentration of B is increased three times, then

$$-rac{d[R]}{dt}=~k\left[A
ight]\left[3B
ight]^2$$

 $= 9.k [A] [B]^2$

Therefore, the reaction rate will be increased by 9 times.

(c) When the concentrations of both A and B are doubled,

$$-rac{d[R]}{dt}=~k\left[2A
ight]\left[2B
ight]^2$$

$$= 8.k [A] [B]^2$$

Therefore, the rate of reaction will increase 8 times.

Q10. In a reaction between A and B, the initial rate of reaction (r _o) was measured for different initial	
concentrations of A and B as given below:	

$A/mol \ L^{-1}$	0.20	0.20	0.40
$B/mol \ L^{-1}$	0.30	0.10	0.05
$r_{\rm o} \;/mol \; L^{-1} \; s^{-1}$	$5.07 imes \ 10^{-5}$	$5.07 imes~10^{-5}$	$1.43 imes \ 10^{-4}$

What is the order of the reaction with respect to A and B?

Solution:

Let the order of the reaction with respect to A be x and with respect to B be y.

Then,

 $r_{0}=\;k\left[A
ight]^{x}\left[B
ight]^{y}$

$$5.07 \times 10^{-5} = k [0.20]^x [0.30]^y$$
 (i)

$$5.07 \times 10^{-5} = k [0.20]^x [0.10]^y$$
 (ii)

$$1.43 imes 10^{-4} = k [0.40]^x [0.05]^y$$
 (iii)

Dividing equation (i) by (ii), we get

 $\frac{5.07 \times 10^{-5}}{5.07 \times 10^{-5}} = \frac{k[0.20]^x [0.30]^y}{k[0.20]^x [0.10]^y}$ $\Rightarrow 1 = \frac{[0.30]^y}{[0.10]^y}$ $\Rightarrow \left(\frac{0.30}{0.10}\right)^0 = \left(\frac{0.30}{0.10}\right)^y$

$$\Rightarrow y = 0$$

Dividing equation (iii) by (ii), we get

 $\begin{array}{l} \frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \frac{k[0.40]^x [0.05]^y}{k[0.20]^x [0.30]^y} \\ \Rightarrow \ \frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \ \frac{[0.40]^x}{[0.20]^x} & \begin{bmatrix} Since \ y = 0, \\ [0.05]^y = [0.30]^y = 1 \end{bmatrix} \\ \Rightarrow \ 2.821 = \ 2^x \\ \Rightarrow \ \log 2.821 = \ x \log 2 & (taking \ log \ on \ both \ sides) \end{array}$

 $\Rightarrow x = rac{\log 2.821}{\log 2}$

= 1.496

= 1.5 (Approximately)

Hence, the order of the reaction with respect to A is 1.5 and with respect to B is zero.

Q 11. The following results have been obtained during the kinetic studies of the reaction: 2A + B \rightarrow C + D

Exp.	$\frac{A}{molL^{-1}}$	$\frac{B}{molL^{-1}}$	Initial rate of formation of $\frac{D}{mol \ L^{-1} \ min^{-1}}$
1	0.1	0.1	$6.0 imes \ 10^{-3}$
2	0.3	0.2	$7.2 imes~10^{-2}$
3	0.3	0.4	$2.88 imes~10^{-1}$
4	0.4	0.1	$2.4 imes~10^{-2}$

Determine the rate law and the rate constant for the reaction.

Solution:

Let the order of the reaction with respect to A be x and with respect to B be y.

Therefore, rate of the reaction is given by,

Rate = $k [A]^x [B]^y$

According to the question,

$$6.0 \times 10^{-3} = k [0.1]^x [0.1]^y - (1)$$

$$7.2 \times 10^{-2} = k [0.3]^x [0.2]^y$$
 -----(2)

$$2.88 \times 10^{-1} = k [0.3]^x [0.4]^y$$
 (3)

 $2.4 \times 10^{-2} = k [0.4]^x [0.1]^y$ -----(4)

