EXERCISE 27A

1. Draw the graph for each equation, given below:
(i) $x=5$
(ii) $x+5=0$
(iii) $y=7$
(iv) $y+7=0$
(v) $2 x+3 y=0$
(vi) $3 x+2 y=6$
(vii) $x-5 y+4=0$
(viii) $5 x+y+5=0$

Solution:

(i) $x=5$

The graph $x=5$ in the following figure is a straight line $A B$ which is parallel to y axis at a distance of 5 units from it.

(ii) $x+5=0$

Therefore $x=-5$
The graph $x=-5$ in the following figure is a straight-line $A B$ which is parallel to y axis at a distance of 5 units from it in the negative x direction.

The graph $\mathrm{y}=7$ in the following figure is a straight line $A B$ which is parallel to x axis at a distance of 7 units from it.

The graph $y=-7$ in the following figure is a straight line $A B$ which is parallel to x axis at a distance of 7 units from it in the negative y direction.

(v) Given $2 x+3 y=0$
$3 y=-2 x$
Therefore, $y=-2 x / 3$
If $x=-3$, then $y=-2(-3) / 3=6 / 3=2$
If $x=3$, then $y=-2(3) / 3=-6 / 3=-2$
If $x=6$, then $y=-2(6) / 3=-12 / 3=-4$
The points are

x	-3	3	6
y	2	-2	-4

Plotting these points, we get the required graph as given below:

(vi) Given $3 x+2 y=6$
$2 y=6-3 x$
Therefore, $\mathrm{y}=(6-3 \mathrm{x}) / 2$
If $x=0$, then $y=(6-3 \times 0) / 2=6-0 / 2=3$
If $x=2$, then $y=(6-3 \times 2) / 2=6-6 / 2=0$
If $x=4$, then $y=(6-3 \times 4) / 2=6-12 / 2=-3$
The points are

x	0	2	4
y	3	0	-3

Plotting these points, we get the required graph as given below:

(vii) Given $x-5 y+4=0$
$5 y=4+x$
Therefore, $y=4+x / 5$
If $x=1$, then $y=(1+4) / 5=5 / 5=1$
If $x=6$, then $y=(6+4) / 5=10 / 5=2$
If $x=-4$, then $y=(-4+4) / 5=0 / 5=0$
The points are

x	1	6	-4
y	1	2	0

Plotting these points, we get the required graph as given below:

(viii) Given $5 x+y+5=0$
$y=-5 x-5$
If $x=0$, then $y=-5(0)-5=0-5=-5$
If $x=-1$, then $y=-5(-1)-5=5-5=0$
If $x=-2$, then $y=-5(-2)-5=10-5=5$
The points are

x	0	-1	-2
y	-5	0	5

Plotting these points, we get the required graph as given below:

2. Draw the graph for each equation given below; hence find the co-ordinates of the points where the graph drawn meets the co-ordinate axes:
(i) $1 / 3 x+1 / 5 y=1$
(ii) $(2 x+15) / 3=y-1$

Solution:

(i) Given $1 / 3 x+1 / 5 y=1$

Taking LCM. We get
$5 x+3 y / 15=1$
On cross multiplication, we get
$5 x+3 y=15$
$3 y=15-5 x$
$y=(15-5 x) / 3$
If $x=0$, then $y=(15-5 \times 0) / 3=(15-0) / 3=5$
If $x=3$, then $y=(15-5 \times 3) / 3=(15-15) / 3=0$
If $x=-3$, then $y=(15-5 \times-3) / 3=(15+15) / 3=10$
The points are

X	0	3	-3
Y	5	0	10

Plotting these points, we get the required graph as given below:

Hence the graph meets the coordinate axis at $(3,0)$ and $(0,5)$
(ii) Given $(2 x+15) / 3=y-1$

On cross multiplication we get
$2 x+15=3(y-1)$
$2 x+15=3 y-3$
$2 x-3 y=-15-3$
$2 x-3 y=-18$
$-3 y=-18-2 x$
$y=(-18-2 x) /-3$
If $x=0$, then $y=(-18-2 \times 0) /-3=(-18-0) /-3=6$
If $x=-3$, then $y=(-18-2 \times-3) /-3=(-18+6) /-3=4$
If $x=-6$, then $y=(-18-2 \times-6) /-3=(-18+12) /-3=2$
The points are

x	0	-3	-6
y	6	4	2

Plotting these points, we get the required graph as given below:

Hence, the graph meets the coordinate axis at $(-9,0)$ and $(0,6)$
3. Draw the graph of the straight line given by the equation $4 x-3 y+36=0$. Calculate the area of the triangle formed by the line drawn and the co-ordinate axes.

