Exercise

Question 1.

If a polyhedron has 8 faces and 8 vertices, find the number of edges in it.

Solution:-

Faces =8
Vertices =8
Using Euler's formula,
$\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$8+8-\mathrm{E}=2$
$-E=2-16$
$\mathrm{E}=14$

Question 2.

If a polyhedron has 10 vertices and 7 faces, find the number of edges in it.

Solution:-

Vertices $=10$
Faces =7
Using Euler's formula
$\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$7+10-E=2$
$-E=-15$
$\mathrm{E}=15$

Question 3.

State, the number of faces, number of vertices and number of edges of:
(i) a pentagonal pyramid

Solution:-

(i) A pentagonal pyramid

Number of faces $=6$
Number of vertices $=6$
Number of edges $=10$
(ii) A hexagonal prism

Solution:-

(ii) A hexagonal prism

Number of faces $=8$

Number of vertices $=12$
Number of edges $=18$

Question 4.

Verily Euler's formula for the following three dimensional figures:

Solution:

(i) Number of vertices $=6$

Number of faces $=8$
Number of edges $=12$
Using Euler formula
$\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
F+V-12=2
$2=2$ hence proved.

Solution:

(ii) Number of vertices $=9$

Number of faces $=8$
Number of edges $=15$
Using, Euler's formula,
$\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$9+8-15=2$
$2=2$
Hence proved.

Solution:-

(iii) Number of vertices $=9$

BYJU'S

Number of faces $=5$
Number of edges =12
Using, Euler's formula,
$\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$9+5-12=2$
$2=2$ hence proved.
Question 5.
Can a polyhedron have 8 faces, 26 edges and 16 vertices?

Solution:-

Number of faces =8
Number of vertices $=16$
Number of edges $=26$
Using Euler's formula
F+V-E
$8+16-26 \neq-2$
$8+16-26 \neq-2$
$-2 \neq 2$
No, a polyhedron cannot have 8 faces, 26 edges and 16 vertices.

Question 6.

Can a polyhedron have?
(i) 3 triangles only?

Solution:-

(i) No.
(ii) 4 triangles only?

Solution:-

(ii) Yes.
(iii) A square and four triangles?

Solution:-

(iii) Yes.

Question 7.

Using Euler's formula, find the values of x, y, z.

	Faces	Vertices	Edges
(i)	x	15	20
(ii)	6	Y	8
(iii)	14	26	z

Solution:-

(i) $\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$x+15-20=2$
$x-5=2 \Rightarrow x=2+5=7$
(ii) $\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$15+y-26=2$
$y-11=2$
$y=2+11 \Rightarrow y=13$
(iii) $\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$14+26-Z=2$
$-Z=2-40 \Rightarrow Z=38$

Question 8.

What is the least number of planes that can enclose a solid? What is the name of the solid?

Solution:-

The least number of planes that can enclose a solid is 4 .
The name of the solid is Tetrahedron.

Question 9.

Is a square prism same as a cube?

Solution:

Yes, a square prism is same as a cube.

Question 10.

A cubical box is $6 \mathrm{~cm} \times 4 \mathrm{~cm} \times 2 \mathrm{~cm}$. Draw two different nets of it.

Solution:

Question 11.

Dice are cubes where the sum of the numbers on the opposite faces is 7 . Find the missing numbers a, b and c.

Solution:-

Question 12.

Name the polyhedron that can be made by folding each of the following nets:
(i)

BYJU'S
The Learning App

Solution:-

(i) Triangular prism. It has 3 rectangles and 2 triangles.
(ii)

Solution:-

(ii) Triangular prism. It has 3 rectangles and 2 triangles.
(iii)

BYJU'S

Solution:-

(iii) Hexagonal pyramid as it has a hexagonal base and 6 triangles.

Question 13.

Draw nets for the following polyhedrons:

Solution:-

Net of hexagonal prism:

Net of pentagonal pyramid:

