GA - General Aptitude

Q1 - Q5 carry one mark each.

Q.No. 1 While I agree \qquad his proposal this time, I do not often agree \qquad him.
(A) to, with
(B) with, to
(C) with, with
(D) to, to
Q.No. 2 The recent measures to improve the output would \qquad the level of production to our satisfaction.
(A) increase
(B) decrease
(C) speed
(D) equalise
Q.No. 3 Select the word that fits the analogy:

White: Whitening : : Light: \qquad
(A) Lightning
(B) Lightening
(C) Lighting
(D) Enlightening
Q.No. 4 In one of the greatest innings ever seen in 142 years of Test history, Ben Stokes upped the tempo in a five-and-a-half hour long stay of 219 balls including 11 fours and 8 sixes that saw him finish on a 135 not out as England squared the five-match series.

Based on their connotations in the given passage, which one of the following meanings DOES NOT match?
(A) upped = increased
(B) squared $=$ lost
(C) tempo $=$ enthusiasm
(D) \quad saw $=$ resulted in
Q.No. 5 There are five levels $\{P, Q, R, S, T\}$ in a linear supply chain before a product reaches customers, as shown in the figure.

At each of the five levels, the price of the product is increased by 25%. If the product is produced at level P at the cost of Rs. 120 per unit, what is the price paid (in rupees) by the customers?
(A) $\quad 187.50$
(B) 234.38
(C) 292.96
(D) 366.21

Q6-Q10 carry two mark each.
Q.No. 6

Climate change and resilience deal with two aspects - reduction of sources of nonrenewable energy resources and reducing vulnerability of climate change aspects. The terms 'mitigation' and 'adaptation' are used to refer to these aspects, respectively.

Which of the following assertions is best supported by the above information?
(A) Mitigation deals with consequences of climate change.
(B) Adaptation deals with causes of climate change.
(C) Mitigation deals with actions taken to reduce the use of fossil fuels.
(D) Adaptation deals with actions taken to combat green-house gas emissions.
Q.No. 7 Find the missing element in the following figure.

(A) d
(B) e
(C) w
(D) y
Q.No. 8 It was estimated that 52 men can complete a strip in a newly constructed highway connecting cities P and Q in 10 days. Due to an emergency, 12 men were sent to another project. How many number of days, more than the original estimate, will be required to complete the strip?
(A) 3 days
(B) 5 days
(C) 10 days
(D) 13 days
Q.No. 9 An engineer measures THREE quantities X, Y and Z in an experiment. She finds that they follow a relationship that is represented in the figure below: (the product of X and Y linearly varies with Z)

Then, which of the following statements is FALSE?
For fixed Z ; X is proportional to Y
(B) For fixed Y ; X is proportional to Z
(C) For fixed $\mathrm{X} ; \mathrm{Z}$ is proportional to Y
(D) $\quad \mathrm{XY} / \mathrm{Z}$ is constant
Q.No. The two pie-charts given below show the data of total students and only girls registered in 10 different streams in a university. If the total number of students registered in the university is 5000 , and the total number of the registered girls is 1500 ; then, the ratio of boys enrolled in Arts to the girls enrolled in Management is \qquad .

Percentage of students enrolled in different streams in a University

Percentage of girls enrolled in different streams

(A) $2: 1$
(B) $9: 22$
(C) $11: 9$
(D) $22: 9$

CY: Chemistry

Q.No. 1 Among the following, the suitable reagents for the given transformation is:

(A) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$
(B) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2} / \mathrm{KOH}, \Delta$
(C) $\quad \mathrm{NaBH}_{4} / \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(D) $\quad \mathrm{Li} /$ Liq. NH_{3}
Q.No. 2 Major product formed in the following reaction sequence is:

(A)

(B)

(C)

(D)

Q.No. 3 Major product formed in the following reaction is:

(A)

(B)

(C)

(D)

Q.No. 4 Major product formed in the following transformation is:

(A)

(B)

(C)

(D)

Q.No. 5 Absolute stereochemistry of the given compound is:

(A) $4 \mathrm{a} R, 8 \mathrm{a} S$
(B) $4 \mathrm{a} R, 8 \mathrm{a} R$
(C) $4 \mathrm{aS}, 8 \mathrm{a} S$
(D) $4 \mathrm{a} S, 8 \mathrm{a} R$
Q.No. 6 In the following reaction sequence,

the major products \mathbf{P} and \mathbf{Q} are:
(A)
 and

(B)
 and

(C)

and

P
(D)

Q

Q.No. 7 Major product formed in the given reaction is:

(A)

(B)

(C)

(D)

Q.No. 8 The CORRECT statement regarding the substitution of coordinated ligands in $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{3}$ is:
(Given: $\mathrm{Co}-\mathrm{N}-\mathrm{O}$ bond is nearly linear; atomic numbers of Co and Ni are 27 and 28, respectively)
(A) $\quad \mathrm{Ni}(\mathrm{CO})_{4}$ and $\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{3}$ follow associative and dissociative pathways, respectively.
(B) $\quad \mathrm{Ni}(\mathrm{CO})_{4}$ and $\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{3}$ follow dissociative and associative pathways, respectively.
(C) Both $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{3}$ follow associative pathway.
(D) Both $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{3}$ follow dissociative pathway.
Q.No. 9 The CORRECT statement about hexagonal boron nitride is:
(A) It is a good electrical conductor.
(B) It has same layer stacking as that of graphite.
(C) It is reactive towards fluorine.
(D) It has lower thermal stability in air compared to that of graphite.
Q.No. In oxyhemocyanin, the coordination number, mode of oxygen binding, color and 10 the net magnetic behavior of copper ions, respectively are:
(Given: atomic number of Cu is 29)
(A) Four, $\mu-\eta^{1}: \eta^{1}-\mathrm{O}_{2}^{-}$, colorless and paramagnetic.
(B) Five, $\mu-\eta^{2}: \eta^{2}-\mathrm{O}_{2}{ }^{-}$, colorless and paramagnetic.
(C) Five, $\mu-\eta^{2}: \eta^{2}-\mathrm{O}_{2}{ }^{2-}$, blue and diamagnetic.
(D) Four, $\mu-\eta^{1}: \eta^{1}-\mathrm{O}_{2}^{2-}$, blue and diamagnetic.
Q.No. Among the following species, the one that has pentagonal shape is:

11
(Given: atomic numbers of O, F, S, I and Xe are $8,9,16,53$ and 54, respectively)
(A) XeOF_{4}
(B) $\quad \mathrm{IF}_{5}$
(C) $\left[\mathrm{SF}_{5}\right]^{-}$
(D) $\left[\mathrm{XeF}_{5}\right]$
Q.No. A solution containing a metal complex absorbs at 480 nm with molar extinction 12 coefficient of $15,000 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. If the path length of the cell is 1.0 cm and transmittance is 20.5%, the concentration (in $\mathrm{mol} \mathrm{L}^{-1}$) of the metal complex is:
(A) 1.37×10^{-5}
(B) $\quad 2.29 \times 10^{-5}$
(C) $\quad 4.59 \times 10^{-5}$
(D) $\quad 8.75 \times 10^{-5}$
Q.No. Among the following linear combination of atomic orbitals, the CORRECT

13 representation of the lowest unoccupied π-molecular orbital of butadiene is:
(A) $\Psi=-0.372 \phi_{1}+0.602 \phi_{2}-0.602 \phi_{3}+0.372 \phi_{4}$
(B) $\quad \Psi=0.602 \phi_{1}-0.372 \phi_{2}-0.372 \phi_{3}+0.602 \phi_{4}$
(C) $\quad \Psi=0.602 \phi_{1}+0.372 \phi_{2}-0.372 \phi_{3}-0.602 \phi_{4}$
(D) $\quad \Psi=0.372 \phi_{1}+0.602 \phi_{2}+0.602 \phi_{3}+0.372 \phi_{4}$
Q.No. The activity of ' m ' molal CuSO_{4} solution can be expressed in terms of its mean 14 activity coefficient $\left(\gamma_{ \pm}\right)$as:
(A) $\quad m^{2} \gamma_{ \pm}{ }^{2}$
(B) $\quad 4 m^{3} \gamma_{ \pm}{ }^{3}$
(C) $\quad 16 m^{4} \gamma_{ \pm}{ }^{4}$
(D) $\quad 108 m^{5} \gamma_{ \pm}{ }^{5}$
Q.No. The character table for a pyramidal AB_{3} molecule of $\mathrm{C}_{3 \mathrm{v}}$ point group is given

15 below:

$\mathrm{C}_{3 \mathrm{v}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
$\mathrm{~A}_{2}$	1	1	-1	R_{z}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(x z, y z)$

The reducible representation of pyramidal $A B_{3}$ is

$\mathrm{C}_{3 \mathrm{v}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$
Γ	12	0	2

The CORRECT option representing all the normal Raman active modes of pyramidal AB_{3} is:
(A) $\quad \mathrm{A}_{1}+\mathrm{A}_{2}+2 \mathrm{E}$
(B) 3 E
(C) $\quad 3 \mathrm{~A}_{1}+\mathrm{A}_{2}+\mathrm{E}$
(D) $\quad 2 \mathrm{~A}_{1}+2 \mathrm{E}$
Q.No. In the following reaction, 16

the number of peaks exhibited by the major product \mathbf{P} in its broadband proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum is \qquad
Q.No. Among the following,

17

the total number of aromatic species is \qquad
Q.No.

18
The maximum number of microstates for d^{2} electronic configuration is \qquad
Q.No. In a uranium recovery process, an aqueous solution of uranyl ion is evaporated, 19 dried in air at $400^{\circ} \mathrm{C}$ and subsequently reduced with hydrogen at $700^{\circ} \mathrm{C}$ to obtain a uranium compound (\mathbf{X}). The oxidation state of uranium in \mathbf{X} is \qquad
(Given: atomic number of U is 92)
Q.No. For a cubic crystal system, the powder X-ray diffraction pattern recorded using 20 $\mathrm{Cu} K_{\alpha}$ source $(\lambda=1.54 \AA)$ shows a peak at $33.60^{\circ}(2 \theta)$ for (111) plane. The lattice parameter ' a ' (in \AA, rounded off to two decimal places) is \qquad
Q.No. In an NMR spectrometer operating at a magnetic field strength of 16.45 T , the 21 resonance frequency (in MHz , rounded off to one decimal place) of ${ }^{19} \mathrm{~F}$ nucleus is \qquad
(Given: g factor of ${ }^{19} \mathrm{~F}=5.255 ; \beta_{N}=5.05 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1} ; h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$)
Q.No. When three moles of helium is mixed with one mole of neon at constant off to two decimal places) is \qquad
(Given: $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
Q.No. At $25^{\circ} \mathrm{C}$, the emf (in volts, rounded off to three decimal places) of the cell,
$\mathrm{Ag}|\mathrm{AgBr}(\mathrm{s})| \mathrm{Br}^{-}(a=0.20), \mathrm{Cu}^{2+}(a=0.48), \mathrm{Cu}^{+}(a=0.24) \mid \mathrm{Pt}$
is \qquad
(Given: The standard emf of the cell is $0.082 \mathrm{~V} ; \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$; $\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$)
Q.No. For an enzyme catalyzed reaction, the plot of inverse of initial rate against inverse of initial substrate concentration is linear with slope 0.16 s and intercept $2.12 \mathrm{~mol}^{-1} \mathrm{~L}$ s. The estimated value of Michaelis constant (in mol L- ${ }^{-1}$, rounded off to two decimal places) is \qquad
Q.No. Fluorescence quantum yield and fluorescence lifetime of a molecule are 0.4 and 25 $5 \times 10^{-9} \mathrm{~s}$, respectively. If the fluorescence decay rate constant is $\mathbf{Y} \times 10^{7} \mathrm{~s}^{-1}$, the value of \mathbf{Y} (rounded off to nearest integer) is \qquad
Q.No. Major product formed in the following reaction sequence is:

iii) HCl
(A)

(B)
(C)

(D)

Q.No.

27

Major products \mathbf{P} and \mathbf{Q}, in the given reaction sequence, are:

$\mathbf{P} \xrightarrow[\text { ii) } \mathrm{NaOH}]{\text { i) } \mathrm{MsCl} / \mathrm{Et}_{3} \mathrm{~N}} \longrightarrow \mathbf{Q}$
ii) NaOH
iii) H_{2}, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}$
(A)

and

(B)

and

(C)

and

Q
(D)

Q.No. Major products \mathbf{P} and \mathbf{Q}, formed in the reactions given below, are:

(A)

and

(B)
 and

(C)

and

(D)
 and

P

Q
Q.No. A compound with molecular formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ showed a strong IR band at $\sim 1720 \mathrm{~cm}^{-1}$, a peak at $m / z 122$ in the mass spectrum and the following ${ }^{1} \mathrm{H}$ NMR signals: $\delta 8.1-8.0(2 \mathrm{H}, \mathrm{m})$, $7.6-7.5(1 \mathrm{H}, \mathrm{m}), 7.5-7.3(2 \mathrm{H}, \mathrm{m}), 4.3(2 \mathrm{H}, \mathrm{t}), 1.8(2 \mathrm{H}$, sextet) and $1.0(3 \mathrm{H}, \mathrm{t})$. The structure of the compound is:
(A)

(B)

(C)

(D)

Q.No. Major product formed in the following synthetic sequence is:

(A)

(B)

(D)

Q.No. The CORRECT statement with respect to the stereochemistry of α-hydroxy acids \mathbf{P} and \mathbf{Q} formed in the following reactions is:

(A) Both \mathbf{P} and \mathbf{Q} are formed with retention of configuration.
(B) Both \mathbf{P} and \mathbf{Q} are formed with inversion of configuration.
(C) $\quad \mathbf{P}$ is formed with retention of configuration and \mathbf{Q} with inversion of configuration.
(D) $\quad \mathbf{P}$ is formed with inversion of configuration and \mathbf{Q} with retention of configuration.
Q.No.

32

The rate of solvolysis of the given compounds is in the order:

P

Q

R

S

T
(A)
$\mathbf{T}>\mathbf{R}>\mathbf{Q}>\mathbf{S}>\mathbf{P}$
(B) $\quad \mathbf{Q}>\mathbf{T}>\mathbf{R}>\mathbf{P}>\mathbf{S}$
(C) $\quad \mathbf{R}>\mathbf{T}>\mathbf{Q}>\mathbf{S}>\mathbf{P}$
(D) $\quad \mathbf{T}>\mathbf{Q}>\mathbf{R}>\mathbf{P}>\mathbf{S}$
Q.No. In the following reaction sequence, the major products \mathbf{Q} and \mathbf{R} are:

33

(A)

and

Q
(B)

Q

and

(D)

Q

R
Q.No. In the electronic absorption spectrum of an aqueous solution of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, a very weak band is observed between the bands due to the transitions ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{2 \mathrm{~g}}$ and ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{1 \mathrm{~g}}(\mathrm{~F})$.
The transition responsible for the very weak band is
(Given: atomic number of Ni is 28)
(A) $\quad{ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~T}_{1 \mathrm{~g}}$
(B) $\quad{ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~T}_{2 \mathrm{~g}}$
(C) $\quad{ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}}$
(D) $\quad{ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~A}_{2 \mathrm{~g}}$
Q.No. The experimental magnetic moment (3.4 BM) of a hydrated salt of Eu^{3+} at $27{ }^{\circ} \mathrm{C}$ is 35 significantly different from the calculated value. The difference is due to
(Given: atomic number of Eu is 63)
(A) population of electrons at higher J level(s) via thermal excitation.
(B) strong ligand field splitting of f-orbitals.
(C) strong spin-orbit coupling.
(D) pairing of electrons in f-orbitals.
Q.No. The CORRECT combination of $\mathbf{L 1}$ and $\mathbf{L 2}$ among $\mathrm{H}^{-}, \mathrm{NO}^{-}, \mathrm{MeCH}^{2-}$ and CO , that will 36 satisfy the 18 electron rule for both metal centers in the following neutral molecule, is

(Given: atomic number of Ru is 44)
(A) $\mathrm{H}^{-}, \mathrm{NO}^{-}$
(B) $\mathrm{MeCH}^{2-}, \mathrm{NO}^{-}$
(C) $\mathrm{MeCH}^{2-}, \mathrm{CO}$
(D) $\mathrm{H}^{-}, \mathrm{CO}$
Q.No. In the following reaction sequence,

the structure of \mathbf{B} is
(Given: atomic number of Mo is 42)
(A)

(B)

(C)
(D)

Q.No. The following table lists the reaction/conversion catalyzed by metalloenzymes.

Reaction / conversion		Metalloenzyme	
\mathbf{P}	$\mathrm{R}-\mathrm{H}+\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{R}-\mathrm{OH}+\mathrm{H}_{2} \mathrm{O}$	I	Coenzyme B_{12}
\mathbf{Q}	$\mathrm{O}_{2}+4 \mathrm{e}^{-}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+}$	II	Cytochrome P-450
\mathbf{R}	$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$	III	Cytochrome c oxidase
\mathbf{S}	$\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H} \rightarrow \mathrm{NH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right)-\mathrm{CO}_{2} \mathrm{H}$	IV	Catalase

(A) P-II; Q-I; R-III; S-IV
(B) P-IV; Q-III; R-II; S-I
(C) P-II; Q-III; R-IV; S-I
(D) P-I; Q-IV; R-III; S-II
Q.No. The fission reaction of ${ }_{92}^{235} \mathrm{U}$ with thermal neutron is represented below.

${ }_{41}^{99} \mathrm{Nb}$ and ${ }_{51}^{133} \mathrm{Sb}$ are the primary fission fragment pair, which undergo series of radioactive decay to form stable nuclei \mathbf{X}_{3} and \mathbf{Y}_{4} (chain enders). The \mathbf{X}_{3} and \mathbf{Y}_{4}, respectively are:
(A) $\quad{ }_{41}^{96} \mathrm{Nb}$ and ${ }_{51}^{130} \mathrm{Sb}$
(B) $\quad{ }_{44}^{99} \mathrm{Ru}$ and ${ }_{55}^{133} \mathrm{Cs}$
(C) $\quad{ }_{38}^{93} \mathrm{Sr}$ and ${ }_{35}^{127} \mathrm{Ag}$
(D) $\quad{ }_{35}^{87} \mathrm{Br}$ and ${ }_{43}^{124} \mathrm{Tc}$
${ }_{40}^{\text {Q.No. }} \quad$ The CORRECT 'voltage (E) versus time' excitation signal used in cyclic voltammetry is
(B)

(C)

(D)

Time \rightarrow
Q.No. The hydrogen-like radial wave function of the $3 s$ orbital is given as

$$
R_{3,0}=\frac{1}{9 \sqrt{3}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(6-2 \rho+\frac{\rho^{2}}{9}\right) e^{-\rho / 6}
$$

where $\rho=2 Z r / a_{0} ; Z=$ atomic number; $r=$ distance from the nucleus and $a_{0}=$ Bohr radius.
Positions of the radial nodes (in units of a_{0}) of the $3 s$ orbital are at
(A) $\frac{3+\sqrt{3}}{2 Z}, \frac{3-\sqrt{3}}{2 Z}$
(B) $\frac{6+3 \sqrt{3}}{2 Z}, \frac{6-3 \sqrt{3}}{2 Z}$
(C) $\frac{9+3 \sqrt{3}}{2 Z}, \frac{9-3 \sqrt{3}}{2 Z}$
(D) $\frac{3+3 \sqrt{3}}{2 Z}, \frac{3-3 \sqrt{3}}{2 Z}$
Q.No. ΔG_{f}^{0} and ΔH_{f}^{0} for $\mathrm{Fe}(g)$ are $370.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $416.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K , respectively. Assuming ΔH_{f}^{0} is constant in the interval 250 K to $375 \mathrm{~K}, \Delta G_{f}^{0}$ (rounded off to the nearest integer) for $\mathrm{Fe}(g)$ at 375 K is:
(A) $359 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $338 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $325 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $\quad 310 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Q3.No. Adsorption of N_{2} on TiO_{2} was carried out at 75 K . A plot of $\frac{z}{(1-z) V}$ versus $z\left(z=p / p^{0}\right)$ gives a straight line with an intercept, $4.0 \times 10^{-6} \mathrm{~mm}^{-3}$ and slope, $1.0 \times 10^{-3} \mathrm{~mm}^{-3}$. The volume (rounded off to the nearest integer) corresponding to the monolayer coverage is:
(A) $996 \mathrm{~mm}^{3}$
(B) $785 \mathrm{~mm}^{3}$
(C) $690 \mathrm{~mm}^{3}$
(D) $555 \mathrm{~mm}^{3}$
Q.No. Among the following sets,

the total number of set(s) of diastereomeric pair(s) is \qquad
Q.No. Among the following,

the total number of compounds showing characteristic carbonyl stretching frequency less than $1700 \mathrm{~cm}^{-1}$ in their IR spectra is \qquad

Consider that AgX crystallizes in rock salt structure. The density of AgX is $6477 \mathrm{~kg} / \mathrm{m}^{3}$ and unit cell length is 577.5 pm . Atomic weight of Ag is $107.87 \mathrm{~g} \mathrm{~mol}^{-1}$. The atomic weight of X (in $\mathrm{g} \mathrm{mol}^{-1}$, rounded off to two decimal places) is \qquad
Q.No. The total number of $\mathrm{g}_{\|}$lines expected in the EPR spectrum of a solution of bis(salicylaldimine) copper(II) having pure ${ }^{63} \mathrm{Cu}$ and ${ }^{14} \mathrm{~N}$ at 77 K is \qquad (Given: I values of ${ }^{63} \mathrm{Cu},{ }^{14} \mathrm{~N}$ and ${ }^{1} \mathrm{H}$ are $\frac{3}{2}, 1$ and $\frac{1}{2}$, respectively)
Q.No. Among the following,

48
$\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-},\left[\mathrm{Ni}_{5}(\mathrm{CO})_{12}\right]^{2-},\left[\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]^{2-}, \mathrm{Rh}_{6}(\mathrm{CO})_{16}, \mathrm{Os}_{6}(\mathrm{CO})_{20}, \mathrm{~B}_{5} \mathrm{H}_{11}, \mathrm{~B}_{6} \mathrm{H}_{10}$
the total number of species having nido structure is \qquad
(Given: atomic numbers of $\mathrm{H}, \mathrm{B}, \mathrm{C}, \mathrm{O}, \mathrm{Ni}, \mathrm{Rh}$ and Os are $1,5,6,8,28,45$ and 76 , respectively)
Q.No. The frequency (in cm^{-1}, rounded off to two decimal places) for pure rotational line in the spectrum of NO molecule due to change in the quantum number from $J=1$ to $J=2$ is \qquad
(Given: Moment of inertia of $\mathrm{NO}=1.6427 \times 10^{-46} \mathrm{~kg} \mathrm{~m}^{2} ; h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$; $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
Q.No. The \% error (rounded off to two decimal places) in the ground state energy of a particle in a one dimensional box of length ' a ' described by a trial variation function $\varphi=x(a-x)$, where $0 \leq x \leq a$, is \qquad
(Given: The true ground state energy of the above system is $h^{2} / 8 m a^{2} ; \int_{0}^{a} \varphi^{*} \varphi d \tau=a^{5} / 30$)
Q.No. Assuming no interaction between vibrational and rotational energy levels in HF, the frequency (in cm^{-1}, rounded off to the nearest integer) of the R branch line originating from $J=4$ in its IR spectrum is \qquad
(Given: Rotational constant for $\mathrm{HF}=19.35 \mathrm{~cm}^{-1} ; \bar{v}_{0}=4138.52 \mathrm{~cm}^{-1}$)
${ }_{52}^{\text {Q.No. }} \quad$ The van der Waals constants a and b for gaseous CO are given as $1.49 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol}^{-2}$ and $0.0399 \mathrm{~L} \mathrm{~mol}^{-1}$, respectively. The fugacity (in atm, rounded off to two decimal places) of CO at $35^{\circ} \mathrm{C}$ and 95 atm is \qquad
(Given: $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

At $30^{\circ} \mathrm{C}$, the vapor pressure and density of a 1.0 M aqueous solution of sucrose are 31.207 mm Hg and $1.1256 \mathrm{~g} / \mathrm{mL}$, respectively. If the vapor pressure of pure water at $30^{\circ} \mathrm{C}$ is 31.824 mm Hg , the activity coefficient (rounded off to three decimal places) of water in the given solution is \qquad
(Given: The molar mass of sucrose $=342.3 \mathrm{~g} \mathrm{~mol}^{-1}$)
Q.No. For the ring opening reaction of cyclopropane to propene at $25^{\circ} \mathrm{C}$, the pre-exponential factor is $4.3 \times 10^{15} \mathrm{~s}^{-1}$. The entropy of activation (in $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, rounded off to two decimal places) is \qquad
(Given: $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} ; k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} ; \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
Q.No. In a reaction, reactant \mathbf{X} is converted to products \mathbf{Y} and \mathbf{Z} consecutively with rate constants $6.0 \times 10^{-2} \mathrm{~min}^{-1}$ and $9.0 \times 10^{-3} \mathrm{~min}^{-1}$, respectively. If the initial amount of \mathbf{X} is 12.5 moles, the number of moles (rounded off to one decimal place) of \mathbf{Y} formed after 10 minutes is \qquad