Solution:

Given $4 x-3 y+36=0$
$4 x-3 y=-36$
$-3 y=-36-4 x$
$3 y=36+4 x$
$y=(36+4 x) / 3$
If $x=-6$, then $y=(36+4 \times-6) / 3=(36-24) / 3=4$
If $x=-3$, then $y=(36+4 \times-3) / 3=(36-12) / 3=8$
If $x=-9$, then $y=(36+4 \times-9) / 3=(36-36) / 3=0$
The points are

X	-9	-3	-6
Y	0	8	4

[^0]

Hence the straight line cuts the coordinate axis at $A(0,12)$ and $B(-9,0)$
Therefore, the triangle AOB is formed
Area of triangle $A O B=1 / 2 \times A O \times O B$
$=1 / 2 \times 12 \times 9$
$=54$ sq. units.
Area of triangle $A O B=54$ sq. units.
4. Draw the graph of the equation $2 x-3 y-5=0$. From the graph, find:
(i) x_{1}, the value of x, when $y=7$
(ii) x_{2}, the value of x, when $y=-5$

Solution:

Given $2 x-3 y-5=0$
$2 x=3 y+5$
$x=(3 y+5) / 2$
If $y=1$, then $x=(3 \times 1+5) / 2=8 / 2=4$
If $y=3$, then $x=(3 \times 3+5) / 2=9+5 / 2=14 / 2=7$
If $y=-1$, then $x=(3 \times-1+5) / 2=5-3 / 2=2 / 2=1$
The points are

X	4	7	1
Y	1	3	-1

Plotting these points

The value of x, when $y=7$
We have the equation of the line as
$x=(3 y+5) / 2$
now substitute $\mathrm{y}=7$ and $\mathrm{x}=\mathrm{x}_{1}$
$x_{1}=[3(7)+5] / 2=(21+5) / 2=26 / 2=13$
the value of x when $y=-5$
now substitute $y=-5$ and $x=x_{2}$
$x_{2}=[3(-5)+5) / 2=(-15+5) / 2=-10 / 2=-5$
5. Draw the graph of the equation $4 x+3 y+6=0$. From the graph, find:
(i) y_{1}, the value of y, when $x=12$
(ii) y_{2}, the value of y, when $x=-6$

Solution:

Given $4 x+3 y+6=0$
$3 y=-4 x-6$
$y=(-4 x-6) / 3$
If $x=0$, then $y=(-4 \times 0-6) / 3=-6 / 3=-2$
If $x=3$, then $y=(-4 \times 3-6) / 3=-12-6 / 3=-6$
If $x=-3$, then $y=(-4 \times-3-6) / 3=12-6 / 3=2$
The points are

X	0	3	-3
Y	-2	-6	2

Plotting these points

The value of y, when $x=12$
We have the equation of the line as
$y=(-4 x-6) / 3$
now substitute $x=12$ and $y=y_{1}$
$y_{1}=[-4(12)-6] / 3=(-48-6) / 3=-54 / 3=-18$
the value of y, when $x=-6$
now substitute $x=-6$ and $y=y_{2}$
$y_{1}=[-4(-6)-6] / 3=(24-6) / 3=18 / 3=6$

6. Use the table given below to draw the graph.

x	-5	-1	3	b	13
y	-2	a	2	5	7

From your graph, find the values of ' a ' and ' b '. State a linear relation between the variables x and y.

Solution:

When $x=-1, y=0$ that is $a=0$
When $y=5, x=9$ that is $b=9$
Let $\mathrm{y}=\mathrm{px}+\mathrm{q}$ \qquad
Be a linear relation between x and y
Substitute $x=9$ and $y=5$ in the equation (1) we get
$5=9 p+q$
Substitute $x=-1$ and $y=0$ in the equation (1) we get
$0=-p+q$
Subtracting (3) from (2) we have
$5=10 p$
$p=5 / 10$
$p=1 / 2$
from 3 we have
p = q
therefore, $q=1 / 2$
thus linear relation is
$y=1 / 2 x+1 / 2$
$y=(x+1) / 2$
7. Draw the graph obtained from the table below:

x	a	3	-5	5	c	-1
y	-1	2	b	3	4	0

Use the graph to find the values of a, b and c. State a linear relation between the variables x and y.

Solution:

When $\mathrm{y}=-1$, then $\mathrm{x}=-3$
$a=-3$
when $x=-5$, then $y=-2$
b $=-2$
when $y=4$, then $x=7$
$\mathrm{c}=7$
let $y=p x+q$
be a linear relation between x and y
substitute $x=-3$ and $y=-1$ in the equation (1)
$-1=-3 p+q$
substitute $x=-5$ and $y=-2$ in the equation (1)
$-2=-5 p+q$ (3)

Subtracting (3) from (2) we have
$1=2 p$
$p=1 / 2$
from (3), We have
$-2=-5 p+q$
$-2=-5(1 / 2)+q$
$-4=-5+2 q$
$2 q=5-4$
$2 q=1$
$q=1 / 2$
thus, the linear relation is
$y=p x+q$
$y=1 / 2 x+1 / 2$
$y=(x+1) / 2$
8. A straight line passes through the points $(2,4)$ and $(5,-2)$. Taking $1 \mathrm{~cm}=1$ unit; mark these points on a graph paper and draw the straight line through these points. If points ($m,-4$) and $(3, n)$ lie on the line drawn; find the values of m and n.

Solution:

The table is

X	2	3	5	m
Y	4	n	-2	-4

Plotting these points as shown in the above table, we get the following graph:

Now draw a line $x=3$, parallel to y - axis to meet the line
It meets the line at $y=2$
Therefore $\mathrm{n}=2$

Now draw a line $y=-4$ parallel to $x-$ axis to meet the line
It meets the line at $x=6$
Therefore $\mathrm{m}=6$
Thus, the value of m and n are 6 and 2 respectively
9. Draw the graph (straight line) given by equation $x-3 y=18$. If the straight-line drawn passes through the points ($m,-5$) and $(6, n)$; find the values of m and n.

Solution:

According to the question
$x-3 y=18$
$-3 y=x-18$
$y=(x-18) / 3$
the points are

X	9	0	6	3
Y	-3	-6	-4	-5

Hence, from the graph we can conclude that $\mathrm{M}=3$ AND $\mathrm{N}=4$
10. Use the graphical method to find the value of k, if:
(i) $(k,-3)$ lies on the straight line $2 x+3 y=1$
(ii) $(5, k-2)$ lies on the straight line $x-2 y+1=0$

Solution:

(i) Given $2 x+3 y=1$
$3 y=1-2 x$
$y=(1-2 x) / 3$
the points are

X	-1	2	5
Y	1	-1	-3

Hence from the graph we can say $\mathrm{k}=5$
(ii) Given $x-2 y+1=0$
$2 y=x+1$
$y=(x+1) / 2$
the points are

X	1	3	5
Y	1	2	3

Hence, from the graph we can say $k-2=3$
Implies k=5

EXERCISE 27B

1. Solve, graphically, the following pairs of equations:
(i) $x-5=0$
$y+4=0$

Solution:

(i) Given $x-5=0$
$y+4=0$
given equations can be written as
$x-5=0$
$x=5$
$y+4=0$
$y=-4$
the graph of following equations given below

(ii) $2 x+y=23$
$4 x-y=19$

Solution:

Given $2 x+y=23$
$y=23-2 x$
the points table for $y=23-2 x$

X	5	10	15
Y	13	3	-7

Also we have
$4 x-y=19$
$y=4 x-19$
the points table for $\mathrm{y}=4 \mathrm{x}-19$

X	3	4	6
Y	-7	-3	5

Plotting these points, we get the required graph

By seeing the graph, we can conclude that given two lines intersect at (7,9)
(iii) $3 x+7 y=27$
$8-y=5 / 2 x$

Solution:

Given $3 x+7 y=27$
$3 x=27-7 y$
$x=(27-7 y) / 3$
the table for $3 x+7 y=27$ is

x	9	2	-5
y	0	3	6

Also we have
$8-y=5 / 2 x$
$x=(8-y) 2 / 5$
the table for $5 x+2 y=16$ is

x	2	4	0
y	3	-2	8

Plotting the points, we get the following required graph:

Intersection point $=(2,3)$
(iv) $(x+1) / 4=2 / 3(1-2 y)$
$(2+5 y) / 3=x / 7-2$

Solution:

$(x+1) / 4=2 / 3(1-2 y)$
$(x+1) / 4=2 / 3-4 y / 3$
Multiply above equation on both sides we get
$12 \times(x+1) / 4=12 \times 2 / 3-12 \times(4 y / 3)$
$3(x+1)=8-16 y$
$3 x+3=8-16 y$
$3 x-5=-16 y$
$x=(5-16 y) / 3$
the table for $(x+1) / 4=2 / 3) 1-2 y)$ is

X	7	-9	23
Y	-1	2	-4

Also we have
$(2+5 y) / 3=x / 7-2$
Multiply both sides by 21 we get
$21 \times(2+5 y) / 3=21 \times x / 7-21 \times 2$
$7(2+5 y)=3 x-42$
$14+35 y=3 x-42$
$3 x=14+35 y+42$
$3 x=56+35 y$
$X=(56+53 y) / 3$
The table for $(2+5 y) / 3=x / 7-2$

X	7	-28	42
Y	-1	-4	2

[^1]

Intersection point $=(7,-1)$
2. Solve graphically the simultaneous equations given below. Take the scale as $\mathbf{2 c m}=1$ unit on both the axes.
$x-2 y-4=0$
$2 x+y=3$

Solution:

Given $x-2 y-4=0$
$2 x+y=3$
The table for $x-2 y-4=0$ is

X	4	6	2
Y	0	1	-1

Also we have
$2 x+y=3$
$2 x=3-y$
$x=(3-y) / 2$
the table for $2 x+y=3$ is

X	1	0	2
Y	1	3	-1

Plotting the above points we get the following graph

Intersection point $=(2,-1)$
3. Use graph paper for this question. Draw the graph of $2 x-y-1=0$ and $2 x+y=9$ on the same axes. Use $\mathbf{2 ~ c m ~ = ~} 1$ unit on both axes and plot only 3 points per line. Write down the co-ordinates of the point of intersection of the two lines.

Solution:

Given $2 x-y-1=0$
$2 x=y+1$
$X=(y+1) / 2$
The table for $2 x-y-1=0$ is

X	2	1	0
Y	3	1	-1

Also we have
$2 x+y=9$
$2 x=9-y$
$x=(9-y) / 2$
the table for $2 \mathrm{x}+\mathrm{y}=9$ is

X	4	3	5
Y	1	3	-1

Plotting the above points we get,

Intersection point $=(2.5,4)$
4. Use graph paper for this question. Take $\mathbf{2 c m}=\mathbf{2}$ units on x-axis and $\mathbf{2 c m}=\mathbf{1}$ unit on y-axis.

Solve graphically the following equations:
$3 x+5 y=12 ; 3 x-5 y+18=0$
(Plot only three points per line)

Solution:

Given $3 x+5 y=12$
$3 x=12-5 y$
$x=(12-5 y) / 3$
the table for $3 x+5 y=12$ is

X	4	-1	-6
Y	0	3	-1

Also we have
$3 x-5 y+18=0$
$3 x=5 y-18$
$x=(5 y-18) / 3$
the table for $3 x-5 y+18=0$ is

X	-6	4	-1
Y	0	6	3

Plotting the above points we get required graph:

Intersection point (-1, 3)
5. Use graph paper for this question. Take $\mathbf{2 c m}=1$ unit on both the axes.
(i) Draw the graphs of $x+y+3=0$ and $3 x-2 y+4=0$. Plot only three points per line.
(ii) Write down the co-ordinates of the point of intersection of the lines.
(iii) Measure and record the distance of the point of intersection of the lines from the origin in cm .

Solution:

(i) Given $x+y+3=0$
$x=-3-y$
the table for $x+y+3=0$ is

X	1	0	-2
Y	-4	-3	-1

Also we have
$3 x-2 y+4=0$
$3 x=2 y-4$
$x=(2 y-4) / 3$
the table for $3 x-2 y+4=0$ is

X	0	-2	$-2 / 3$
Y	2	-1	1

Plotting the above points we get the requires graph

(ii) intersection points $=(-2,-1)$
(iii) Now applying Pythagoras theorem,

The distance from the origin $=\vee\left[(-2-0)^{2}+(-1=0)^{2}\right]$
$=v\left(2^{2}+1^{2}\right)$
$=V(4+1)$
= $\sqrt{ } 5$
$=2.2 \mathrm{~cm}$ (approximately)
6. The sides of a triangle are given by the equations $y-2=0 ; y+1=3(x-2)$ and $x+2 y=0$. Find, graphically:
(i) the area of triangle;
(ii) the co-ordinates of the vertices of the triangle.

Solution:
Given y - 2 = 0

$$
\begin{aligned}
& y=2 \\
& y+1=3(x-2) \\
& y=3 x-6-1 \\
& y=3 x-7
\end{aligned}
$$

the table for $y+1=3(x-2)$ is

X	1	2	3
Y	-4	-1	2

Also we have

$$
\begin{aligned}
& x+2 y=0 \\
& x=-2 y
\end{aligned}
$$

the table for $x+2 y=0$ is

X	-4	4	-6
Y	2	-2	3

Plotting the above points we get the required graph

The area of triangle $A B C=1 / 2 \times A B \times C D$
$=1 / 2 \times 7 \times 3$
$=21 / 2$
$=10.5$ sq. units
(ii) The coordinates of the vertices of the triangle are ($-4,2$), (3.2) and (2, -1)
7. By drawing a graph for each of the equations $3 x+y+5=0 ; 3 y-x=5$ and $2 x+5 y=1$ on the same graph paper; show that the lines given by these equations are concurrent (i.e. they pass through the same point). Take $\mathbf{2 c m}=1$ unit on both the axes.

Solution:
Given $3 x+y+5=0$
$y=-3 x-5$
the table of $3 x+y+5=0$ is

X	1	-3	-2
Y	-8	4	1

$3 y-x=5$
$x=3 y-5$
the table of $3 y-x=5$ is

X	-2	1	7
Y	1	2	4

$2 x+5 y=1$
$2 x=1-5 y$
$x=(1-5 y) / 2$
the table of $2 x+5 y=1$ is

X	3	-7	-2
Y	-1	3	1

Plotting the above points, we get the required graph

Hence,
According to the graph the lines of the graphs are concurrent.
8. Using a scale of 1 cm to 1 unit for both the axes, draw the graphs of the following equations: $6 y=$ $5 x+10, y=5 x-15$.
From the graph find:
(i) the co-ordinates of the point where the two lines intersect;
(ii) the area of the triangle between the lines and the x-axis.

Solution:

Given $6 y=5 x+10$
$y=(5 x+10) / 6$
the table for $6 y=5 x+10$ is

X	4	-2	-8
Y	5	0	-5

Also we have
$Y=5 x-15$
The table of $y=5 x-15$ is

X	3	4	5
Y	0	5	10

Plotting the given points we get the required graph

(i) The two lines intersect at (4.5)

Therefore AD parallel to BC
Hence AD = 5 units
And $B C=5$ units
(ii) The area of triangle $=1 / 2 \times \mathrm{BC} \times \mathrm{AD}$
$=1 / 2 \times 5 \times 5$
$=25 / 2$
$=12.5$ Sq. units
9. The cost of manufacturing x articles is Rs. $(50+3 x)$. The selling price of x articles is Rs. $4 x$. On a graph sheet, with the same axes, and taking suitable scales draw two graphs, first for the cost of manufacturing against no. of articles and the second for the selling price against number of articles. Use your graph to determine:
(i) No. of articles to be manufactured and sold to break even (no profit and no loss),
(ii) The profit or loss made when
(a) 30
(b) 60 articles are manufactured and sold

Solution:

Given that CP is $50+x$
Table of CP

x	0	10	20	30	40	50	60
$C P$	50	80	110	140	170	200	230

And SP $=4 x$
The table of SP

x	0	10	20	30	40	50	60
SP	0	40	80	120	160	200	240

Now plotting these points on the graph we get

(i) No. of articles to be manufactured and sold are 50 when there is no loss and no profit.
C.P = S.P = Rs. 200
(ii)(a) On article 30,
C. $P=$ Rs. 140 and S.P. $=120$

Therefore Loss = 140-120 = Rs. 20
(b) On article 60,
C.P. $=$ Rs. 230 and S.P. $=$ Rs. 240

Therefore Profit $=240-230=$ Rs. 10
10. Find graphically, the vertices of the triangle whose sides have the equations $2 y-x=8 ; 5 y-x=14$ and $\mathrm{y}-\mathbf{2 x}=1$ respectively. Take $\mathbf{1 c m}=1$ unit on both the axes.

Solution:

Given $2 y-x=8$
$y=(8+x) / 2$
the table of $2 y-x=8$ is

X	-6	-2	0
Y	1	3	4

$5 y-x=14$
$x=5 y-14$
the table of $x=5 y-14$ is

X	-9	-4	1
Y	1	2	3

$y-2 x=1$
$y=1+2 x$
the table of $y-2 x=1$ is

X	2	-2	0
Y	5	-3	1

Now plotting these points we get required graph

The coordinates of the vertices of the triangle $=A(-4,2), B(1,3)$ and $C(2,5)$

[^0]: Plotting these points

[^1]: Plotting the points, we get the following required graph:

