EXERCISE 26A

1. For each equation given below; name the dependent and independent variables.

$$
\begin{aligned}
& \text { (i) } y=\frac{4}{3} x-7 \\
& \text { (ii) } x=9 y+4 \\
& \text { (iii) } x=\frac{5 y+3}{2} \\
& \text { (iv) } y=\frac{1}{7}(6 x+5)
\end{aligned}
$$

Solution:

(i)
$y=\frac{4}{3} x-7$
y is the dependent variable
x is the independent variable
(ii) $x=9 y+4$
x is the dependent variable
y is the independent variable
(iii)
$x=\frac{5 y+3}{2}$
x is the dependent variable
y is the independent variable
(iv)
$y=\frac{1}{7}(6 x+5)$
y is the dependent variable
x is the independent variable
2. Plot the following points on the same graph paper:
(i) $(8,7)$
(ii) $(\mathbf{3}, 6)$
(iii) $(0,4)$
(iv) $(0,-4)$
(v) $(3,-2)$
(vi) $(-2,5)$
(vii) $(-3,0)$
(viii) $(5,0)$
(ix) $(-4,-3)$

Solution:

Consider the points as
(i) $(8,7)=\mathrm{A}$
(ii) $(3,6)=\mathrm{B}$
(iii) $(0,4)=\mathrm{C}$
(iv) $(0,-4)=\mathrm{D}$
(v) $(3,-2)=\mathrm{E}$
(vi) $(-2,5)=\mathrm{F}$
(vii) $(-3,0)=\mathrm{G}$
(viii) $(5,0)=\mathrm{H}$
(ix) $(-4,-3)=\mathrm{I}$

3. Find the values of x and y if:
(i) $(x-1, y+3)=(4,4)$
(ii) $(3 x+1,2 y-7)=(9,-9)$
(iii) $(5 x-3 y, y-3 x)=(4,-4)$

Solution:
We know that two ordered pairs are equal.
(i) $(x-1, y+3)=(4,4)$

It can be written as
$\mathrm{x}-1=4$ and $\mathrm{y}+3=4$
$x=5$ and $y=1$
(ii) $(3 x+1,2 y-7)=(9,-9)$

It can be written as
$3 \mathrm{x}+1=9$ and $2 \mathrm{y}-7=-9$
$3 x=8$ and $2 y=-2$
$x=8 / 3$ and $y=-1$
(iii) $(5 x-3 y, y-3 x)=(4,-4)$

It can be written as
$5 x-3 y=4$
$y-3 x=-4$
By multiplying equation (2) by 3
$3 y-9 x=-12 \ldots$... (3)
Now add equations (1) and (3)
$(5 x-3 y)+(3 y-9 x)=4+(-12)$
$-4 \mathrm{x}=-8$
$\mathrm{x}=2$

Substituting the value of x in equation (2)
$y-3 x=-4$
$y=3 x-4$
$y=3(2)-4$
$y=2$
Therefore, $\mathrm{x}=2$ and $\mathrm{y}=2$.
4. Use the graph given alongside, to find the coordinates of point (s) satisfying the given condition:
(i) The abscissa is 2.
(ii) The ordinate is 0 .
(iii) The ordinate is 3 .
(iv) The ordinate is $\mathbf{- 4}$.
(v) The abscissa is 5 .
(vi) The abscissa is equal to the ordinate.
(vii) The ordinate is half of the abscissa.

The Learring App

Solution:

(i) The abscissa is 2.

Based on the graph,
The co-ordinate of the point A is given by $(2,2)$.
(ii) The ordinate is 0 .

Based on the graph,
The co-ordinate of the point B is given by $(5,0)$.
(iii) The ordinate is 3 .

Based on the graph,
The co-ordinates of the points C and E are given by $(-4,3)$ and $(6,3)$.
(iv) The ordinate is -4 .

Based on the graph,
The co-ordinate of the point D is given by $(2,-4)$.
(v) The abscissa is 5.

Based on the graph,
The co-ordinates of the points H, B and G are given by $(5,5),(5,0)$ and $(5,-3)$.
(vi) The abscissa is equal to the ordinate.

Based on the graph,
The co-ordinates of the points I, A and H are given by $(4,4),(2,2)$ and $(5,5)$.
(vii) The ordinate is half of the abscissa.

Based on the graph,
The co-ordinate of the point E is given by $(6,3)$.
5. State true or false:
(i) The ordinate of a point is its x co-ordinate.
(ii) The origin is in the first quadrant.
(iii) The \mathbf{y}-axis is the vertical number line.
(iv) Every point is located in one of the four quadrants.
(v) If the ordinate of a point is equal to its abscissa; the point lies either in the first quadrant or in the second quadrant.
(vi) The origin $(0,0)$ lies on the x-axis.
(vii) The point (\mathbf{a}, b) lies on the \mathbf{y}-axis if $\mathrm{b}=0$.

Solution:
(i) False
(ii) False
(iii) True
(iv) True
(v) False
(vi) True
(vii) False
6. In each of the following, find the co-ordinates of the point whose abscissa is the solution of the first equation and ordinate is the solution of the second equation:
(i) $3-2 x=7 ; 2 y+1=10-2 \frac{1}{2} y$
(ii) $\frac{2 a}{3}-1=\frac{a}{2} ; \frac{15-4 b}{7}=\frac{2 b-1}{3}$
(iii) $5 x-(5-x)=\frac{1}{2}(3-x) ; 4-3 y=\frac{4+y}{3}$

Solution:
(i)

$$
3-2 x=7 ; 2 y+1=10-2 \frac{1}{2} y
$$

We know that
$3-2 x=7$
$3-7=2 x$
$-4=2 x$
$x=-2$
Similarly
$2 y+1-10-2^{1 / 2} y$
$2 \mathrm{y}+1=10-5 / 2 \mathrm{y}$
By cross multiplication
$4 \mathrm{y}+2=20-5 \mathrm{y}$
$4 y+5 y=20-2$
$9 y=18$
$y=2$
Hence, the co-ordinates of the point are $(-2,2)$.
(ii)
$\frac{2 a}{3}-1=\frac{a}{2} ; \frac{15-4 b}{7}=\frac{2 b-1}{3}$
We know that
$2 \mathrm{a} / 3-1=\mathrm{a} / 2$
$2 \mathrm{a} / 3-\mathrm{a} / 2=1$
Taking LCM
$(4 a-3 a) / 6=1$
$\mathrm{a}=6$
Similarly

$$
\frac{15-4 b}{7}=\frac{2 b-1}{3}
$$

By taking LCM
$45-12 b=14 b-7$
$45+7=14 b+12 b$
$52=26 \mathrm{~b}$
$\mathrm{b}=2$
Hence, the co-ordinates of the point are $(6,2)$
(iii)

$$
5 x-(5-x)=\frac{1}{2}(3-x) ; 4-3 y=\frac{4+y}{3}
$$

We know that
$5 x-(5-x)=1 / 2(3-x)$
It can be written as
$(5 x+x)-5=1 / 2(3-x)$
By cross multiplication
$12 \mathrm{x}-10=3-\mathrm{x}$
$12 \mathrm{x}+\mathrm{x}=3+10$
$13 x=13$
$\mathrm{x}=1$
Similarly

$$
4-3 y=\frac{4+y}{3}
$$

By cross multiplication
$12-9 y=4+y$
$12-4=y+9 y$
$8=10 \mathrm{y}$
$y=8 / 10$
$y=4 / 5$
Hence, the co-ordinates of the point are ($1,4 / 5$).
7. In each of the following, the co-ordinates of the three vertices of a rectangle ABCD are given. By plotting the given points; find, in each case, the co-ordinates of the fourth vertex:
(i) $\mathrm{A}(2,0), \mathrm{B}(8,0)$ and $\mathrm{C}(8,4)$.
(ii) $\mathrm{A}(4,2), \mathrm{B}(-2,2)$ and $\mathrm{D}(4,-2)$.
(iii) $A(-4,-6), C(6,0)$ and $D(-4,0)$.
(iv) $B(10,4), C(0,4)$ and $D(0,-2)$.