Dividing equation (4) by (1), we get

$$\frac{2.4 \times 10^{-2}}{6.0 \times 10^{-3}} = \frac{k[0.4]^x[0.1]^y}{k[0.1]^x[0.1]^y} \quad 4 = \frac{[0.4]^x}{[0.1]^x} \quad 4 = \left(\frac{0.4}{0.1}\right)^x \quad (4)^1 = \quad (4)^x$$

x = 1

Dividing equation (3) by (2), we get

$$\frac{2.88 \times 10^{-1}}{7.2 \times 10^{-2}} = \frac{k[0.3]^x [0.4]^y}{k[0.3]^x [0.2]^y} \ 4 = \left(\frac{0.4}{0.2}\right)^y \ 4 = \ 2^y \ 2^2 = \ 2^y$$

Hence, the rate law is

Rate = $k [A] [B]^2$

$$k = \frac{Rate}{[A][B]^2}$$

From experiment 1, we get

 $k = rac{6.0 imes 10^{-3} \, mol \; L^{-1} \; min^{-1}}{(0.1 \; mol \; L^{-1})(0.1 \; mol \; L^{-1})^2}$

 $= 6.0 \ L^2 \ mol^{-2} \ min^{-1}$

From experiment 2, we get

$$k = rac{7.2 imes 10^{-2} \, mol \, L^{-1} \, min^{-1}}{(0.3 \, mol \, L^{-1})(0.2 \, mol \, L^{-1})^2}$$

= 6.0 $L^2 \ mol^{-2} \ min^{-1}$

From experiment 1, we get

$$k = rac{2.88 imes 10^{-1} \, mol \; L^{-1} \; min^{-1}}{(0.3 \; mol \; L^{-1})(0.4 \; mol \; L^{-1})^2}$$

$$= 6.0 L^2 mol^{-2} min^{-1}$$

From experiment 1, we get

$$k = rac{2.4 imes 10^{-2} \, mol \, L^{-1} \, min^{-1}}{(0.4 \, mol \, L^{-1})(0.1 \, mol \, L^{-1})^2}$$

= 6.0
$$L^2 \ mol^{-2} \ min^{-1}$$

Thus, rate constant, k = 6.0 $L^2 \ mol^{-2} \ min^{-1}$

Exp.	$\frac{A}{molL^{-1}}$	$\frac{B}{molL^{-1}}$	Initial rate $mol \ L^{-1} \ min^{-1}$
1	0.1	0.1	$2.0 imes~10^{-2}$
2	_	0.2	$4.0 imes \ 10^{-2}$
3	0.4	0.4	_
4	—	0.2	$2.0 imes~10^{-2}$

Q 12. The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Solution:

The given reaction is of the first order with respect to A and of zero-order with respect to B. Thus, the rate of the reaction is given by,

Rate = $k [A]^1 [B]^0$

Rate = k[A]

From experiment 1, we get

 $2.0 imes \ 10^{-2} \ mol \ L^{-1} min^{-1} = \ k \ igl(0.1 \ mol \ L^{-1} igr)$

 $\Rightarrow k = 0.2 min^{-1}$

From experiment 2, we get

$$4.0 \times 10^{-2} \ mol \ L^{-1} min^{-1} = 0.2 min^{-1} \ [A]$$

 $\Rightarrow \ [A] = \ 0.2 \ mol \ L^{-1}$

From experiment 3, we get

Rate = $0.2 \ min^{-1} \times \ 0.4 \ mol \ L^{-1}$

 $= 0.08 \ mol \ L^{-1} min^{-1}$

From experiment 4, we get

$$2.0 imes 10^{-2} \ mol \ L^{-1} min^{-1} = \ 0.2 \ min^{-1} \ [A]$$

 $\Rightarrow \ [A] = \ 0.1 \ mol \ L^{-1}$

Q 13. Calculate the half-life of a first order reaction from their rate constants given below:

(a) $200 \ s^{-1}$

(b) $2 \min^{-1}$

(c) $4 \ years^{-1}$

Solution:

- (a) Half life, $t_{rac{1}{2}}=rac{0.693}{k}$
- $= \frac{0.693}{200 \ s^{-1}}$
- $=~3.47~ imes~10^{-3}s$ (Approximately)

(b)
$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$= \frac{0.693}{2 \min^{-1}}$$

= 0.35 min (Approximately)

(c)
$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

 $= \frac{0.693}{4 \ years^{-1}}$

= 0.173 years (Approximately)

Q 14. The half-life for radioactive decay of ${}^{14}C$ is 5730 years. An archaeological artifact containing wood had only 80% of the ${}^{14}C$ found in a living tree. Estimate the age of the sample.

Solution:

Here, $k = \frac{0.693}{t_{\frac{1}{2}}}$ = $\frac{0.693}{5730} years^{-1}$

It is known that,

 $t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$

 $= \frac{2.303}{0.693/5730} \log \frac{100}{80}$

= 1845 years (approximately)

Hence, the age of the sample is 1845 years.

Q 15. The experimental data for decomposition of N_2O_5

 $[2N_2O_5
ightarrow 4NO_2 + O_2]$

in gas phase at 318K are given below:

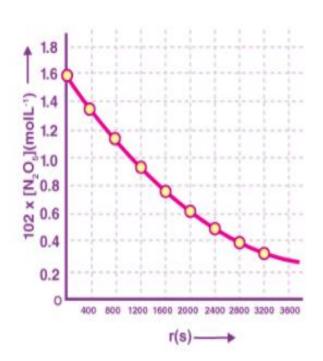
T(s)	0	400	800	1200	1600	2000	2400	2800	3200
$10^2 \times$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35
$[N_2O_5] \operatorname{mol} L^{-1}$									

(a) Plot [N2O5] against t.

- (b) Find the half-life period for the reaction.
- (c) Draw a graph between log[N₂O₅] and t.
- (d) What is the rate law?
- (e) Calculate the rate constant.
- (f) Calculate the half-life period from k and compare it with (b).

Solution:

(a)

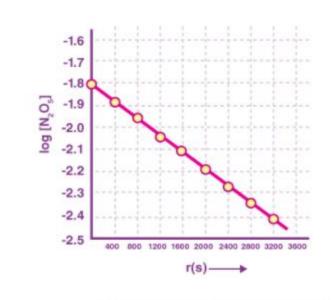


(b) Time corresponding to the concentration, $\frac{1.630 \times 10^2}{2}$ mol $L^{-1} = 81.5$ mol L^{-1} is the half-life. From the graph, the half-life obtained as 1450 s.

(c)

B BYJU'S

t(s)	$10^2 imes \; [N_2 O_5] mol \; L^{-1}$	$\log \left[N_2 O_5 ight]$
0	1.63	-1.79
400	1.36	-1.87
800	1.14	-1.94
1200	0.93	-2.03
1600	0.78	-2.11
2000	0.64	-2.19
2400	0.53	-2.28
2800	0.43	-2.37
3200	0.35	-2.46



(d) The given reaction is of the first order as the plot, $\log \left[N_2 O_5\right]$ v/s t, is a straight line.

Therefore, the rate law of the reaction is

Rate = $k [N_2 O_5]$

(e) From the plot, $\log\left[N_2O_5
ight]$ v/s t, we obtain

 $Slope = \frac{-2.46 - (-1.79)}{3200 - 0}$

 $=\frac{-0.67}{3200}$

Again, slope of the line of the plot $\log\left[N_2O_5
ight]$ v/s t is given by

$$-\frac{k}{2.303}$$

Therefore, we obtain,

$$-\frac{k}{2.303} = -\frac{0.67}{3200}$$

$$\Rightarrow k = 4.82 \times 10^{-4} s^{-1}$$

(f) Half - life is given by,

$$t_{rac{1}{2}} = rac{0.639}{k}$$

$$= \frac{0.693}{4.82 \times 10^{-4}} S$$

- $= \frac{1.483}{10^3}s$
- = 1438s

This value, 1438 s, is very close to the value that was obtained from the graph.

Q 16. The rate constant for a first-order reaction is 60 s⁻¹. How much time will it take to reduce the initial concentration of the reactant to its $1/16^{th}$ value?

Solution:

It is known that,

 $t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$

 $= \ \tfrac{2.303}{60 \ s^{-1}} \log \tfrac{1}{1/16}$

 $= \frac{2.303}{60 \ s^{-1}} \log 16$

= 4.6 \times 10⁻² (approximately)

Hence, the required time is $~4.6 imes~10^{-2}~s$.

Q 17. During the nuclear explosion, one of the products is ⁹⁰Sr with a half-life of 28.1 years. If 1µg of ⁹⁰Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.

Solution:

$$k = \frac{0.693}{t \frac{1}{2}} = \frac{0.693}{28.1} y^{-1}$$

Here,

It is known that,

$$\begin{split} t &= \frac{2.303}{k} \log \frac{[R]_0}{[R]} \\ \Rightarrow & 10 = \frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[R]} \\ \Rightarrow & 10 = \frac{2.303}{\frac{0.693}{28.1}} (-\log [R]) \\ \Rightarrow & \log [R] = -\frac{10 \times 0.693}{2.303 \times 28.1} \\ \Rightarrow & [R] = antilog (-0.1071) \\ = & antiog (1.8929) \\ = & 0.7814 \mu g \end{split}$$

Therefore, $0.7814~\mu g\,$ of $^{90}Sr\,$ will remain after 10 years.

Again,

$$\begin{split} t &= \frac{2.303}{k} \log \frac{[R]_0}{[R]} \\ \Rightarrow & 60 = \frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[R]} \\ \Rightarrow & \log [R] = -\frac{60 \times 0.693}{2.303 \times 28.1} \\ [R] &= antilog \ (-0.6425) \\ &= antilog \ (1.3575) \\ &= 0.2278 \mu g \end{split}$$

Therefore, $0.2278 \mu g$ of ^{90}Sr will remain after 60 years.

Q 18. For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.

Solution:

For a first order reaction, the time required for 99% completion is

$$t_1 = \frac{2.303}{k} \log \frac{100}{100-99}$$

 $= \frac{2.303}{k} \log 100$

$$= 2 \times \frac{2.303}{k}$$

For a first order reaction, the time required for 90% completion is

$$t_1 = \frac{2.303}{k} \log \frac{100}{100-90}$$
$$= \frac{2.303}{k} \log 10$$

 $=\frac{2.303}{k}$

Therefore, $t_1 = 2 t_2$

Hence, the time required for 99% completion of a first order reaction is twice the time required for the completion of 90% of the reaction.

Q 19. A first-order reaction takes 40 min for 30% decomposition. Calculate $t_{1/2}$.

Solution:

For a first order reaction,

 $t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$

- $k = \frac{2.303}{40 \min} \log \frac{100}{100-30}$
- $= \frac{2.303}{40 \min} \log \frac{10}{7}$
- = 8.918 imes 10⁻³ min⁻¹

Therefore, $t_{rac{1}{2}}$ of the decomposition reaction is

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$= \frac{0.693}{8.918 \times 10^{-3}} min$$

= 77.7 min (approximately)

Q 20. For the decomposition of azoisopropane to hexane and nitrogen at 543K, the following data are obtained.

t(sec)	P(mm of Hg)
0	35.0
360	54.0
720	63.0

Calculate the rate constant.

Solution:

The decomposition of azoisopropane to hexane and nitrogen at 543 K is represented by the following equation.

 $(CH_3)_2 \ CHN = \ NCH \ (CH_3)_{2(g)} \rightarrow \ N_{2(g)} + \ C_6 H_{14(g)}$

At t = 0	P_0	0	0

At t = t
$$P_0 - P$$
 p p

After time, t, total pressure, $P_t = (P_0 - p) + p + p$

- $\Rightarrow P_t = P_0 + p$
- $\Rightarrow p = P_t P_0$

Therefore, $P_0 - p = P_0 - (P_t - P_0)$

$$= 2P_0 - P_t$$

For the first order reaction,

$$k = rac{2.303}{t} \log rac{P_0}{P_0 - p}$$

 $= rac{2.303}{t} \log rac{P_0}{2P_0 - P_t}$

When t = 360 s, $k = \frac{2.303}{360 \ s} \log \frac{35.0}{2 \times 35.0 - 54.0}$

 $=~2.175\times~10^{-3}s^{-1}$

When t = 720 s,

 $k = rac{2.303}{720 \ s} \log rac{35.0}{2 imes 35.0 - 63.0}$

 $= 2.235 \times 10^{-3} s^{-1}$

Hence the average value of rate constant is.

$$k=rac{2.21 imes 10^{-3}+2.235 imes 10^{-3}}{2}\ s^{-1}$$

 $= 2.21 \times 10^{-3} s^{-1}$

Q 21. The following data were obtained during the first order thermal decomposition of SO_2CI_2 at a constant volume.

 $SO_2CL_{2(g)} \rightarrow SO_{2(g)}CL_2(g)$

Experiment	Time/s	Total pressure / atm
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.

Solution:

The thermal decomposition of SO_2CL_2 at a constant volume is represented by the following equation.

$$SO_2CL_{2(g)} \rightarrow SO_{2(g)}CL_2(g)$$

At t = 0 P_0 0 0

Att=t P_0-p 0 0

After time t, total pressure, $P_t = (P_0 - p) + p + p$

- $\Rightarrow P_t = P_0 + p$
- $\Rightarrow p = P_t P_0$
- : $P_0 p = P_o (P_t P_0)$

$$= 2P_0 - P_t$$

For a first order reaction,

 $k = \frac{2.303}{t} \log \frac{P_0}{P_0 - p}$

$$= \frac{2.303}{t} \log \frac{P_0}{2P_0 - P_t}$$

When t = 100s,

 $k = rac{2.303}{100 \ s} \log rac{0.5}{2 imes 0.5 - 0.6}$

- $=~2.231 imes~10^{-3}~s^{-1}$
- When $P_t=~0.65$ atm,

 $P_0 + p = 0.65$

 $\Rightarrow p = 0.65 - P_0$

= 0.65 - 0.5

= 0.15 atm

Therefore, when the total pressure is 0.65 atm, pressure of SO_2CL_2 is

$$P_{SOCL_2} = P_0 - p$$

= 0.5-0.15

= 0.35 atm

Therefore, the rate of equation, when total pressure is 0.65 atm, is given by,

$$Rate = k (P_{SOCL_2})$$

= $(2.23 \times 10^{-3} s^{-1}) (0.35) atm$

 $=~7.8\times~10^{-4}~atm~s^{-1}$

Q 22. The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} s^{-1}$ at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of the pre-exponential factor?

Solution:

$$k = 2.418 \times 10^{-5} s^{-1}$$

T = 546 K

$$E_a = 179.9 kJ \ mol^{-1} = 179.9 \times 10^3 \ J \ mol^{-1}$$

According to the Arrhenius equation,

- $k=~Ae^{-E_a/RT}$
- \Rightarrow In $k = InA \frac{E_a}{RT}$
- $\Rightarrow \log k = \log A \frac{E_a}{2.303 RT}$
- $\Rightarrow \log A = \log k + \frac{E_a}{2.303 \ RT}$ $= \log \left(2.418 \times 10^{-5} \ s^{-1} \right) + \frac{179.9 \times 10^3 J mol^{-1}}{2.303 \times 8.314 \ Jk^{-1} \ mol^{-1} \times 546 \ K}$

$$= (0.3835 - 5) + 17.2082$$

= 12.5917

Therefore, A = antilog (12.5917)

= 3.9 imes 10^{12} s^{-1} (approximately)

Q 23. Consider a certain reaction A \rightarrow Products with k = 2.0 × 10⁻²s⁻¹. Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L⁻¹.

Solution:

 $k = 2.0 \times 10^{-2} \ s^{-1} \ T = 100 \ s \ [A]_0 = 1.0 \ mol^{-1}$

Since the unit k is s^{-1} , the given reaction is a first order reaction.

Therefore, $k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$ $\Rightarrow 2.0 \times 10^{-2} s^{-1} = \frac{2.303}{100 s} \log \frac{1.0}{[A]}$ $\Rightarrow 2.0 \times 10^{-2} s^{-1} = \frac{2.303}{100 s} (-\log [A])$ $\Rightarrow -\log [A] = \frac{2.0 \times 10^{-2} \times 100}{2.303}$ $\Rightarrow [A] = antilog \left(-\frac{2.0 \times 10^{-2} \times 100}{2.303}\right)$ $= 0.135 \ mol \ L^{-1}$ (approximately)

Hence, the remaining concentration of A is $0.135 \ mol \ L^{-1}$

Q 24. Sucrose decomposes in acid solution into glucose and fructose according to the first-order rate law, with $t_{1/2}$ = 3.00 hours. What fraction of a sample of sucrose remains after 8 hours?

Solution:

For the first order reaction,

$$k = rac{2.303}{t} \log rac{[R]_0}{[R]}$$

It is given that , $\,t_{rac{1}{2}}=\,\,3.00\,\,hours$.

Therefore, $k=rac{0.693}{t_{rac{1}{2}}}~rac{0.693}{3}h^{-1}$

$$= 0.231 \ h^{-1}$$

Then, 0.231 $h^{-1} = \frac{2.303}{8h} \log \frac{[R]_0}{[R]}$ $\Rightarrow \log \frac{[R]_0}{[R]} = \frac{0.231 h^{-1} \times 8 h}{2.303}$ $\Rightarrow \frac{[R]_0}{[R]} = antilog (0.8024)$ $\Rightarrow \frac{[R]_0}{[R]} = 6.3445$ $\Rightarrow \frac{[R]_0}{[R]_0} = 0.1576 \text{ (approx)}$

= 0.158

Hence, the fraction of sample of sucrose that remains after 8 hours is 0.158.

Q 25. The decomposition of hydrocarbon follows the equation

$$k = \ \left(4.5 imes 10^{11} S^{ extsf{-1}} \
ight) e^{ extsf{-28000 K/T}}$$

Calculate E_a .

Solution:

The given equation is $~k=~(4.5 imes 10^{11}S^{\text{-1}}~)~e^{\text{-28000 K/T}}~$ (i)

The Arrhenius equation is given by,

$$k = A e^{-E_a/RT}$$
(ii)

From equation (i) and (ii), we obtain

$$rac{E_a}{RT} = rac{28000\ K}{T}$$

 $\Rightarrow E_a = R imes 28000\ K$
 $= 8.314\ J\ K^{-1}mol^{-1} imes 28000\ K$

- $\pm 232791 \ J \ mol^{-1}$
- $= 232.791 \ kJ \ mol^{-1}$

Q 26. The rate constant for the first order decomposition of H_2O_2 is given by the following equation:

 $log \; k = \; 14.34 \text{--} 1.25 imes \; 10^4 \; K/T$

Calculate Ea for this reaction and at what temperature will its half-period be 256 minutes? Solution:

Arrhenius equation is given by,

 $k=~Ae^{-E_a/RT}$

- \Rightarrow In $k = In A \frac{E_a}{RT}$
- $\Rightarrow \ \log k = \ \log A \tfrac{E_a}{2.303 \ RT} \qquad \dots (i)$

The given equation is

$$\log k = 14.34 - 1.25 \times 10^4 \ K/T$$
 ...(ii)

From eqn (i) and (ii), we obtain

 $\begin{array}{l} \frac{E_{a}}{2.303\;RT} = \; \frac{1.25 \times 10^{4}\;K}{T} \\ \Rightarrow \; E_{a} = \; 1.25 \times \; 10^{4}\;K \times \; 2.303 \times \;R \\ = \; 1.25 \times \; 10^{4}\;K \times \; 2.303 \times \; 8.314\;J\;K^{-1}mol^{-1} \\ = \; 239339.3\;J\;mol^{-1} \quad (approximately) \\ = \; 239.34\;kJ\;mol^{-1} \end{array}$

Also, when $t_{\frac{1}{2}}=~256\,$ minutes,

$$k = \frac{0.693}{t_{\frac{1}{2}}}$$

$$= \frac{0.693}{256}$$

$$=~2.707\times~10^{-3}~min^{-1}$$

$$=$$
 4.51 $imes$ 10⁻⁵ s^{-1}

It is also given that, $log \; k = \; 14.34 ext{--}1.25 imes \; 10^4 \; K/T$

$$\Rightarrow log\left(4.51 imes10^{-5}
ight) = 14.34 ext{-}rac{1.25 imes10^4~K}{T}$$

$$\Rightarrow log(0.654-05) = 14.34 - \frac{1.25 \times 10^4 K}{T}$$

$$\Rightarrow \frac{1.25 \times 10^4 K}{T} = 18.686$$

$$= 668.95 K$$

$$= 669 K (approximately)$$

Q 27. The decomposition of A into product has value of k as 4.5×10^3 s⁻¹ at 10°C and energy of activation 60 kJ mol⁻¹. At what temperature would k be 1.5×10^4 s⁻¹?

