

IBYJU'S

Exercise 10(A)

1. In the figure alongside,

А D B AB = AC $\angle A = 48^{\circ}$ and $\angle ACD = 18^{\circ}$. Show that BC = CD. Solution: In $\triangle ABC$, we have $\angle BAC + \angle ACB + \angle ABC = 180^{\circ}$ $48^{\circ} + \angle ACB + \angle ABC = 180^{\circ}$ [Given, AB = AC] But, $\angle ACB = \angle ABC$ 2∠ABC = 180⁰ - 48⁰ 2∠ABC = 132⁰ ∠ABC = 66⁰ = ∠ACB(i) $\angle ACB = 66^{\circ}$ $\angle ACD + \angle DCB = 66^{\circ}$ $18^{\circ} + \angle DCB = 66^{\circ}$ ∠DCB = 48⁰(ii) Now, In $\triangle DCB$, $\angle DBC = 66^{\circ}$ [From (i), Since $\angle ABC = \angle DBC$] ∠DCB = 48⁰ [From (ii)] $\angle BDC = 180^{\circ} - 48^{\circ} - 66^{\circ}$ ∠BDC = 66⁰ Since $\angle BDC = \angle DBC$ Therefore, BC = CDEqual angles have equal sides opposite to them. 2. Calculate:

(i) ∠ADC (ii) ∠ABC (iii) ∠BAC

Solution:

Given: $\angle ACE = 130^{\circ}$; AD = BD = CDProof: [DCE is a straight line] (i) $\angle ACD + \angle ACE = 180^{\circ}$ $\angle ACD = 180^{\circ} - 130^{\circ}$ $\angle ACD = 50^{\circ}$ Now, CD = AD $\angle ACD = \angle DAC = 50^{\circ} \dots (i)$ [Since angles opposite to equal sides are equal] In ∆ADC, $\angle ACD = \angle DAC = 50^{\circ}$ $\angle ACD + \angle DAC + \angle ADC = 180^{\circ}$ $50^{\circ} + 50^{\circ} + \angle ADC = 180^{\circ}$ $\angle ADC = 180^{\circ} - 100^{\circ}$ ∠ADC = 80° (ii) $\angle ADC = \angle ABD + \angle DAB$ [Exterior angle is equal to sum of opposite interior angles] But, AD = BD∴ ∠DAB=∠ABD $80^\circ = \angle ABD + \angle ABD$ 2∠BD = 80^O $\angle ABD = 40^{\circ} = \angle DAB \dots$ (ii) (iii) We have, $\angle BAC = \angle DAB + \angle DAC$ Substituting the values from (i) and (ii), $\angle BAC = 40^{\circ} + 50^{\circ}$ Hence, $\angle BAC = 90^{\circ}$

3. In the following figure, AB = AC; BC = CD and DE is parallel to BC. Calculate: (i) \angle CDE

(ii) ∠DCE

4. Calculate x:

Solution:

(i) Let the triangle be ABC and the altitude be AD.

In $\triangle ABD$, we have $\angle DBA = \angle DAB = 37^{\circ}$ [Given BD = AD and angles opposite to equal sides are equal] Now, $\angle CDA = \angle DBA + \angle DAB$ [Exterior angle is equal to the sum of opposite interior angles] $\angle CDA = 37^{\circ} + 37^{\circ}$ $\therefore \angle CDA = 74^{\circ}$

Now, in $\triangle ADC$, we have $\angle CDA = \angle CAD = 74^{\circ}$ [Given CD = AC and angels opposite to equal sides are equal] Now, by angle sum property $\angle CAD + \angle CDA + \angle ACD = 180^{\circ}$ $74^{\circ} + 74^{\circ} + x = 180^{\circ}$ $x = 180^{\circ} - 148^{\circ}$ $x = 32^{\circ}$

(ii) Let triangle be ABC and altitude be AD.

BYJU'S

In $\triangle ABD$, we have $\angle DBA = \angle DAB = 50^{\circ}$ [Given BD = AD and angles opposite to equal sides are equal] Now, $\angle CDA = \angle DBA + \angle DAB$ [Exterior angle is equal to the sum of opposite interior angles] $\angle CDA = 50^{\circ} + 50^{\circ}$ $\therefore \angle CDA = 100^{\circ}$

In $\triangle ADC$, we have $\angle DAC = \angle DCA = x$ [Given AD = DC and angels opposite to equal sides are equal] So, by angle sum property $\angle DAC + \angle DCA + \angle ADC = 180^{\circ}$ $x + x + 100^{\circ} = 180^{\circ}$ $2x = 80^{\circ}$ $x = 40^{\circ}$