Solution:
(i) $\mathrm{A}(2,0), \mathrm{B}(8,0)$ and $\mathrm{C}(8,4)$

From the graph the co-ordinates of the fourth vertex is $\mathrm{D}(2,4)$.
(ii) A $(4,2), \mathrm{B}(-2,2)$ and $\mathrm{D}(4,-2)$.

From the graph the co-ordinates of the fourth vertex is $\mathrm{C}(-2,2)$.
(iii) A (-4,-6), C $(6,0)$ and $\mathrm{D}(-4,0)$.

From the graph the co-ordinates of the fourth vertex is B (6, -6).
(iv) $\mathrm{B}(10,4), \mathrm{C}(0,4)$ and $\mathrm{D}(0,-2)$

From the graph the co-ordinates of the fourth vertex is A $(10,-2)$.
8. A $(-2,2), B(8,2)$ and $C(4,-4)$ are the vertices of a parallelogram ABCD. By plotting the given points on a graph paper; find the co-ordinates of the fourth vertex D.
Also, form the same graph, state the co-ordinates of the mid-points of the sides AB and CD.
Solution:
It is given that
A $(2,-2), B(8,2)$ and $C(4,-4)$ are the vertices of the parallelogram ABCD

By joining $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D we get the parallelogram ABCD .
From the graph, we get $\mathrm{D}(-6,4)$
Using the graph,
The co-ordinates of the mid-point of AB is $\mathrm{E}(3,2)$
The co-ordinates of the mid-point of CD is $\mathrm{F}(-1,-4)$
9. $A(-2,4), C(4,10)$ and $D(-2,10)$ are the vertices of a square $A B C D$. Use the graphical method to find the co-ordinates of the fourth vertex B. Also, find:
(i) The co-ordinates of the mid-point of BC ;
(ii) The co-ordinates of the mid-point of $C D$ and
(iii) The co-ordinates of the point of intersection of the diagonals of the square ABCD .

Solution:
It is given that
$A(-2,4), C(4,10)$ and $D(-2,10)$ are the vertices of a square $A B C D$.

From the graph, we get $\mathrm{B}(4,4)$
Using the graph,
The co-ordinates of the mid-point of BC is $\mathrm{E}(4,7)$
The co-ordinates of the mid-point of CD is $\mathrm{F}(1,10)$
The co-ordinates of the diagonals of the square is $G(1,7)$
10. By plotting the following points on the same graph paper. Check whether they are collinear or not:
(i) $(3,5),(1,1)$ and $(0,-1)$
(ii) $(-2,-1),(-1,-4)$ and $(-4,1)$

Solution:

After plotting the points, we clearly see from the graph that
(i) A $(3,5), \mathrm{B}(1,1)$ and $\mathrm{C}(0,-1)$ are collinear
(ii) $\mathrm{P}(-2,-1), \mathrm{Q}(-1,-4)$ and $\mathrm{R}(-4,1)$ are non-collinear.

EXERCISE 26B

1. Draw the graph for each linear equation given below:
(i) $x=3$
(ii) $\mathrm{x}+3=0$
(iii) $x-5=0$
(iv) $2 x-7=0$
(v) $\mathbf{y}=4$
(vi) $y+6=0$
(vii) $y-2=0$
(viii) $3 y+5=0$
(ix) $2 y-5=0$
(x) $\mathbf{y}=0$
(xi) $\mathrm{x}=0$

Solution:
(i)

x	3	3	3
y	-1	0	1

(ii)

x	-3	-3	-3
y	-1	0	1

(iii)

x	5	5	5
y	-1	0	1

(iv)

x	$7 / 2$	$7 / 2$	$7 / 2$
y	-1	0	1

(v)

x	-1	0	-1
y	4	4	4

(vi)

x	-1	0	1
y	-6	-6	-6

(vii)

x	-1	0	1
y	2	2	2

(viii)

x	-1	0	1
y	-6	-6	-6

(xi)

x	0	0	0
y	-1	0	1

2. Draw the graph for each linear equation given below:
(i) $y=3 x$
(ii) $y=-x$
(iii) $y=-2 x$
(iv) $y=x$
(v) $5 x+y=0$
(vi) $x+2 y=0$
(vii) $4 x-y=0$
(viii) $3 x+2 y=0$
(ix) $x=-2 y$