Solution:

From Arrhenius equation, we obtain

 $\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$

Also, $k_1 = \; 4.5 imes \; 10^3 \; s^{-1} \; \; T_1 = \; 273 + \; 10 = \; 283 \; K \; k_2$

 $=~1.5 imes~10^4~s^{-1}$

 $E_a = ~60~kJ~mol^{-1} = ~6.0 imes ~10^4~J~mol^{-1}$

Then,

$$\log \frac{1.5 \times 10^4}{4.5 \times 10^3} = \frac{6.0 \times 10^4 \ J \ mol^{-1}}{2.303 \times 8.314 \ J \ K^{-1} \ mol^{-1}} \left(\frac{T_2 - 283}{283 \ T_2}\right)$$

$$\Rightarrow 0.5229 = 3133.627 \left(\frac{T_2 - 283}{283 \ T_2}\right)$$

$$\Rightarrow \frac{0.5229 \times 283 \ T_2}{3133.627} = T_2 - 283$$

$$\Rightarrow 0.9528 \ T_2 = 283$$

$$\Rightarrow T_2 = 297.019 \ K \ (approximately)$$

$$= 297 \ K$$

$$= 24^{\circ}$$

Q 28. The time required for 10% completion of a first order reaction at 298K is equal to that required for its 25% completion at 308K. If the value of A is 4×10^{10} s⁻¹. Calculate k at 318K and Ea.

Solution:

For a first order reaction,

$$t = \frac{2.303}{k} \log \frac{a}{a-x}$$

at 298 K, $t = \frac{2.303}{k} \log \frac{100}{90}$
 $= \frac{0.1054}{k}$
at 308 K, $t' = \frac{2.303}{k'} \log \frac{100}{75}$
 $= \frac{2.2877}{k'}$

According to the question,

t = t'

 $\Rightarrow \frac{0.1054}{k} = \frac{0.2877}{k'}$

$$\Rightarrow \frac{k'}{k} = 2.7296$$

From Arrhenius equation, we get

 $\log \frac{k'}{k} = \frac{E_a}{2.303 R} \left(\frac{T'-T}{TT'}\right)$ $\Rightarrow \log (2.7296) = \frac{E_a}{2.303 \times 8.314} \left(\frac{308-298}{298 \times 308}\right)$ $\Rightarrow E_a = \frac{2.303 \times 8.314 \times 298 \times 308 \times \log(2.7296)}{308-298}$

 $= \ 76640.096 \ J \ mol^{-1}$

 $= 76.64 \ kJ \ mol^{-1}$

To calculate k at 318 K,

It is given that, $\,A=\,4 imes\,10^{10}s^{-1}$, T = 318 K

Again, from Arrhenius equation, we get

 $\log k = \log A - \frac{E_a}{2.303 \ R T}$

- $= \ \log \left(4 \times 10^{10} \right) \tfrac{76.64 \times 10^3}{2.303 \times 8.314 \times 318}$
- = (0.6021 + 10) 12.5876
- = -1.9855

Therefore, k = Antilog(-1.9855)

= 1.034 imes 10⁻² s^{-1}

Q 29. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

Solution:

From Arrhenius equation, we get

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

From the question we have, $\,K_2=\,4K_1\,$

 $T_1 = 293 \ K$

 $T_2 = 313 \ K$

Therefore, $\log \frac{4K_1}{K_2} = \frac{E_a}{2.303 \times 8.314} \left(\frac{313 - 293}{293 \times 313} \right)$

- \Rightarrow 0.6021 = $rac{20 imes E_a}{2.303 imes 8.314 imes 293 imes 313}$
- $\Rightarrow~E_a=~\frac{0.6021\times2.303\times8.314\times293\times313}{20}$
- $= 52863.33 \ J \ mol^{-1}$
- $= 52.86 \ kJ \ mol^{-1}$

Hence, the required energy of activation is $52.86 \ kJ \ mol^{-1}$.