5. In the figure, given below, AB = AC. Prove that: $\angle BOC = \angle ACD$.

Solution:

6. In the figure given below, LM = LN; \angle PLN = 110°. Calculate:

∠MLN = 180° - 140°

 $\therefore \angle MLN = 40^{\circ}$

Concise Selina Solutions for Class 9 Maths Chapter 10 -Isosceles Triangle

BYJU'S

(i) ∠LMN (ii) ∠MLN Solution:

Given, LM = LN and \angle PLN = 110° (i) We know that the sum of the measure of all the angles of a quadrilateral is 360°. In quad. PQNL, \angle QPL + \angle PLN +LNQ + \angle NQP = 360° $90^{\circ} + 110^{\circ} + \angle LNQ + 90^{\circ} = 360^{\circ}$ $\angle LNQ = 360^{\circ} - 290^{\circ}$ $\angle LNQ = 70^{\circ}$ $\angle LNM = 70^{\circ}...$ (i) In Δ LMN, we have [Given] LM = LN $\Rightarrow \angle LNM = \angle LMN$ [Angles opposite to equal sides are equal] $\angle LMN = 70^{\circ}...(ii)$ [From (i)] (ii) In Δ LMN, we have $\angle LMN + \angle LNM + \angle MLN = 180^{\circ}$ But, $\angle LNM = \angle LMN = 70^{\circ}$ [From (i) and (ii)] \Rightarrow 70° + 70° + \angle MLN = 180°

7. An isosceles triangle ABC has AC = BC. CD bisects AB at D and \angle CAB = 55°. Find: (i) \angle DCB (ii) \angle CBD. Solution:

In $\triangle ABC$, we have AC = BC [Given] So, $\angle CAB = \angle CBD$ [Angles opposite to equal sides are equal] $\Rightarrow \angle CBD = 55^{\circ}$ In $\triangle ABC$, we have $\angle CBA + \angle CAB + \angle ACB = 180^{\circ}$

Now, $\angle ADC = \angle DAB + DBA$ [Exterior angle is equal to the sum of opposite interior angles] But. $\angle DAB = \angle DBA$ [Given: BD = DA] ∴∠ADC = 2∠DBA 2∠DBA = 42° ∠DBA = 21° To find x: $x = \angle CBA + \angle BCA$ [Exterior angle is equal to the sum of opposite interior angles] We know that, ∠CBA = 21° $\angle BCA = 42^{\circ}$ \Rightarrow x = 21° + 42° $\therefore x = 63^{\circ}$

9. In the triangle ABC, BD bisects angle B and is perpendicular to AC. If the lengths of the sides of the triangle are expressed in terms of x and y as shown, find the values of x and y.

Solution:

In $\triangle ABC$ and $\triangle DBC$, we have BD = BD [Common] $\angle BDA = \angle BDC$ [Each equal to 90°] $\angle ABD = \angle DBC$ [BD bisects $\angle ABC$] $\therefore \triangle ABD \cong \triangle DBC$ [ASA criterion] Therefore, by CPCT AD = DC x + 1 = y + 2 x = y + 1... (i) And, AB = BC3x + 1 = 5y - 2

Substituting the value of x from (i), we get 3(y+1) + 1 = 5y - 2 3y + 3 + 1 = 5y - 2 3y + 4 = 5y - 2 2y = 6 y = 3Putting y = 3 in (i), we get x = 3 + 1 $\therefore x = 4$

10. In the given figure; AE // BD, AC // ED and AB = AC. Find $\angle a$, $\angle b$ and $\angle c$.

Solution:

Let's assume points P and Q as shown below:

BYJU'S

BYJU'S

Given, $\angle PDQ = 58^{\circ}$ $\angle PDQ = \angle EDC = 58^{\circ}$ [Vertica $\angle EDC = \angle ACB = 58^{\circ}$ [Corresp In $\triangle ABC$, we have AB = AC [Given $\therefore \angle ACB = \angle ABC = 58^{\circ}$ [Angle

[Vertically opposite angles] [Corresponding angles :: AC II ED]

[Given] [Angles opposite to equal sides are equal]

Now, $\angle ACB + \angle ABC + \angle BAC = 180^{\circ}$ $58^{\circ} + 58^{\circ} + a = 180^{\circ}$ $\angle a = 180^{\circ} - 116^{\circ}$ $\angle a = 64^{\circ}$ Since, AE II BD and AC is the transversal $\angle ABC = \angle b$ [Corrosponding angles] $\therefore \angle b = 58^{\circ}$ Also, since AE II BD and ED is the transversal $\angle EDC = \angle c$ [Corrosponding angles] $\therefore \angle c = 58^{\circ}$

11. In the following figure; AC = CD, AD = BD and $\angle C$ = 58°.

Find ∠CAB. Solution:

In $\triangle ACD$, we have AC = CD[Given] ∴ ∠CAD = ∠CDA [Angles opposite to equal sides are equal] And, $\angle ACD = 58^{\circ}$ [Given] By angle sum property, we have $\angle ACD + \angle CDA + \angle CAD = 180^{\circ}$ $58^{\circ} + 2 \angle CAD = 180^{\circ}$ 2∠CAD = 122° $\angle CAD = \angle CDA = 61^{\circ}...$ (i) Now. $\angle CDA = \angle DAB + \angle DBA$ [Exterior angles is equal to sum of opposite interior angles] But. $\angle DAB = \angle DBA$ [Given, AD = DB] So, $\angle DAB + \angle DAB = \angle CDA$ 2∠DAB = 61° ∠DAB = 30.5°... (ii)

In $\triangle ABC$, we have $\angle CAB = \angle CAD + \angle DAB$ $\angle CAB = 61^{\circ} + 30.5^{\circ}$ [From (i) and (ii)] $\therefore \angle CAB = 91.5^{\circ}$

12. In the figure of Q.11 is given above, if AC = AD = CD = BD; find angle ABC.

13. In $\triangle ABC$; AB = AC and $\angle A$: $\angle B$ = 8: 5; find $\angle A$. Solution:

Let, $\angle A = 8x$ and $\angle B = 5x$

Given, In $\triangle ABC$ AB = ACSo, $\angle B = \angle C = 5x$ [Angles opp. to equal sides are equal] Now, by angle sum property $\angle A + \angle B + C = 180^{\circ}$ $8x + 5x + 5x = 180^{\circ}$ $18x = 180^{\circ}$ $x = 10^{\circ}$ Thus, as $\angle A = 8x$ $\angle A = 8 \times 10^{\circ}$ $\therefore \angle A = 80^{\circ}$

14. In triangle ABC; $\angle A = 60^{\circ}$, $\angle C = 40^{\circ}$, and bisector of angle ABC meets side AC at point P. Show that BP = CP. Solution:

In $\triangle ABC$, we have $\angle A = 60^{\circ}$ $\angle C = 40^{\circ}$ $\therefore \angle B = 180^{\circ} - 60^{\circ} - 40^{\circ}$ [By angle sum property] $\angle B = 80^{\circ}$ Now, as BP is the bisector of $\angle ABC$

 $\therefore \angle PBC = \angle ABC/2$ $\angle PBC = 40^{\circ}$ In $\triangle PBC$, we have $\angle PBC = \angle PCB = 40^{\circ}$ $\therefore BP = CP$

[Sides opposite to equal angles are equal]

15. In triangle ABC; angle ABC = 90° and P is a point on AC such that \angle PBC = \angle PCB. Show that: PA = PB. Solution:

16. ABC is an equilateral triangle. Its side BC is produced upto point E such that C is mid-point of BE. Calculate the measure of angles ACE and AEC. Solution:

Given, $\triangle ABC$ is an equilateral triangle So, AB = BC = AC $\angle ABC = \angle CAB = \angle ACB = 60^{\circ}$ Now, as sum of two non-adjacent interior angles of a triangle is equal to the exterior angle $\angle CAB + \angle CBA = \angle ACE$ $60^{\circ} + 60^{\circ} = \angle ACE$ $\angle ACE = 120^{\circ}$ Now, $\triangle ACE$ is an isosceles triangle with AC = CF $\angle EAC = \angle AEC$ By angle sum property, we have $\angle EAC + \angle AEC + \angle ACE = 180^{\circ}$ $2\angle AEC = 180^{\circ} - 120^{\circ}$ $\angle AEC = 30^{\circ}$

17. In triangle ABC, D is a point in AB such that AC = CD = DB. If $\angle B = 28^{\circ}$, find the angle ACD. Solution:

BYJU'S

From given, we get △DBC is an isosceles triangle \Rightarrow CD = DB $\angle DBC = \angle DCB$ [If two sides of a triangle are equal, then angles opposites to them are equal] And, $\angle B = \angle DBC = \angle DCB = 28^{\circ}$ By angle sum property, we have $\angle DCB + \angle DBC + \angle BCD = 180^{\circ}$ $28^{\circ} + 28^{\circ} + \angle BCD = 180^{\circ}$ ∠BCD = 180° - 56° ∠BCD = 124° As sum of two non-adjacent interior angles of a triangle is equal to the exterior angle, we have $\angle DBC + \angle DCB = \angle DAC$ $28^{\circ} + 28^{\circ} = 56^{\circ}$ $\angle DAC = 56^{\circ}$ Now, \triangle ACD is an isosceles triangle with AC = DC $\Rightarrow \angle ADC = \angle DAC = 56^{\circ}$ $\angle ADC + \angle DAC + \angle DCA = 180^{\circ}$ [By angle sum property] $56^{\circ} + 56^{\circ} + \angle DCA = 180^{\circ}$ ∠DCA = 180° - 112° $\angle DCA = 64^{\circ}$ Thus, $\angle ACD = 64^{\circ}$

18. In the given figure, AD = AB = AC, BD is parallel to CA and $\angle ACB = 65^{\circ}$. Find $\angle DAC$.

BYJU'S

Solution:

From figure, it's seen that $\triangle ABC$ is an isosceles triangle with AB = AC $\Rightarrow \angle ACB = \angle ABC$ As $\angle ACB = 65^{\circ}$ [Given] $\therefore \angle ABC = 65^{\circ}$ By angle sum property, we have $\angle ACB + \angle CAB + \angle ABC = 180^{\circ}$ $65^{\circ} + 65^{\circ} + \angle CAB = 180^{\circ}$ $\angle CAB = 180^{\circ} - 130^{\circ}$

 $\angle CAB = 50^{\circ}$ As BD is parallel to CA, we have $\angle CAB = \angle DBA$ as they are alternate angles $\Rightarrow \angle CAB = \angle DBA = 50^{\circ}$

Again, from figure, it's seen that $\triangle ADB$ is an isosceles triangle with AD = AB. $\Rightarrow \angle ADB = \angle DBA = 50^{\circ}$ By angle sum property, we have $\angle ADB + \angle DAB + \angle DBA = 180^{\circ}$ $50^{\circ} + \angle DAB + 50^{\circ} = 180^{\circ}$ $\angle DAB = 180^{\circ} - 100^{\circ}$ $\angle DAB = 80^{\circ}$ Now, $\angle DAC = \angle CAB + \angle DAB$ $\angle DAC = 50^{\circ} - 80^{\circ}$ $\angle DAC = 130^{\circ}$

19. Prove that a triangle ABC is isosceles, if:(i) altitude AD bisects angles BAC, or(ii) bisector of angle BAC is perpendicular to base BC.Solution:

(i) In $\triangle ABC$, if the altitude AD bisect $\angle BAC$. Then, to prove: $\triangle ABC$ is isosceles.

In $\triangle ADB$ and $\triangle ADC$, we have $\angle BAD = \angle CAD$ (AD is bisector of $\angle BAC$) AD = AD (Common) $\angle ADB = \angle ADC$ (Each equal to 90°) Therefore, $\triangle ADB \cong \triangle ADC$ by ASA congruence criterion So, by CPCT

AB = ACHence, $\triangle ABC$ is an isosceles.

(ii) In \triangle ABC, the bisector of \angle BAC is perpendicular to the base BC. Then, to prove: \triangle ABC is isosceles.

Solution:

In $\triangle ABC$, we have (Given) AB = BCSo, \angle BCA = \angle BAC (Angles opposite to equal sides are equal) $\Rightarrow \angle BCD = \angle BAE \dots(i)$ Given, AD = ECAD + DE = EC + DE (Adding DE on both sides) $\Rightarrow AE = CD \dots(ii)$ Now, in $\triangle ABE$ and $\triangle CBD$, we have AB = BC(Given) [From (i)] ∠BAE = ∠BCD [From (ii)] AE = CDTherefore, $\triangle ABE \cong \triangle CBD$ by SAS congruence criterion So, by CPCT BE = BD

Exercise 10(B)

1. If the equal sides of an isosceles triangle are produced, prove that the exterior angles so formed are obtuse and equal. Solution:

Now, $\angle DBC = 180^{\circ} - \angle B$

But, $\angle B$ is an acute angle

 $\Rightarrow \angle DBC = 180^{\circ} - (acute angle) = obtuse angle Similarly,$

 $\angle ECB = 180^{\circ} - \angle C$

But, ∠C is an acute angle

 $\Rightarrow \angle ECB = 180^{\circ} - (acute angle) = obtuse angle$

Therefore, exterior angles formed are obtuse and equal.

2. In the given figure, AB = AC. Prove that:

3. In triangle ABC, AB = AC; BE \perp AC and CF \perp AB. Prove that:

(i) BE = CF (ii) AF = AE Solution:

(i) In $\triangle AEB$ and $\triangle AFC$, we have $\angle A = \angle A$ [Common] $\angle AEB = \angle AFC = 90^{\circ}$ [Given : BE $\perp AC$ and CE $\perp AB$] AB = AC [Given] Thus, $\triangle AEB \cong \triangle AFC$ by AAS congruence criterion $\therefore BE = CF$ by CPCT

(ii) Since, $\triangle AEB \cong \triangle AFC$ ∠ABE = ∠AFC ∴ AF= AE by CPCT

4. In isosceles triangle ABC, AB = AC. The side BA is produced to D such that BA = AD. Prove that: \angle BCD = 90° Solution:

Construction: Join CD. In $\triangle ABC$, we have AB = AC[Given] ∴∠C = ∠B ... (i) [Angles opposite to equal sides are equal] In $\triangle ACD$, we have AC = AD[Given] $\therefore \angle ADC = \angle ACD \dots$ (ii) Adding (i) and (ii), we get $\angle B + \angle ADC = \angle C + \angle ACD$ $\angle B + \angle ADC = \angle BCD \dots$ (iii) In \triangle BCD, we have $\angle B + \angle ADC + \angle BCD = 180^{\circ}$ [From (iii)] $\angle BCD + \angle BCD = 180^{\circ}$ 2∠BCD = 180° $\therefore \angle BCD = 90^{\circ}$

5. (i) In $\triangle ABC$, AB = AC and $\angle A = 36^{\circ}$. If the internal bisector of $\angle C$ meets AB at point D, prove that AD = BC.

(ii) If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles.

Solution:

В Given, AB = AC and $\angle A = 36^{\circ}$ So, $\triangle ABC$ is an isosceles triangle. $\angle B = \angle C = (180^{\circ} - 36^{\circ})/2 = 72^{\circ}$ $\angle ACD = \angle BCD = 36^{\circ}$ [: CD is the angle bisector of $\angle C$] Now, $\triangle ADC$ is an isosceles triangle as $\angle DAC = \angle DCA = 36^{\circ}$ $\therefore AD = CD \dots (i)$ In $\triangle DCB$, by angle sum property we have $\angle CDB = 180^{\circ} - (\angle DCB + \angle DBC)$ $= 180^{\circ} - (36^{\circ} + 72^{\circ})$ = 180° - 108° = 72° Now, $\triangle DCB$ is an isosceles triangle as $\angle CDB = \angle CBD = 72^{\circ}$ \therefore DC = BC ...(ii) From (i) and (ii), we get AD = BC- Hence Proved.

6. Prove that the bisectors of the base angles of an isosceles triangle are equal. Solution:

Α

D

In $\triangle ABC$, we have AB = AC[Given] [Angles opposite to equal sides are equal] $\therefore \angle C = \angle B \dots (i)$ $\frac{1}{2}\angle C = \frac{1}{2}\angle B$ $\Rightarrow \angle BCF = \angle CBE \dots (ii)$ Now, in \triangle BCE and \triangle CBF, we have $\angle C = \angle B$ [From (i)] $\angle BCF = \angle CBE$ [From (ii)] BC = BC[Common] $\therefore \triangle BCE \cong \triangle CBF$ by AAS congruence criterion Thus, BE = CF by CPCT

 $\therefore \Delta DBA \cong \Delta ECA$ by ASA congruence criterion Thus, by CPCT BD = CEAnd, also AD = AE

8. ABC and DBC are two isosceles triangles on the same side of BC. Prove that: (i) DA (or AD) produced bisects BC at right angle. (ii) ∠BDA = ∠CDA. Solution:

 $\angle BAL = \angle DCA + \angle CDA \dots$ [Exterior angle = sum of opposite interior angles] In $\triangle DCA$, we have $\angle CAL = \angle DCA + \angle CDA \dots$ (vi) From (vi) and (vii) $\angle BAL = \angle CAL \dots$ (viii)

In \triangle BAL and \triangle CAL, $\angle BAL = \angle CAL$ [From (viii)] $\angle ABL = \angle ACL$ [From (i) AB = AC[Given] $\therefore \Delta BAL \cong \Delta CAL$ by ASA congruence criterion So, by CPCT $\angle ALB = \angle ALC$ And, $BL = LC \dots (ix)$ Now, $\angle ALB + \angle ALC = 180^{\circ}$ $\angle ALB + \angle ALB = 180^{\circ}$ [Using (ix)] 2∠ALB = 180° $\angle ALB = 90^{\circ}$ \therefore AL \perp BC Or DL \perp BC and BL \perp LC Therefore, DA produced bisects BC at right angle.

9. The bisectors of the equal angles B and C of an isosceles triangle ABC meet at O. Prove that AO bisects angle A. Solution:

In $\triangle ABC$, we have AB = AC

 $\angle B = \angle C$ [Angles opposite to equal sides are equal] $\frac{1}{2}\angle B = \frac{1}{2}\angle C$ $\angle OBC = \angle OCB \dots$ (i)

 \Rightarrow OB = OC ...(ii) [Sides opposite to equal angles are equal]

Now, In $\triangle ABO$ and $\triangle ACO$, we have AB = AC [Given] $\angle OBC = \angle OCB$ [From (i)] OB = OC [From (ii)] Thus, $\triangle ABO \cong \triangle ACO$ by SAS congruence criterion So, by CPCT $\angle BAO = \angle CAO$ Therefore, AO bisects $\angle BAC$.

10. Prove that the medians corresponding to equal sides of an isosceles triangle are equal.

11. Use the given figure to prove that, AB = AC.

Solution:

In $\triangle APQ$, we have AP = AQ[Given] $\therefore \angle APQ = \angle AQP \dots (i)$ [Angles opposite to equal sides are equal] In $\triangle ABP$, we have $\angle APQ = \angle BAP + \angle ABP \dots$ [Exterior angle is equal to sum of opposite interior angles] In $\triangle AQC$, we have $\angle AQP = \angle CAQ + \angle ACQ \dots$ (iii) [Exterior angle is equal to sum of opposite interior angles] From (i), (ii) and (iii), we get $\angle BAP + \angle ABP = \angle CAQ + \angle ACQ$ But, $\angle BAP = \angle CAQ$ [Given] $\angle CAQ + ABP = \angle CAQ + \angle ACQ$ $\angle ABP = \angle CAQ + \angle ACQ - \angle CAQ$ $\angle ABP = \angle ACQ$ $\angle B = \angle C$ So, in $\triangle ABC$, we have $\angle B = \angle C$ $\Rightarrow AB = AC$ [Sides opposite to equal angles are equal]

12. In the given figure; AE bisects exterior angle CAD and AE is parallel to BC. Prove that: AB = AC.

Solution:

Since, AE || BC and DAB is the transversal $\therefore \angle DAE = \angle ABC = \angle B$ [Corresponding angles] Since, AE || BC and AC is the transversal $\angle CAE = \angle ACB = \angle C$ [Alternate angles] But, AE bisects $\angle CAD$ $\therefore \angle DAE = \angle CAE$ $\angle B = \angle C$ $\Rightarrow AB = AC$ [Sides opposite to equal angles are equal]

13. In an equilateral triangle ABC; points P, Q and R are taken on the sides AB, BC and CA respectively such that AP = BQ = CR. Prove that triangle PQR is equilateral. Solution:

Given, $AB = BC = CA$ (Since, ABC is an equilateral triangle)(i)			
and $AP = BQ = CR$ (ii)			
Subtracting (ii) from (i), we get			
AB - AP = BC - BQ = CA - CR			
BP = CQ = AR(iii)			
$\therefore \angle A = \angle B = \angle C$ (iv) [Angles opposite to equal sides are equal]			
In \triangle BPQ and \triangle CQR, we have			
BP = CQ [From (iii)]			
$\angle B = \angle C$ [From (iv)]			
BQ = CR [Given]			
$\therefore \Delta BPQ \cong \Delta CQR$ by SAS congruence criterion			
So, $PQ = QR$ [by CPCT] (v)			

In \triangle CQR and \triangle APR, we have CQ = AR [From (iii)] \angle C = \angle A [From (iv)]

CR = AP[Given] $\therefore \triangle CQR \cong \triangle APR$ by SAS congruence criterionSo, QR = PR[By CPCT] ... (vi)From (v) and (vi), we getPQ = QR = PRTherefore, PQR is an equilateral triangle.

14. In triangle ABC, altitudes BE and CF are equal. Prove that the triangle is isosceles. Solution:

A F A C B C In $\triangle ABE$ and $\triangle ACF$, we have $\angle A = \angle A$ [Common] $\angle AEB = \angle AFC = 90^{\circ}$ [Given: BE $\perp AC$ and CF $\perp AB$] BE = CF [Given] $\therefore \triangle ABE \cong \triangle ACF$ by AAS congruence criterion So, by CPCT AB = AC Therefore, ABC is an isosceles triangle.

15. Through any point in the bisector of angle, a straight line is drawn parallel to either arm of the angle. Prove that the triangle so formed is isosceles. Solution:

BYJU'S

Let's consider $\triangle ABC$, AL is bisector of $\angle A$. Let D is any point on AL. From D, a straight-line DE is drawn parallel to AC. DE || AC [Given] [Alternate angles] So, $\angle ADE = \angle DAC \dots (i)$ [AL is bisector of $\angle A$] $\angle DAC = \angle DAE$... (ii) From (i) and (ii), we get $\angle ADE = \angle DAE$ $\therefore AE = ED$ [Sides opposite to equal angles are equal] Therefore, AED is an isosceles triangle.

16. In triangle ABC; AB = AC. P, Q and R are mid-points of sides AB, AC and BC respectively. Prove that: (i) PR = QR (ii) BQ = CPSolution:

(i)	
	PQ
	B R c
In $\triangle ABC$, we have AB = AC $\frac{1}{2}AB = \frac{1}{2}AC$	
$AP = AQ \dots (i)$ In $\triangle BCA$, we have	[Since P and Q are mid - points]
PR = $\frac{1}{2}$ AC PR = AQ (ii) In \triangle CAB, we have	[PR is line joining the mid - points of AB and BC]
QR = ½ ÁB QR = AP …(iii) From (i), (ii) and (ii PR = QR	[QR is line joining the mid - points of AC and BC] i), we get

(ii)

Given, AB = AC $\Rightarrow \angle B = \angle C$ Also, $\frac{1}{2}AB = \frac{1}{2}AC$ BP = CQ [P and Q are mid – points of AB and AC] Now, in $\triangle BPC$ and $\triangle CQB$, we have BP = CQ $\angle B = \angle C$ BC = BC (Common) Therefore, $\triangle BPC \cong CQB$ by SAS congruence criterion $\therefore BP = CP$ by CPCT

17. From the following figure, prove that: (i) $\angle ACD = \angle CBE$ (ii) AD = CE

Solution:

(i) In $\triangle ACB$, we have AC = AC[Given] $\therefore \angle ABC = \angle ACB$...(i)
[Angles opposite to equal sides are equal] $\angle ACD + \angle ACB = 180^{\circ}$...(ii)
[Since, DCB is a straight line] $\angle ABC + \angle CBE = 180^{\circ}$...(iii)
[Since, ABE is a straight line] Equating (ii) and (iii), we get $\angle ACD + \angle ACB = \angle ABC + \angle CBE$ $\angle ACD + \angle ACB = \angle ABC + \angle CBE$ [From (i)] $\Rightarrow \angle ACD = \angle CBE$

(ii) In $\triangle ACD$ and $\triangle CBE$, we have DC = CB [Given] AC = BE [Given] $\angle ACD = \angle CBE$ [Proved above] $\therefore \triangle ACD \cong \triangle CBE$ by SAS congruence criterion Hence, by CPCT AD = CE

18. Equal sides AB and AC of an isosceles triangle ABC are produced. The bisectors of the exterior angle so formed meet at D. Prove that AD bisects angle A. Solution:

AB is produced to E and AC is produced to F. BD is bisector of angle CBE and CD is bisector of angle BCF. BD and CD meet at D.

In $\triangle ABC$, we have AB = AC

∴∠C = ∠B

[Given] [angles opposite to equal sides are equal]

∠CBE = 180⁰ - ∠B [ABE is a straight line] $\angle CBD = (180^{\circ} - \angle B)/2$ [BD is bisector of ∠CBE] $\angle CBD = 90^{\circ} - \angle B/2 \dots (i)$ Similarly, \angle BCF = 180⁰ - \angle C [ACF is a straight line] $\angle BCD = (180^{\circ} - \angle C)/2$ [CD is bisector of \angle BCF] $\angle BCD = 90^{\circ} - \angle C/2 \dots (ii)$ Now, $\angle CBD = 90^{\circ} - \angle C/2$ $[\because \angle B = \angle C]$ $\angle CBD = \angle BCD$ In \triangle BCD, we have ∠CBD = ∠BCD \therefore BD = CD In $\triangle ABD$ and $\triangle ACD$, we have AB = AC[Given] AD = AD[Common] BD = CD[Proved] $\therefore \triangle ABD \cong \triangle ACD$ by SSS congruence criterion So, $\angle BAD = \angle CAD$ [By CPCT] Therefore, AD bisects $\angle A$.

19. ABC is a triangle. The bisector of the angle BCA meets AB in X. A point Y lies on CX such that AX = AY. Prove that $\angle CAY = \angle ABC$. Solution:

In $\triangle ABC$, we have CX is the angle bisector of $\angle C$ So, $\angle ACY = \angle BCX \dots$ (i) In $\angle AXY$, we have AX = AY [Given] $\angle AXY = \angle AYX \dots$ (ii) [Angles opposite to equal sides are equal] Now, $\angle XYC = \angle AXB = 180^{\circ}$ [Straight line angle] $\angle AYX + \angle AYC = \angle AXY + \angle BXY$

 $\begin{array}{ll} \angle AYC = \angle BXY... \mbox{(iii)} & [From \mbox{(ii)}] \\ In \ \triangle AYC \mbox{ and } \ \triangle BXC, \mbox{ we have} \\ \ \angle AYC + \ \angle ACY + \ \angle CAY = \ \angle BXC + \ \angle BCX + \ \angle XBC = 180^{\circ} \\ \ \angle CAY = \ \angle XBC & [From \mbox{(i) and \mbox{(iii)}}] \\ Thus, \ \angle CAY = \ \angle ABC & \end{array}$

20. In the following figure; IA and IB are bisectors of angles CAB and CBA respectively. CP is parallel to IA and CQ is parallel to IB.

21. Sides AB and AC of a triangle ABC are equal. BC is produced through C upto a point D such that AC = CD. D and A are joined and produced upto point E. If angle BAE = 108° ; find angle ADB. Solution:

22. The given figure shows an equilateral triangle ABC with each side 15 cm. Also, DE || BC, DF || AC and EG || AB. If DE + DF + EG = 20 cm, find FG.

Solution:

 $\angle AED = 60^{\circ}$

 $\angle ADE = 60^{\circ}$

= 60°

Concise Selina Solutions for Class 9 Maths Chapter 10 -Isosceles Triangle


```
Similarly, \triangleBDF and \triangleGEC are equilateral triangles
Now,
Let AD = x, AE = x and DE = x [:: \triangle ADE is an equilateral triangle]
Let BD = y, FD = y and FB = y [:: \triangle BDF is an equilateral triangle]
Let EC = z, GC = z and GE = z [:: \triangle GEC is an equilateral triangle]
Now, AD + DB = 15
x + y = 15
                   ... (i)
AE + EC = 15
x + z = 15
                   ... (ii)
Given, DE + DF + EG = 20
x + y + z = 20
15 + z = 20
                   [From (i)]
z = 5
From (ii), we get, x = 10
\therefore y = 5
Also, BC = 15
BF + FG + GC = 15
y + FG + z = 15
\therefore FG = 5
```

23. If all the three altitudes of a triangle are equal, the triangle is equilateral. Prove it. Solution:

In right \triangle BEC and \triangle BFC, we have BE = CF [Given] BC = BC [Common] \angle BEC = \angle BFC [Each = 90⁰] $\therefore \triangle$ BEC $\cong \triangle$ BFC by RHS congruence criterion By CPCT, we get \angle B = \angle C Similarly, \angle A = \angle B Hence, \angle A = \angle B = \angle C \Rightarrow AB = BC = AC Therefore, ABC is an equilateral triangle.

24. In a \triangle ABC, the internal bisector of angle A meets opposite side BC at point D. Through vertex C, line CE is drawn parallel to DA which meets BA produced at point E. Show that \triangle ACE is isosceles. Solution:

Given, DA || CE $\angle 1 = \angle 4 \dots$ (i) $\angle 2 = \angle 3 \dots$ (ii)

[Corresponding angles] [Alternate angles]

But $\angle 1 = \angle 2$...(iii) [As AD is the bisector of $\angle A$] From (i), (ii) and (iii), we get $\angle 3 = \angle 4$ $\Rightarrow AC = AE$ Therefore, $\triangle ACE$ is an isosceles triangle.

25. In triangle ABC, bisector of angle BAC meets opposite side BC at point D. If BD = CD, prove that \triangle ABC is isosceles. Solution:

26. In $\triangle ABC$, D is point on BC such that AB = AD = BD = DC. Show that: $\angle ADC$: $\angle C = 4$: 1. Solution:

27. Using the information given in each of the following figures, find the values of a and b. [Given: CE = AC]

Solution:

(i) In ∆CAE, we have	
∠CAE = ∠AEC	[∵ CE = AC]
$=(180^{\circ}-60^{\circ})/2$	
= 56°	
In ∠BEA, we have	
a = 180° - 56° = 124°	
In $\triangle ABE$, we have	
∠ABE = 180° – (124° +	14°)
= 180° - 138°	
= 42°	

(ii)

In $\triangle AEB$ and $\triangle CAD$, we have $\angle EAB = \angle CAD$ [Given] $\angle ADC = \angle AEB$ [$\because \angle ADE = \angle AED$, since, AE = AD $180^{\circ} - \angle ADE = 180^{\circ} - \angle AED$ $\angle ADC = \angle AEB$] AE = AD [Given] $\therefore \triangle AEB \cong \triangle CAD$ by ASA congruence criterion Thus, AC = AB by CPCT 2a + 2 = 7b - 1 $2a - 7b = -3 \dots$ (i) CD = EB $a = 3b \dots$ (ii) Solving (i) and (ii) we get, a = 9 and b = 3