Solution:
(i)

x	-1	0	1
y	-3	0	3

(ii)

x	-1	0	1
y	1	0	-1

(iii)

x	-1	0	1
y	2	0	-2

(iv)

x	-1	0	1
y	-1	0	1

(v)

x	-1	0	1
y	5	0	-5

(v)

x	-1	0	1
y	-4	0	4

(viii)

x	-1	0	1
y	$3 / 2$	0	$-3 / 2$

3. Draw the graph for each linear equation given below:
(i) $y=2 x+3$
(ii) $y=\frac{2 x}{3}-1$
(iii) $y=-x+4$
$(i v) y=4 x-\frac{5}{2}$
$(\mathrm{v}) \mathrm{y}=\frac{3 \mathrm{x}}{2}+\frac{2}{3}$
$(\mathrm{vi}) 2 x-3 y=4$
(vii) $\frac{x-1}{3}-\frac{y+2}{2}=0$
$($ viii $) x-3=\frac{2}{5}(y+1)$

$$
(i x) x+5 y+2=0
$$

Solution:
(i)

x	-1	0	1
y	$-5 / 3$	3	5

(ii)

x	-1	0	1
y	$-5 / 3$	-1	$-1 / 3$

(v)

x	-1	0	1
y	$-5 / 6$	$2 / 3$	$13 / 6$

(vi)

x	-1	0	1
y	-2	$-4 / 3$	$-2 / 3$

(vii) We can write the equation as $2 \mathrm{x}-3 \mathrm{y}=8$

x	-1	0	1
y	$-10 / 3$	$-8 / 3$	-2

(viii) We can write the equation as
$5 x-2 y=17$

x	-1	0	1
y	-11	$-17 / 2$	-6

(ix)

x	-1	0	1
y	$-1 / 5$	$-2 / 5$	$-3 / 5$

4. Draw the graph for each equation given below:
(i) $3 x+2 y=6$
(ii) $2 x-5 y=10$
(iii) $\frac{1}{2} x+\frac{2}{3} y=5$
(iv) $\frac{2 x-1}{3}-\frac{y-2}{5}=0$

In each case, find the co-ordinates of the points where the graph (line) drawn meets the co-ordinates axes. Solution:
(i)

x	-2	0	2
y	6	3	0

From the graph, the line intersects x -axis at $(2,0)$ and y -axis at $(0,3)$.
(ii)

x	-1	0	1
y	$-12 / 5$	-2	$-8 / 5$

From the graph, the line intersects x -axis at $(5,0)$ and y -axis at $(0,-2)$.
(iii)

x	-1	0	1
y	5.25	4.5	3.75

From the graph, the line intersects x-axis at $(10,0)$ and y-axis at $(0,7.5)$.
(iv)

x	-1	0	1
y	-3	$1 / 3$	$11 / 3$

From the graph, the line intersects x-axis at $(-1 / 10,0)$ and y-axis at $(0,4.5)$.
5. For each linear equation, given above, draw the graph and then use the graph drawn (in each case) to find the area of a triangle enclosed by the graph and the co-ordinates axes:
(i) $3 x-(5-y)=7$
(ii) $7-3(1-y)=-5+2 x$

Solution:
(i)

We know that
Area of the right triangle obtained $=1 / 2 \times$ base \times altitude $=1 / 2 \times 4 \times 12$
$=24$ sq. units
(ii)

We know that
Area of the right triangle obtained $=1 / 2 \times$ base \times altitude
$=1 / 2 \times 9 / 2 \times 3$
$=27 / 4$
$=6.75$ sq. units

EXERCISE 26C

1. In each of the following, find the inclination of line $A B$:

The Learning App
(i)

(ii)

(iii)

Solution:

The angle which is a straight line makes with the positive direction of x -axis (measured in anticlockwise direction) is called as inclination of the line.
(i) The inclination of line AB is $\theta=45^{\circ}$
(ii) The inclination of line AB is $\theta=135^{\circ}$
(iii) The inclination of line $A B$ is $\theta=30^{\circ}$
2. Write the inclination of a line which is:
(i) Parallel to x -axis.
(ii) Perpendicular to x -axis.
(iii) Parallel to \mathbf{y}-axis.
(iv) Perpendicular to y-axis.

Solution:
(i) The inclination of a line which is parallel to x-axis is $\theta=0^{0}$.
(ii) The inclination of a line which is perpendicular to x -axis is $\theta=90^{\circ}$.
(iii) The inclination of a line which is parallel to y-axis is $\theta=90^{\circ}$.
(iv) The inclination of a line which is perpendicular to y-axis $\theta=0^{0}$.
3. Write the slope of the line whose inclination is:
(i) 0^{0}
(ii) 30^{0}
(iii) 45^{0}
(iv) 60^{0}

Solution:
The slope of the line is $\tan \theta$ if θ is the inclination of a line.
Here slope is usually denoted by the letter m .
(i) The inclination of a line is 0^{0} then $\theta=0^{0}$.

Therefore, the slope of the line is $\mathrm{m}=\tan 0^{\circ}=0$
(ii) The inclination of a line is 30° then $\theta=30^{\circ}$.

Therefore, the slope of the line is $m=\tan \theta=\tan 30^{\circ}=1 / \sqrt{ } 3$
(iii) The inclination of a line is 45° then $\theta=45^{\circ}$.

Therefore, the slope of the line is $\mathrm{m}=\tan \theta=\tan 45^{\circ}=1$
(iv) The inclination of a line is 60° then $\theta=60^{\circ}$.

Therefore, the slope of the line is $\mathrm{m}=\tan \theta=\tan 60^{\circ}=\sqrt{3}$
4. Find the inclination of the line whose slope is:
(i) 0
(ii) 1
(iii) $\sqrt{ } 3$
(iv) $1 / \sqrt{ } 3$

Solution:
If $\tan \theta$ is the slope of a line; then the inclination of the line is θ
(i) If the slope of the line is 0 ; then $\tan \theta=0$
$\tan \theta=0$
$\tan \theta=\tan 0^{\circ}$
$\theta=0^{0}$
Hence, the inclination of the given line is $\theta=0^{0}$.
(ii) If the slope of the line is 1 ; then $\tan \theta=1$
$\tan \theta=1$
$\tan \theta=\tan 45^{\circ}$
$\theta=45^{0}$
Hence, the inclination of the given line is $\theta=45^{\circ}$.
(iii) If the slope of the line is $\sqrt{ } 3$; then $\tan \theta=\sqrt{ } 3$
$\tan \theta=\sqrt{ } 3$
$\tan \theta=\tan 60^{\circ}$
$\theta=60^{\circ}$
Hence, the inclination of the given line is $\theta=60^{\circ}$.
(iv) If the slope of the line is $1 / \sqrt{ } 3$; then $\tan \theta=1 / \sqrt{ } 3$
$\tan \theta=1 / \sqrt{ } 3$
$\tan \theta=\tan 30^{\circ}$
$\theta=30^{\circ}$
Hence, the inclination of the given line is $\theta=30^{\circ}$.
5. Write the slope of the line which is:
(i) Parallel to x -axis.
(ii) Perpendicular to x -axis.
(iii) Parallel to \mathbf{y}-axis.
(iv) Perpendicular to y-axis.

Solution:
(i) We know that the inclination of line parallel to x -axis $\theta=0^{0}$

So the slope $(\mathrm{m})=\tan \theta=\tan 0^{\circ}=0$
(ii) We know that the inclination of line perpendicular to x -axis $\theta=90^{\circ}$

So the slope $(\mathrm{m})=\tan \theta=\tan 90^{\circ}=\infty$ (not defined)
(iii) We know that the inclination of line parallel to y-axis $\theta=90^{\circ}$

So the slope $(\mathrm{m})=\tan \theta=\tan 90^{\circ}=\infty$ (not defined)
(iv) We know that the inclination of line perpendicular to y-axis $\theta=0^{0}$

So the slope $(\mathrm{m})=\tan \theta=\tan 0^{\circ}=0$

