Exercise 12(A)

1. In triangle $A B C, M$ is mid-point of $A B$ and a straight line through M and parallel to $B C$ cuts $A C$ in N. Find the lengths of $A N$ and $M N$ if $B C=7 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$.
Solution:
The triangle is shown as below:

Since M is the midpoint of $A B$ and $M N|\mid B C$
Then, by mid-point theorem N is the midpoint of AC .
Therefore,
$\mathrm{MN}=1 / 2 \mathrm{BC}=1 / 2 \times 7=3.5 \mathrm{~cm}$
And, $\mathrm{AN}=1 / 2 \mathrm{AC}=1 / 2 \times 5=2.5 \mathrm{~cm}$
2. Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.
Solution:
The figure is shown as below:

Let $A B C D$ be a rectangle where P, Q, R, S are the midpoint of $A B, B C, C D, D A$. Then, we need to show that PQRS is a rhombus.

Let's draw two diagonals BD and AC as shown in figure
And, $B D=A C \quad$ [Since diagonals of rectangle are equal]
Proof:
From $\triangle A B D$ and $\triangle B C D$, we have
$P S=1 / 2 B D=Q R$ and $P S||B D|| Q R$
$2 P S=2 Q R=B D$ and $P S \| Q R . .$. (1)
Similarly,
$2 \mathrm{PQ}=2 \mathrm{SR}=\mathrm{AC}$ and $\mathrm{PQ} \| \mathrm{SR} .$. (2)
From (1) and (2) we get
$\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{PS}$
Therefore, PQRS is a rhombus.

- Hence proved

3. D, E and F are the mid-points of the sides $A B, B C$ and $C A$ of an isosceles $\triangle A B C$ in which $A B=B C$. Prove that $\triangle D E F$ is also isosceles.
Solution:
The figure is shown as below:

Given, $A B C$ is an isosceles triangle and $A B=A C$
Since D, E and F are midpoints of $A B, B C$ and $C A$ respectively
Therefore, by mid-point theorem
$2 \mathrm{DE}=\mathrm{AC}$ and $2 \mathrm{EF}=\mathrm{AB}$
$\Rightarrow \mathrm{DE}=\mathrm{EF}$
Therefore, DEF is an isosceles triangle where $\mathrm{DE}=\mathrm{EF}$.

- Hence proved

4. The following figure shows a trapezium ABCD in which $A B / / D C . P$ is the mid-point of $A D$ and $P R / / A B$. Prove that:
$P R=1 / 2(A B+C D)$

Solution:
Given,
In $\triangle A B D, P$ is the midpoint of $A D$ and $P R \| A B$
Therefore, Q is the midpoint of $\mathrm{BD} \quad$ [By mid-point theorem]
Similarly, R is the midpoint of $B C$ as $P R||C D|| A B$
Now, from $\triangle A B D$
$2 P Q=A B$
And, from $\triangle B C D$
2QR = CD ... (2)
Adding (1) and (2), we get
$2(P Q+Q R)=A B+C D$
$2 P R=A B+C D$
$P R=1 / 2(A B+C D)$

- Hence proved.

5. The figure, given below, shows a trapezium ABCD. \mathbf{M} and N are the mid-point of the non-parallel sides AD and BC respectively. Find:

(ii) $A B$, if $D C=20 \mathrm{~cm}$ and $M N=27 \mathrm{~cm}$.
(iii) DC , if $\mathrm{MN}=15 \mathrm{~cm}$ and $\mathrm{AB}=\mathbf{2 3 \mathrm { cm } \text { . } \text { . } \text { . }}$

Solution:

Let's draw a diagonal AC as shown in the figure below,

(i) Given, $\mathrm{AB}=11 \mathrm{~cm}$ and $\mathrm{CD}=8 \mathrm{~cm}$

From $\triangle A B C$, we have
$\mathrm{ON}=1 / 2 \mathrm{AB}=1 / 2 \times 11=5.5 \mathrm{~cm}$
From $\triangle A C D$, we have
$\mathrm{OM}=1 / 2 C D=1 / 2 \times 8=4 \mathrm{~cm}$
Hence, $\mathrm{MN}=\mathrm{OM}+\mathrm{ON}$

$$
\begin{aligned}
& =(4+5.5) \\
& =9.5 \mathrm{~cm}
\end{aligned}
$$

(ii) Given, $\mathrm{CD}=20 \mathrm{~cm}$ and $\mathrm{MN}=27 \mathrm{~cm}$

From $\triangle A C D$, we have
$O M=1 / 2 C D=1 / 2 \times 20=10 \mathrm{~cm}$
Therefore, $O N=27-10=17 \mathrm{~cm}$
Then from $\triangle A B C$, we have
$\mathrm{AB}=2 \mathrm{ON}$

$$
\begin{aligned}
& =2 \times 17 \\
& =34 \mathrm{~cm}
\end{aligned}
$$

(iii) Given, $A B=23 \mathrm{~cm}$ and $\mathrm{MN}=15 \mathrm{~cm}$

From $\triangle A B C$, we have
$\mathrm{ON}=1 / 2 \mathrm{AB}=1 / 2 \times 23=11.5 \mathrm{~cm}$
Therefore, $\mathrm{OM}=15-11.5=3.5 \mathrm{~cm}$
Then from $\triangle A C D$, we have

$$
\begin{aligned}
\mathrm{CD} & =2 \mathrm{OM} \\
& =2 \times 3.5 \\
& =7 \mathrm{~cm}
\end{aligned}
$$

6. The diagonals of a quadrilateral intersect at right angles. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is rectangle.

Solution:

The figure is shown as below:

Let $A B C D$ be a quadrilateral where P, Q, R, S are the midpoints of $A B, B C, C D, D A$.
Diagonals AC and BD intersects at right angles at point O .
Required to prove: PQRS is a rectangle
Proof:
From $\triangle A B C$ and $\triangle A D C$, we have
$2 P Q=A C$ and $P Q \| A C$
$2 R S=A C$ and RS || AC
From (1) and (2) we get,
$P Q=R S$ and $P Q|\mid R S$
Similarly,
$P S=R Q$ and $P S|\mid R Q$
Therefore, PQRS is a parallelogram.
Now as PQ||AC, we have
$\angle A O D=\angle P X O=90^{\circ} \quad$ [Corresponding angles]
Again, as $B D \| \mid R Q$, we have
$\angle \mathrm{PXO}=\angle \mathrm{RQX}=90^{\circ} \quad$ [Corresponding angle]
Similarly,
$\angle \mathrm{QRS}=\angle \mathrm{RSP}=\angle \mathrm{SPQ}=90^{\circ}$
Therefore, PQRS is a rectangle.

- Hence proved

7. L and M are the mid-point of sides $A B$ and $D C$ respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.
Solution:
The required figure is shown as below:

We have,
$B L=D M$ and $B L|\mid D M$ and BLMD is a parallelogram
$\Rightarrow \mathrm{BM}|\mid \mathrm{DL}$
Now, in $\triangle A B Y$, we have
L is the midpoint of $A B$ and $X L|\mid B Y$,
Therefore, x is the midpoint of $A Y$
$\Rightarrow A X=X Y$
Similarly for triangle CDX
$\Rightarrow C Y=X Y$... (2)
From (1) and (2), we get
$A X=X Y=C Y$ and $A C=A X+X Y+C Y$
Thus, segments DL and BM trisect the diagonal AC of parallelogram ABCD

- Hence proved

8. $A B C D$ is a quadrilateral in which $A D=B C$. E, F, G and H are the mid-points of $A B, B D$, $C D$ and $A c$ respectively. Prove that $E F G H$ is a rhombus.

BYJU'S
The Learring Abp

Solution:

Given, $A D=B C$
From the figure,
In $\triangle A D C$ and $\triangle A B D$, we have
$2 \mathrm{GH}=\mathrm{AD}$ and $2 \mathrm{EF}=\mathrm{AD}$,
$\Rightarrow 2 G H=2 E F=A D$
Now, in $\triangle B C D$ and $\triangle A B C$, we have
$2 \mathrm{GF}=\mathrm{BC}$ and $2 \mathrm{EH}=\mathrm{BC}$
$\Rightarrow 2 \mathrm{GF}=2 \mathrm{EH}=\mathrm{BC} \ldots(3)$
From (1), (2), (3) we get
$2 \mathrm{GH}=2 \mathrm{EF}=2 \mathrm{GF}=2 \mathrm{EH}$
$\Rightarrow \mathrm{GH}=\mathrm{EF}=\mathrm{GF}=\mathrm{EH}$
Therefore, EFGH is a rhombus.

- Hence proved

9. A parallelogram $A B C D$ has P the mid-point of $D C$ and Q a point of $A C$ such that $C Q$ $=1 / 4 \mathrm{AC}$. PQ produced meets $B C$ at R.

Prove that:
(i) R is the midpoint of BC
(ii) $P R=1 / 2 \mathrm{DB}$

Solution:

Let's draw the diagonal BD as shown below.

The diagonal AC and BD cuts at point X .
We know that the diagonals of a parallelogram bisect each other.
Therefore, $\mathrm{AX}=\mathrm{CX}$ and $\mathrm{BX}=\mathrm{DX}$
Given,
$C Q=1 / 4 \mathrm{AC}$
$C Q=1 / 4 \times 2 C X$
$C Q=1 / 2 C X$
Therefore, Q is the midpoint of CX .
(i) For $\triangle C D X, P Q| | ~ D X ~ o r ~ P R ~| | ~ B D ~$

And in $\triangle C B X, Q$ is the midpoint of $C X$ and $Q R|\mid B X$
Therefore, R is the midpoint of BC
(ii) $\ln \triangle \mathrm{BCD}$,

As P and R are the midpoint of $C D$ and B, we have
Thus, $\mathrm{PR}=1 / 2 \mathrm{DB}$
10. D, E and F are the mid-points of the sides $A B, B C$ and $C A$ respectively of $\triangle A B C$. $A E$ meets DF at O. P and Q are the mid-points of OB and OC respectively. Prove that DPQF is a parallelogram.
Solution:
The required figure is shown as below:

In $\triangle A B C$ and $\triangle O B C$, we have $2 \mathrm{DE}=\mathrm{BC}$ and $2 \mathrm{PQ}=\mathrm{BC}$,
Therefore, $\mathrm{DE}=\mathrm{PQ} . .$. (1)
In $\triangle A B O$ and $\triangle A C O$, we have
$2 P D=A O$ and $2 F Q=A O$,
Therefore, $\mathrm{PD}=\mathrm{FQ} . .$. (2)
From (1) and (2), we get that PQFD is a parallelogram.

- Hence proved.

11. In triangle $A B C, P$ is the mid-point of side $B C$. A line through P and parallel to $C A$ meets $A B$ at point Q; and a line through Q and parallel to $B C$ meets median $A P$ at point R. Prove that:
(i) $A P=2 A R$
(ii) $B C=4 Q R$

Solution:
The required figure is shown as below:

It's seen that P is the midpoint of $B C, P Q \| A C$ and $Q R|\mid B C$ Therefore, Q is the midpoint of $A B$ and R is the midpoint of $A P$
(i) Thus, $A P=2 A R$
(ii) Let's extend QR such that it cuts AC at S as shown in the figure.

Now, in $\triangle P Q R$ and $\triangle A R S$, we have
$\angle \mathrm{PQR}=\angle \mathrm{ARS} \quad$ (Opposite angles)
$P R=A R$
$P Q=A S \quad$ (Since, $P Q=A S=1 / 2 A C$)
Thus, $\triangle P Q R \cong \Delta A R S$ by SAS congruence criterion
Therefore, by CPCT
QR = RS
Now,
$B C=2 Q S$
$B C=2 \times 2 Q R$
$B C=4 Q R$

- Hence proved

12. In trapezium ABCD, $A B$ is parallel to $D C ; P$ and Q are the mid-points of $A D$ and $B C$ respectively. $B P$ produced meets $C D$ produced at point E. Prove that:
(i) Point P bisects $B E$,
(ii) $P Q$ is parallel to $A B$.

Solution:

The required figure is shown as below:

(i) In $\triangle P E D$ and $\triangle A B P$, we have
$\mathrm{PD}=\mathrm{AP} \quad$ [Since, P is the mid-point of AD]
$\angle D P E=\angle A P B \quad$ [Opposite angles]
$\angle P E D=\angle P B A \quad$ [Alternate angles as $A B|\mid C E]$
$\therefore \triangle \mathrm{PED} \cong \triangle \mathrm{ABP}$ by ASA congruence postulate
Thus, by CPCT
$E P=B P$
(ii) For $\triangle \mathrm{ECB}$, we have $\mathrm{PQ}|\mid C E$

Also, CE||AB
Therefore, $\mathrm{PQ}|\mid \mathrm{AB}$

- Hence proved

13. In a triangle $A B C, A D$ is a median and E is mid-point of median $A D$. A line through B and E meets $A C$ at point F. Prove that $A C=3 A F$.
Solution:
The required figure is shown as below:

Let's draw a line DG || BF
Now,
In $\triangle A D G$, we have
$D G \| B F$ and E is the midpoint of $A D$
Therefore, F is the midpoint of $A G$
$\Rightarrow A F=G F$
And, in $\triangle \mathrm{BCF}$, we have
$D G \| B F$ and D is the midpoint of $B C$
Therefore, G is the midpoint of CF
\Rightarrow GF=CF ... (2)
$A C=A F+G F+C F \quad[F r o m$ figure $]$
$A C=3 A F$ [From (1) and (2)]

- Hence proved.

14. D and F are mid-points of sides $A B$ and $A C$ of a triangle $A B C$. A line through F and parallel to $A B$ meets $B C$ at point E.
(i) Prove that BDFE is parallelogram
(ii) Find $A B$, if $E F=4.8 \mathrm{~cm}$.

Solution:
The required figure is shown as below:

(i) Since F is the midpoint and $E F \| A B$

Therefore, E is the midpoint of BC
So, $B E=1 / 2 B C$ and $E F=1 / 2 A B$
And,
Since D and F are the midpoint of $A B$ and $A C$
Therefore, $\mathrm{DE}|\mid \mathrm{BC}$
So, $D F=1 / 2 B C$ and $D B=1 / 2 A B \ldots$ (2)
From (1) and (2), we get
$\mathrm{BE}=\mathrm{DF}$ and $\mathrm{BD}=\mathrm{EF}$
Hence, BDEF is a parallelogram.
(ii) Now, $\mathrm{AB}=2 \mathrm{EF}$

$$
\begin{aligned}
& =2 \times 4.8 \\
& =9.6 \mathrm{~cm}
\end{aligned}
$$

15. In triangle $A B C, A D$ is the median and $D E$, drawn parallel to side $B A$, meets $A C$ at point E. Show that $B E$ is also a median.

Solution:

In $\triangle A B C$, we have
$A D$ is the median of $B C$
D is the mid-point of $B C$
Given that DE || BA
So, by the converse of the mid-point theorem,
DE bisects AC
$\Rightarrow \mathrm{E}$ is the mid-Point of AC
And, $B E$ is the median of $A C$
Hence, BE is also a median.
16. In $\triangle A B C, E$ is mid-point of the median $A D$ and $B E$ produced meets side $A C$ at point Q. Show that BE : $\mathrm{EQ}=3: 1$.

Solution:
Construction: Draw DY || BQ
In $\triangle \mathrm{BCQ}$ and $\triangle \mathrm{DCY}$, we have
$\angle B C Q=D C Y \quad$ [Common]
$\angle B Q C=\angle D Y C \quad$ [Corresponding angles]
So, $\triangle \mathrm{BCQ} \sim \triangle \mathrm{DCY}$ by AA similarity criterion
Thus,
$B Q / D Y=B C / D C=C Q / C Y$ [Corresponding sides are proportional]
$B Q / D Y=2 \ldots$ (i)
Similarly, \triangle AEQ ~ \triangle ADY
$E Q / D Y=A E / E D=1 / 2[E$ is the mid-point of $A D]$
$\Rightarrow E Q / D Y=1 / 2 \ldots$ (ii)
On dividing (i) by(ii), we get
$\mathrm{BQ} / \mathrm{EQ}=4$
$\mathrm{BQ}=4 \mathrm{EQ}$
$B E+E Q=4 E Q$
$B E=3 E Q$
Therefore, $\mathrm{BE} / \mathrm{EQ}=3 / 1$
17. In the given figure, M is mid-point of $A B$ and $D E$, whereas N is mid-point of $B C$ and DF. Show that: EF = AC.

Solution:

In $\triangle E D F$, we have
M is the mid-point of $A B$ and N is the mid-point of $D E$
So, MN = $1 / 2 \mathrm{EF}$
(By mid-point theorem)
$\mathrm{EF}=2 \mathrm{MN} . .$. (i)
In $\triangle A B C$, we have
M is the mid-point of $A B$ and N is the mid-point of $B C$
$M N=1 / 2 A C$
(By mid-point theorem)
$A C=2 M N \ldots$ (ii)
From (i) and (ii), we get
$E F=A C$

Exercise 12(B)

1. Use the following figure to find:
(i) BC , if $\mathrm{AB}=7.2 \mathrm{~cm}$.
(ii) GE , if $\mathrm{FE}=4 \mathrm{~cm}$.
(iii) AE , if $\mathrm{BD}=4.1 \mathrm{~cm}$
(iv) $D F$, if $C G=11 \mathrm{~cm}$.

Solution:
According to equal intercept theorem, as $\mathrm{CD}=\mathrm{DE}$
$\Rightarrow A B=B C$ and $E F=G F$
Thus,
(i) $\mathrm{BC}=\mathrm{AB}=7.2 \mathrm{~cm}$
(ii) $\mathrm{GE}=\mathrm{EF}+\mathrm{GF}$

$$
=2 E F
$$

$$
=2 \times 4
$$

$$
=8 \mathrm{~cm}
$$

Since B, D and F are the midpoints and AE || BF || CG
Therefore, $\mathrm{AE}=2 \mathrm{BD}$ and $\mathrm{CG}=2 \mathrm{DF}$
(iii) $A E=2 B D$

$$
=2 \times 4.1
$$

$$
=8.2 \mathrm{~cm}
$$

(iv) $D F=1 / 2 C G$

$$
\begin{aligned}
& =1 / 2 \times 11 \\
& =5.5 \mathrm{~cm}
\end{aligned}
$$

2. In the figure, give below, $2 A D=A B, P$ is mid-point of $A B, Q$ is mid-point of $D R$ and $P R$ // BS. Prove that:
(i) $\mathrm{AQ} / / \mathrm{BS}$
(ii) $\mathrm{DS}=3$ Rs.

Solution:

Given, $A D=A P=P B$ as $2 A D=A B$ and P is the midpoint of $A B$
(i) In $\triangle \mathrm{DPR}$, we have

A and Q are the midpoints of DP and DR
Therefore, AQ || PR
Now, as PR || BS
$\therefore \mathrm{AQ} \| \mathrm{BS}$
(ii) In $\triangle A B C, P$ is the midpoint and $P R|\mid B S$

Therefore, R is the midpoint of $B C$
Now, in $\triangle \mathrm{BRS}$ and $\triangle \mathrm{QRC}$, we have
$\angle B R S=\angle Q R C$
$B R=R C$
$\angle R B S=\angle R C Q$
$\therefore \Delta \mathrm{BRS} \cong \triangle \mathrm{QRC}$ by SAS Congruence criterion
Hence, by CPCT
QR = RS
Thus, $D S=D Q+Q R+R S$

$$
=Q R+Q R+R S
$$

$$
=3 R S
$$

3. The side $A C$ of a triangle $A B C$ is produced to point E so that $C E=1 / 2 A C$. D is the midpoint of $B C$ and ED produced meets $A B$ at F. Lines through D and C are drawn parallel to $A B$ which meet $A C$ at point P and $E F$ at point R respectively. Prove that:
(i) $3 D F=E F$ (ii) $4 C R=A B$.

Solution:
Let's consider the figure as below:

Here D is the midpoint of $B C$ and $D P$ is parallel to $A B$,
Therefore, P is the midpoint of $A C$ and $P D=1 / 2 A B$
(i) Again, in $\triangle A E F$ we have $A E||P D|| C R$ and $A P=1 / 3 A E$ Therefore, $D F=1 / 3 \mathrm{EF}$
$\Rightarrow 3 D F=E F$

- Hence proved
(ii) In $\triangle \mathrm{PED}$, we have $\mathrm{PD} \| \mathrm{CR}$ and C is the midpoint of PE So, $C R=1 / 2 P D$
Now,
$P D=1 / 2 A B$
$1 / 2 P D=1 / 4 A B$
$C R=1 / 4 A B$
$4 C R=A B$
- Hence proved

4. In triangle $A B C$, the medians $B P$ and $C Q$ are produced upto points M and N respectively such that $B P=P M$ and $C Q=Q N$. Prove that:
(i) M, A and N are collinear.
(ii) A is the mid-point of MN.

Solution:
The figure is shown as below:

(i) In $\triangle B P C$ and $\triangle M P A$, we have
$\angle \mathrm{BPC}=\angle \mathrm{APN} \quad$ [Vertically opposite angle]
$B P=M P$
$\mathrm{PC}=\mathrm{PA}$
$\therefore \triangle \mathrm{BPC} \cong \triangle \mathrm{MPA}$ by SAS congruence postulate
Thus, by CPCT
$\angle \mathrm{PCB}=\angle \mathrm{PAM} \ldots$... 1)
And, $B C=A M . .$. (2)
Similarly,
Considering $\triangle C Q B$ and $\triangle N Q A$, we have
$\angle \mathrm{QBC}=\angle \mathrm{QAN} . .$. (3)
And, BC = AN ... (4)
Now, by angle sum property of $\triangle A B C$
$\angle A B C+\angle A C B+\angle B A C=180^{\circ}$
$\Rightarrow \angle Q B C+\angle P C B+\angle B A C=180^{\circ}$
$\angle \mathrm{QAN}+\angle \mathrm{PAM}+\angle \mathrm{BAC}=180^{\circ} \quad[$ From (1) and (3)]
Therefore, it's a straight angle and $\mathrm{M}, \mathrm{A}, \mathrm{N}$ must be collinear.
(ii) Now, from (2) and (4) we have AM = AN
Hence, A is the midpoint of MN .
5. In triangle $A B C$, angle B is obtuse. D and E are mid-points of sides $A B$ and $B C$ respectively and F is a point on side $A C$ such that $E F$ is parallel to $A B$. Show that BEFD is a parallelogram.
Solution:
The figure is shown as below:

BBYJU'S

We have,
$E F \| A B$ and E is the midpoint of $B C$
Therefore, F is the midpoint of AC
And,
$E F=B D$ as D is the midpoint of $A B$
Now, as BE || DF
$B E=D F$ as E is the midpoint of $B C$.
Therefore, BEFD is a parallelogram.
6. In parallelogram $A B C D, E$ and F are mid-points of the sides $A B$ and CD respectively. The line segments $A F$ and $B F$ meet the line segments $E D$ and $E C$ at points G and H respectively. Prove that:
(i) Triangles HEB and FHC are congruent
(ii) GEHF is a parallelogram.

Solution:
The figure is shown as below:

(i) In $\triangle H E B$ and $\triangle H C F$, we have
$\mathrm{BE}=\mathrm{FC}$
[Given]
$\angle \mathrm{EHB}=\angle \mathrm{FHC}$
[Vertically opposite angles]
$\angle \mathrm{HBE}=\angle \mathrm{HFC}$ [Alternate angles]
$\therefore \triangle H E B \cong \triangle H C F$ by ASA congruence criterion
$\therefore \mathrm{EH}=\mathrm{CH}, \mathrm{BH}=\mathrm{FH}$
(ii) Similarly, AG $=$ GF and EG = DG

In $\triangle E C D$, we have
F and H are the midpoints of CD and EC respectively
Therefore, $\mathrm{HF}|\mid \mathrm{DE}$ and $\mathrm{HF}=1 / 2 \mathrm{DE}$.
From (1) and (2), we get
$H F=E G$ and $H F \| E G$
Similarly, we can show
EH = GF and EH || GF
Therefore, GEHF is a parallelogram.
7. In triangle $A B C, D$ and E are points on side $A B$ such that $A D=D E=E B$. Through D and E, lines are drawn parallel to $B C$ which meet side $A C$ at points F and G respectively. Through F and G, lines are drawn parallel to $A B$ which meet side $B C$ at points M and N respectively. Prove that: $\mathrm{BM}=\mathrm{MN}=\mathrm{NC}$.
Solution:
The figure is shown as below:

In $\triangle \mathrm{AEG}$, we have
D is the midpoint of $A E$ and $D F||E G|| B C$
Therefore, F is the midpoint of $A G$
$\Rightarrow A F=G F$
Again, we have DF || $E G|\mid B C$ and $D E=B E$
Therefore, GF = GC ..
From (1) and (2), we get
$A F=G F=G C$
Similarly, as GN || FM || AB and AF = GF
Therefore, $\mathrm{BM}=\mathrm{MN}=\mathrm{NC}$

- Hence proved.

8. In triangle $A B C ; M$ is mid-point of $A B, N$ is mid-point of $A C$ and D is any point in base BC. Use intercept theorem to show that MN bisects AD.
Solution:
The figure is shown as below

As M and N are the midpoint of $A B$ and $A C$ respectively and $M N \| B C$
Then according to intercept theorem, we have
$\mathrm{AM}=\mathrm{BM}$,
And therefore, $\mathrm{AX}=\mathrm{DX}$.

- Hence proved

9. If the quadrilateral formed by joining the mid-points of the adjacent sides of quadrilateral $A B C D$ is a rectangle, show that the diagonals AC and BD intersect at right angle.
Solution:
The figure is shown as below:

Let $A B C D$ be a quadrilateral where P, Q, R and S are the midpoints of $A B, B C, C D$ and $D A$. And, PQRS is a rectangle
Diagonal AC and BD intersect at point O.
Required to show: AC and BD intersect at right angle.
Proof:
$\overline{\text { As PQ || AC, }}$
$\Rightarrow \angle A O D=\angle P X O$
[Corresponding angles] ... (1)
Again, as $B D|\mid R Q$,
$\Rightarrow \angle P X O=\angle R Q X=90^{\circ} \quad$ [Corresponding angle and angle of rectangle] ... (2)
From (1) and (2), we get
$\angle A O D=90^{\circ}$
Similarly,
$\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{DOC}=90^{\circ}$
Therefore, diagonals AC and BD intersect at right angle

- Hence proved.

10. In triangle $A B C ; D$ and E are mid-points of the sides $A B$ and $A C$ respectively.

Through E, a straight line is drawn parallel to $A B$ to meet $B C$ at F. Prove that BDEF is a parallelogram. If $A B=16 \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=18 \mathrm{~cm}$, find the perimeter of the parallelogram BDEF.

Solution:

The figure is shown below as:

As E is the midpoint of $A C$ and $E F \| A B$, we have
Thus, F is the midpoint of $B C$ and
$2 \mathrm{DE}=\mathrm{BC}$ or $\mathrm{DE}=\mathrm{BF}$
Again, as D and E are midpoints, we have
$D E \| B F$ and $E F=B D$
Hence, BDEF is a parallelogram.
Now,

$$
\begin{aligned}
\mathrm{BD}=\mathrm{EF} & =1 / 2 \mathrm{AB} \\
& =1 / 2 \times 16 \\
& =8 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
B F=D E & =1 / 2 B C \\
& =1 / 2 \times 18 \\
& =9 \mathrm{~cm}
\end{aligned}
$$

Therefore, perimeter of BDEF $=2(B F+E F)=2(9+8)=34 \mathrm{~cm}$
11. In the given figure, $A D$ and $C E$ are medians and $D F \| C E$. Prove that: $F B=1 / 4 A B$

Solution:

Given, AD and CE are medians and DF || CE
We know that from the midpoint theorem,
If two lines are parallel and the starting point of segment is at the midpoint on one side, then the other point meets at the midpoint of the other side.
Consider $\triangle \mathrm{BEC}$,
Given that DF || CE and D is midpoint of $B C$
So, F must be the midpoint of $B E$
$\Rightarrow F B=1 / 2 B E \ldots$ (i)
But, $B E=1 / 2 A B$
On substituting the value of $B E$ in (i), we get
$F B=1 / 4 A B$

- Hence Proved

12. In parallelogram $A B C D, E$ is the mid-point of $A B$ and $A P$ is parallel to $E C$ which meets DC at point O and BC produced at P.
Prove that:
(i) $B P=2 A D$
(ii) O is the mid-point of AP.

Solution:

Given ABCD is parallelogram,
$\Rightarrow A D=B C$ and $A B=C D$
(i) Now, in $\triangle \mathrm{APB}$

Given, $E C$ is parallel to $A P$ and E is midpoint of side $A B$
So, by midpoint theorem,
C is the midpoint of BP
So, $B P=2 B C$
But,
$B C=A D$ as $A B C D$ is a parallelogram.
Hence, $B P=2 A D$
(ii) In \triangle APB, we have
$A B \| O C$ as $A B C D$ is a parallelogram
So, by midpoint theorem
O is the midpoint of AP
Hence Proved.
13. In trapezium ABCD, sides $A B$ and $D C$ are parallel to each other. E is mid-point of $A D$ and F is mid-point of $B C$. Prove that: $A B+D C=2 E F$. Solution:

In trapezium ABCD, we have
E and F are the midpoints of sides $A D$ and $B C$ respectively

We know that, $\mathrm{AB}=\mathrm{GH}=\mathrm{IJ}$
From midpoint theorem, we have
$E G=1 / 2 \mathrm{DI}$ and
$H F=1 / 2 \mathrm{JC}$
Now, consider the L.H.S, we have
$A B+C D=A B+C J+J I+I D$

$$
=\mathrm{AB}+2 \mathrm{HF}+\mathrm{AB}+2 \mathrm{EG}
$$

So, $A B+C D=2(A B+H F+E G)$

$$
\begin{aligned}
& =2(E G+G H+H F) \\
& =2 E F
\end{aligned}
$$

$\therefore A B+C D=2 E F$

- Hence Proved.

14. In $\triangle A B C, A D$ is the median and $D E$ is parallel to $B A$, where E is a point in $A C$. Prove that $B E$ is also a median.
Solution:
Given, $\triangle A B C$ and $A D$ is the median
So, D is the midpoint of side $B C$
Also, given DE || AB
By the midpoint theorem,
E has to be midpoint of AC
So, line joining the vertex and midpoint of the opposite side is always the median.
Thus, $B E$ is also median of $\triangle A B C$
15. Adjacent sides of a parallelogram are equal and one of the diagonals is equal to any one of the sides of this parallelogram. Show that its diagonals are in the ratio $\sqrt{ } 3: 1$. Solution:

If adjacent sides of a parallelogram are equal, then it is rhombus.
Now, the diagonals of a rhombus bisect each other and are perpendicular to each other.
Let's consider the lengths of the diagonals to be x and y
Diagonal of length y be equal to the sides of rhombus.
Thus, each side of rhombus $=y$

Now, in right angled $\triangle B O C$
By Pythagoras theorem,
$\mathrm{OB}^{2}+\mathrm{OC}^{2}=\mathrm{BC}^{2}$
$(y / 2)^{2}+(x / 2)^{2}=y^{2}$
$x^{2} / 4=y^{2}-y^{2} / 4$
$\mathrm{x}^{2} / 4=\left(4 \mathrm{y}^{2}-\mathrm{y}^{2}\right) / 4$
$\mathrm{x}^{2} / 4=3 \mathrm{y}^{2} / 4$
$x^{2}=3 y^{2}$
$x^{2} / y^{2}=3 / 1$
$x / y=\sqrt{ } 3 / 1$
Thus, the diagonals are in the ratio $\sqrt{ } 3: 1$

