Exercise 8.3 Page: 189

1. Evaluate:

- (i) $\sin 18^{\circ}/\cos 72^{\circ}$
- (ii) tan 26°/cot 64°
- (iii) $\cos 48^{\circ} \sin 42^{\circ}$
- (iv) $\csc 31^{\circ} \sec 59^{\circ}$

Solution:

(i) sin 18°/cos 72°

To simplify this, convert the sin function into cos function

We know that, 18° is written as 90° - 18° , which is equal to the cos 72° .

 $= \sin (90^{\circ} - 18^{\circ}) / \cos 72^{\circ}$

Substitute the value, to simplify this equation

- $= \cos 72^{\circ} / \cos 72^{\circ} = 1$
- (ii) tan 26°/cot 64°

To simplify this, convert the tan function into cot function

We know that, 26° is written as 90° - 36° , which is equal to the cot 64° .

 $= \tan (90^{\circ} - 36^{\circ})/\cot 64^{\circ}$

Substitute the value, to simplify this equation

- $= \cot 64^{\circ}/\cot 64^{\circ} = 1$
- (iii) $\cos 48^{\circ} \sin 42^{\circ}$

To simplify this, convert the cos function into sin function

We know that, 48° is written as 90° - 42° , which is equal to the $\sin 42^{\circ}$.

 $= \cos (90^{\circ} - 42^{\circ}) - \sin 42^{\circ}$

Substitute the value, to simplify this equation

- $= \sin 42^{\circ} \sin 42^{\circ} = 0$
- (iv) cosec 31° sec 59°

To simplify this, convert the cosec function into sec function

We know that, 31° is written as 90° - 59° , which is equal to the sec 59°

= cosec (90° - 59°) - sec 59°

Substitute the value, to simplify this equation

- $= \sec 59^{\circ} \sec 59^{\circ} = 0$
- 2. Show that:
- (i) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1$
- (ii) $\cos 38^{\circ} \cos 52^{\circ} \sin 38^{\circ} \sin 52^{\circ} = 0$

Solution:

(i) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}$

Simplify the given problem by converting some of the tan functions to the cot functions

NCERT Solution for Class 10 Maths Chapter 8 – Introduction to Trigonometry

We know that, $\tan 48^\circ = \tan (90^\circ - 42^\circ) = \cot 42^\circ$

 $\tan 23^{\circ} = \tan (90^{\circ} - 67^{\circ}) = \cot 67^{\circ}$

 $= \tan (90^{\circ} - 42^{\circ}) \tan (90^{\circ} - 67^{\circ}) \tan 42^{\circ} \tan 67^{\circ}$

Substitute the values

 $= \cot 42^{\circ} \cot 67^{\circ} \tan 42^{\circ} \tan 67^{\circ}$

 $= (\cot 42^{\circ} \tan 42^{\circ}) (\cot 67^{\circ} \tan 67^{\circ}) = 1 \times 1 = 1$

(ii) $\cos 38^{\circ} \cos 52^{\circ} - \sin 38^{\circ} \sin 52^{\circ}$

Simplify the given problem by converting some of the cos functions to the sin functions

We know that,

 $\cos 38^{\circ} = \cos (90^{\circ} - 52^{\circ}) = \sin 52^{\circ}$

 $\cos 52^{\circ} = \cos (90^{\circ} - 38^{\circ}) = \sin 38^{\circ}$

 $= \cos (90^{\circ} - 52^{\circ}) \cos (90^{\circ} - 38^{\circ}) - \sin 38^{\circ} \sin 52^{\circ}$

Substitute the values

 $= \sin 52^{\circ} \sin 38^{\circ} - \sin 38^{\circ} \sin 52^{\circ} = 0$

3. If $\tan 2A = \cot (A - 18^{\circ})$, where 2A is an acute angle, find the value of A.

Solution:

 $\tan 2A = \cot (A-18^{\circ})$

We know that $\tan 2A = \cot (90^{\circ} - 2A)$

Substitute the above equation in the given problem

$$\Rightarrow$$
 cot (90° - 2A) = cot (A -18°)

Now, equate the angles,

$$\Rightarrow 90^{\circ} - 2A = A - 18^{\circ} \Rightarrow 108^{\circ} = 3A$$

 $A = 108^{\circ} / 3$

Therefore, the value of $A = 36^{\circ}$

4. If $\tan A = \cot B$, prove that $A + B = 90^{\circ}$.

Solution:

 $\tan A = \cot B$

We know that $\cot B = \tan (90^{\circ} - B)$

To prove $A + B = 90^{\circ}$, substitute the above equation in the given problem

 $\tan A = \tan (90^{\circ} - B)$

 $A = 90^{\circ} - B$

 $A + B = 90^{\circ}$

Hence Proved.

5. If sec $4A = cosec (A - 20^{\circ})$, where 4A is an acute angle, find the value of A.

Solution:

 $sec 4A = cosec (A - 20^{\circ})$

We know that $\sec 4A = \csc (90^{\circ} - 4A)$

To find the value of A, substitute the above equation in the given problem (A - 200)

 $\csc (90^{\circ} - 4A) = \csc (A - 20^{\circ})$

NCERT Solution for Class 10 Maths Chapter 8 – Introduction to Trigonometry

Now, equate the angles 90° - 4A= A- 20° 110° = 5A

 $A = 110^{\circ}/5 = 22^{\circ}$

Therefore, the value of $A = 22^{\circ}$

$\boldsymbol{6}.$ If $\boldsymbol{A},\boldsymbol{B}$ and \boldsymbol{C} are interior angles of a triangle ABC, then show that

 $\sin (B+C/2) = \cos A/2$

Solution:

We know that, for a given triangle, sum of all the interior angles of a triangle is equal to 180°

$$A + B + C = 180^{\circ} \dots (1)$$

To find the value of (B+C)/2, simplify the equation (1)

 \Rightarrow B + C = 180° - A

 \Rightarrow (B+C)/2 = (180°-A)/2

 \Rightarrow (B+C)/2 = (90°-A/2)

Now, multiply both sides by sin functions, we get

 \Rightarrow sin (B+C)/2 = sin (90°-A/2)

Since $\sin (90^{\circ}-A/2) = \cos A/2$, the above equation is equal to

 $\sin (B+C)/2 = \cos A/2$

Hence proved.

7. Express $\sin 67^{\circ} + \cos 75^{\circ}$ in terms of trigonometric ratios of angles between 0° and 45° .

Solution:

Given:

 $\sin 67^{\circ} + \cos 75^{\circ}$

In term of sin as cos function and cos as sin function, it can be written as follows

 $\sin 67^{\circ} = \sin (90^{\circ} - 23^{\circ})$

 $\cos 75^{\circ} = \cos (90^{\circ} - 15^{\circ})$

So, $\sin 67^{\circ} + \cos 75^{\circ} = \sin (90^{\circ} - 23^{\circ}) + \cos (90^{\circ} - 15^{\circ})$

Now, simplify the above equation

 $= \cos 23^{\circ} + \sin 15^{\circ}$

Therefore, $\sin 67^{\circ} + \cos 75^{\circ}$ is also expressed as $\cos 23^{\circ} + \sin 15^{\circ}$