

#### **Exercise**

#### Question 1.

If a polyhedron has 8 faces and 8 vertices, find the number of edges in it.

# Solution:-

Faces =8

Vertices =8

Using Euler's formula,

F+V-E=2

8+8-E=2

-E=2-16

E=14

#### Question 2.

If a polyhedron has 10 vertices and 7 faces, find the number of edges in it.

#### Solution:-

Vertices =10

Faces =7

Using Euler's formula

F+V-E=2

7+10-E=2

-E=-15

E=15

# Question 3.

State, the number of faces, number of vertices and number of edges of:

(i) a pentagonal pyramid

#### Solution:-

(i) A pentagonal pyramid

Number of faces =6

Number of vertices =6

Number of edges =10

(ii) A hexagonal prism

# Solution:-

(ii) A hexagonal prism

Number of faces = 8



Number of vertices =12

Number of edges =18

# Question 4.

Verily Euler's formula for the following three dimensional figures:





# Solution:

(i) Number of vertices = 6

Number of faces =8

Number of edges =12

Using Euler formula

F+V-E=2

F+V-12=2

2=2 hence proved.





# BYJU'S The Learning App

# Solution:

(ii) Number of vertices =9

Number of faces =8

Number of edges =15

Using, Euler's formula,

F+V-E=2

9+8-15=2

2=2

Hence proved.





# Solution:-

(iii) Number of vertices =9



Number of faces =5

Number of edges =12

Using, Euler's formula,

F+V-E=2

9+5-12=2

2=2 hence proved.

### Question 5.

Can a polyhedron have 8 faces, 26 edges and 16 vertices?

#### Solution:-

Number of faces =8

Number of vertices =16

Number of edges =26

Using Euler's formula

F+V-E

8+16-26≠-2

8+16-26≠-2

-2≠2

No, a polyhedron cannot have 8 faces, 26 edges and 16 vertices.

#### Question 6.

Can a polyhedron have?

(i) 3 triangles only?

# Solution:-

- (i) No.
- (ii) 4 triangles only?

#### Solution:-

- (ii) Yes.
- (iii) A square and four triangles?

#### Solution:-

(iii) Yes.

#### Question 7.

Using Euler's formula, find the values of x, y, z.



|       | Faces | Vertices | Edges |
|-------|-------|----------|-------|
| (i)   | х     | 15       | 20    |
| (ii)  | 6     | Υ        | 8     |
| (iii) | 14    | 26       | z     |

# Solution:-

(i)F+V-E=2

x+15-20=2

 $x-5=2 \Rightarrow x=2+5=7$ 

(ii)F+V-E=2

15+y-26=2

y-11=2

y=2+11⇒y=13

(iii) F+V-E=2

14+26-Z=2

-Z=2-40⇒Z=38

#### Question 8.

What is the least number of planes that can enclose a solid? What is the name of the solid?

#### Solution:-

The least number of planes that can enclose a solid is 4.

The name of the solid is Tetrahedron.

#### Question 9.

Is a square prism same as a cube?

# Solution:

Yes, a square prism is same as a cube.

#### Question 10.

A cubical box is  $6cm \times 4cm \times 2cm$ . Draw two different nets of it.

#### Solution:





# Question 11.

Dice are cubes where the sum of the numbers on the opposite faces is 7. Find the missing numbers a, b and c.





# Solution:-







# Question 12.

Name the polyhedron that can be made by folding each of the following nets:

(i)





# **Solution:-**

(i) Triangular prism. It has 3 rectangles and 2 triangles.

(ii)





# Solution:-

(ii) Triangular prism. It has 3 rectangles and 2 triangles.

(iii)







# Solution:-

(iii) Hexagonal pyramid as it has a hexagonal base and 6 triangles.

# Question 13.

Draw nets for the following polyhedrons:







# Solution:-

Net of hexagonal prism:



BYJU'S
The Learning App





Net of pentagonal pyramid:



