General Aptitude (GA)

Q. 1 - Q. 5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

Q. 1	The ratio of boys to girls in a class is 7 to 3. Among the options below, an acceptable value for the total number of students in the class is:
(A)	21
(B)	37
(C)	50
(D)	73

Q. 2	A polygon is convex if, for every pair of points, P and Q belonging to the polygon, the line segment $P Q$ lies completely inside or on the polygon. Which one of the following is NOT a convex polygon?
(A)	
(B)	
(C)	
(D)	

Q.3	Consider the following sentences: (i) (ii) Which of the followbody in the class is prepared for the exam. Babu invited Danish to his home because he enjoys playing chess. sentences?
(A)	(i) is grammatically correct and (ii) is unambiguous
(B)	(i) is grammatically incorrect and (ii) is unambiguous
(C)	(i) is grammatically correct and (ii) is ambiguous
(D)	(i) is grammatically incorrect and (ii) is ambiguous

Mathematics (MA)
(A) 4

Q.5	Which one of the following options maintains a similar logical relation in the above sentence?
(A)	Plan, outline
(B)	Hospital, library
(C)	Doctor, book
(D)	Medicine, grammar

Mathematics (MA)
Q. 6 - Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: - 2/3).

Q.6	We have 2 rectangular sheets of paper, M and N, of dimensions $6 \mathrm{~cm} \times 1 \mathbf{c m}$ each. Sheet M is rolled to form an open cylinder by bringing the short edges of the sheet together. Sheet N is cut into equal square patches and assembled to form the largest possible closed cube. Assuming the ends of the cylinder are closed, the ratio of the volume of the cylinder to that of the cube is (A)
(B)	$\frac{\pi}{2}$
(C)	$\frac{3}{\pi}$
(D)	$\frac{9}{\pi}$

Mathematics (MA)

Q. 7	Deta ratio diffe perc and The	Items P Q prices ost of i betw ge is ca to the unt on	Cost (₹) 5,400 --- \qquad items to cost e mark d as th rofit \% Q, as a	Profit \% \square Q are pr $\mathrm{m} Q$ is $3:$ rice and io of the elling priceCost ntage of it	Marked Price (₹) nted in the abo Discount is cal selling price. erence between $\times 100$). marked price, is
(A)	25				
(B)	12.5				
(C)	10				
(D)	5				

Q. 8	There are five bags each containing identical sets of ten distinct chocolates. One chocolate is picked from each bag. The probability that at least two chocolates are identical is (A) 0.3024
(B)	0.4235
(C)	0.6976
(D)	0.8125

Mathematics (MA)

Q. 9	Given below are two statements 1 and 2, and two conclusions I and II. Statement 1: All bacteria are microorganisms. Statement 2: All pathogens are microorganisms. Conclusion I: Some pathogens are bacteria. Conclusion II: All pathogens are not bacteria. Based on the above statements and conclusions, which one of the following options is logically CORRECT?
(A)	Only conclusion I is correct
(B)	Only conclusion II is correct
(C)	Either conclusion I or II is correct.
(D)	Neither conclusion I nor II is correct.

Q.10	Some people suggest anti-obesity measures (AOM) such as displaying calorie information in restaurant menus. Such measures sidestep addressing the core problems that cause obesity: poverty and income inequality. Which one of the following statements summarizes the passage?
(A)	The proposed AOM addresses the core problems that cause obesity.
(B)	If obesity reduces, poverty will naturally reduce, since obesity causes poverty.
(C)	AOM are addressing the core problems and are likely to succeed.
(D)	AOM are addressing the problem superficially.

Mathematics (MA)

Q. 1 - Q. 14 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

Q.1	Let \boldsymbol{A} be a $\mathbf{3} \times \mathbf{4}$ matrix and \boldsymbol{B} be a 4×3 matrix with real entries such that $\boldsymbol{A B}$ is non-singular. Consider the following statements: P: Nullity of \boldsymbol{A} is $\mathbf{0}$. Q: $\boldsymbol{B} \boldsymbol{A}$ is a non-singular matrix. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q. 2	Let $f(z)=u(x, y)+i v(x, y)$ for $z=x+i y \in \mathbb{C}$, where x and y are real numbers, be a non-constant analytic function on the complex plane \mathbb{C}. Let \boldsymbol{u}_{x}, v_{x} and u_{y}, v_{y} denote the first order partial derivatives of $u(x, y)=\operatorname{Re}(f(z))$ and $v(x, y)=\operatorname{Im}(f(z))$ with respect to real variables x and y, respectively. Consider the following two functions defined on \mathbb{C} : $\begin{aligned} & g_{1}(z)=u_{x}(x, y)-i u_{y}(x, y) \text { for } z=x+i y \in \mathbb{C} \\ & g_{2}(z)=v_{x}(x, y)+i v_{y}(x, y) \text { for } z=x+i y \in \mathbb{C} \end{aligned}$ Then
(A)	both $g_{1}(z)$ and $g_{2}(z)$ are analytic in \mathbb{C}
(B)	$g_{1}(z)$ is analytic in \mathbb{C} and $g_{2}(z)$ is NOT analytic in \mathbb{C}
(C)	$g_{1}(z)$ is NOT analytic in \mathbb{C} and $g_{2}(z)$ is analytic in \mathbb{C}
(D)	neither $g_{1}(z)$ nor $g_{2}(z)$ is analytic in \mathbb{C}

Q. 3	Let $T(z)=\frac{a z+b}{c z+d}, a d-b c \neq 0$, be the Möbius transformation which maps the points $z_{1}=0, z_{2}=-i, z_{3}=\infty$ in the z-plane onto the points $w_{1}=10$, $w_{2}=5-5 i, w_{3}=5+5 i$ in the w-plane, respectively. Then the image of the set $S=\{z \in \mathbb{C}: \operatorname{Re}(z)<0\}$ under the map $w=T(z)$ is
(A)	$\{w \in \mathbb{C}:\|w\|<5\}$
(B)	$\{w \in \mathbb{C}:\|w\|>5\}$
(C)	$\{w \in \mathbb{C}:\|w-5\|<5\}$
(D)	$\{w \in \mathbb{C}:\|w-5\|>5\}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Mathematics (MA)

Q. 4	Let R be the row reduced echelon form of a 4×4 real matrix A and let the third column of R be $\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$. Consider the following statements: P: If $\left[\begin{array}{l}\boldsymbol{\alpha} \\ \boldsymbol{\beta} \\ \gamma \\ 0\end{array}\right]$ is a solution of $A x=0$, then $\gamma=0$. Q: For all $b \in \mathbb{R}^{4}, \operatorname{rank}[A \mid b]=\operatorname{rank}[R \mid b]$. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q. 5	The eigenvalues of the boundary value problem $\frac{\boldsymbol{d}^{2} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}^{2}}+\lambda \boldsymbol{y}=\mathbf{0}, \quad \boldsymbol{x} \in(\mathbf{0}, \boldsymbol{\pi}), \quad \lambda>\mathbf{0}$, $\boldsymbol{y}(\mathbf{0})=\mathbf{0}, \quad \boldsymbol{y}(\boldsymbol{\pi})-\frac{d \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}(\boldsymbol{\pi})=\mathbf{0}$, are given by		
(A)	$\lambda=(n \pi)^{2}, \quad n=1,2,3, \ldots$		
(B)	$\lambda=n^{2}, \quad n=1,2,3, \ldots$	\quad	(C) $\lambda=k_{n}^{2}, \quad$ where $k_{n}, n=1,2,3, \ldots$ are the roots of $k-\tan (k \pi)=0$
:---			
(D) $\lambda=k_{n}^{2}, \quad$ where $k_{n}, n=1,2,3, \ldots$ are the roots of $k+\tan (k \pi)=0$			

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Mathematics (MA)

Q.6	The family of surfaces given by $\boldsymbol{u}=\boldsymbol{x} \boldsymbol{y}+\boldsymbol{f}\left(\boldsymbol{x}^{2}-\boldsymbol{y}^{2}\right)$, where $\boldsymbol{f}: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function, satisfies
(A)	$y \frac{\partial u}{\partial x}+x \frac{\partial u}{\partial y}=x^{2}+y^{2}$
(B)	$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=x^{2}+y^{2}$
(C)	$y \frac{\partial u}{\partial x}+x \frac{\partial u}{\partial y}=x^{2}-y^{2}$
(D)	$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=x^{2}-y^{2}$

Q.7	The function $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ satisfies the initial value problem $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \boldsymbol{x} \in \mathbb{R}, \boldsymbol{t}>\mathbf{0}$, $\boldsymbol{u}(\boldsymbol{x}, \mathbf{0})=\mathbf{0}, \frac{\partial \boldsymbol{u}}{\partial t}(\boldsymbol{x}, \mathbf{0})=4 \boldsymbol{x} \boldsymbol{e}^{-\boldsymbol{x}^{2}}$. Then $\boldsymbol{u}(\mathbf{5}, \mathbf{5})$ is
(A)	$1-\frac{1}{e^{100}}$
(B)	$1-e^{100}$
(C)	$1-\frac{1}{e^{10}}$
(D)	$1-e^{10}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Mathematics (MA)

Q.8	Consider the fixed-point iteration
	$x_{n+1}=\varphi\left(x_{n}\right), \quad n \geq 0$, with $\quad \varphi(x)=3+(x-3)^{3}, \quad x \in(2.5,3.5)$, and the initial approximation $x_{0}=3.25$. Then, the order of convergence of the fixed-point iteration method is
(A)	1
(B)	2
(C)	3
(D)	4

Q.9	Let $\left\{\boldsymbol{e}_{\boldsymbol{n}}: \boldsymbol{n}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots\right\}$ be an orthonormal basis of a complex Hilbert space \boldsymbol{H}. Consider the following statements: P: There exists a bounded linear functional $\boldsymbol{f}: \boldsymbol{H} \rightarrow \mathbb{C}$ such that $\boldsymbol{f}\left(\boldsymbol{e}_{\boldsymbol{n}}\right)=\frac{\mathbf{1}}{\boldsymbol{n}}$ for $\boldsymbol{n}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots$. Q: There exists a bounded linear functional $\boldsymbol{g}: \boldsymbol{H} \rightarrow \mathbb{C}$ such that $\boldsymbol{g}\left(\boldsymbol{e}_{\boldsymbol{n}}\right)=\frac{\mathbf{1}}{\sqrt{\boldsymbol{n}}}$ for $\boldsymbol{n}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots$. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q.10	Let $f:\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ be given by $f(x)=\frac{\pi}{2}+\boldsymbol{x}-\tan ^{-1} \boldsymbol{x}$. Consider the following statements: P: $\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y})\|<\|\boldsymbol{x}-\boldsymbol{y}\|$ for all $\boldsymbol{x}, \boldsymbol{y} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Q: \boldsymbol{f} has a fixed point. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q. 11	Consider the following statements: $P: d_{1}(x, y)=\left\|\log \left(\frac{x}{y}\right)\right\|$ is a metric on $(0,1)$. Q: $d_{2}(x, y)=\left\{\begin{array}{cc}\|x\|+\|y\|, & \text { if } x \neq y, \\ 0, & \text { if } x=y,\end{array} \quad\right.$ is a metric on $(0,1)$. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q.12	Let $\boldsymbol{f}: \mathbb{R}^{\mathbf{3}} \rightarrow \mathbb{R}$ be a twice continuously differentiable scalar field such that $\boldsymbol{d i v}(\boldsymbol{\nabla} \boldsymbol{f})=\mathbf{6}$. Let \boldsymbol{S} be the surface $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}+\boldsymbol{z}^{\mathbf{2}}=\mathbf{1}$ and $\hat{\boldsymbol{n}}$ be unit outward normal to \boldsymbol{S}. Then the value of $\iint_{\boldsymbol{S}}(\boldsymbol{\nabla} \boldsymbol{f} \cdot \widehat{\boldsymbol{n}}) \boldsymbol{d} \boldsymbol{S}$ is
(A)	2π
(B)	4π
(C)	6π
(D)	8π

Q.13	Consider the following statements: P: Every compact metrizable topological space is separable. Q: Every Hausdorff topology on a finite set is metrizable. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q.14	Consider the following topologies on the set \mathbb{R} of all real numbers: $\mathrm{T}_{\mathbf{1}}=\{\boldsymbol{U} \subset \mathbb{R}: \mathbf{0} \notin \boldsymbol{U}$ or $\boldsymbol{U}=\mathbb{R}\}$, $\mathrm{T}_{2}=\{\boldsymbol{U} \subset \mathbb{R}: \mathbf{0} \in \boldsymbol{U}$ or $\boldsymbol{U}=\emptyset\}$, Then the closure of the set $\{1\}$ in $\left(\mathbb{R}, \mathrm{T}_{3}\right)$ is (A)$\left\{\begin{array}{l}\{1\} \\ \hline \text { (B) }\end{array}\left\{\begin{array}{l}\{0,1\} \\ \hline \text { (C) }\end{array} \mathbb{R}\right.\right.$
(D)	$\mathbb{R} \backslash\{0\}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Mathematics (MA)
Q. 15 - Q. 25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).
Q. 15 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable. Let $D_{u} f(0,0)$ and $D_{v} f(0,0)$ be the directional derivatives of \boldsymbol{f} at $(0,0)$ in the directions of the unit vectors $u=\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ and $v=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$, respectively. If $D_{u} f(0,0)=\sqrt{5}$ and $D_{v} f(0,0)=\sqrt{2}$, then $\frac{\partial f}{\partial x}(0,0)+\frac{\partial f}{\partial y}(0,0)=$ \qquad .
Q. 16 Let Γ denote the boundary of the square region R with vertices $(0,0),(2,0)$, $(2,2)$ and $(0,2)$ oriented in the counter-clockwise direction. Then

$$
\oint_{\Gamma}\left(1-y^{2}\right) d x+x d y=
$$

\qquad -
Q. 17 The number of 5-Sylow subgroups in the symmetric group S_{5} of degree 5 is
\qquad .
Q. 18 Let I be the ideal generated by $x^{2}+x+1$ in the polynomial ring $R=\mathbb{Z}_{3}[x]$, where \mathbb{Z}_{3} denotes the ring of integers modulo 3 . Then the number of units in the quotient ring R / I is \qquad -.
Q. 19 Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that
$T\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right], T^{2}\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, and $T^{2}\left(\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
Then the rank of T is \qquad .

Mathematics (MA)
Q. 20 Let $\boldsymbol{y}(\boldsymbol{x})$ be the solution of the following initial value problem

$$
\begin{gathered}
x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=0, \quad x>0 \\
y(2)=0, \quad \frac{d y}{d x}(2)=4
\end{gathered}
$$

Then $y(4)=$ \qquad .
Q. 21 Let

$$
f(x)=x^{4}+2 x^{3}-11 x^{2}-12 x+36 \text { for } x \in \mathbb{R}
$$

The order of convergence of the Newton-Raphson method

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n \geq 0
$$

with $x_{0}=2$. 1, for finding the root $\alpha=2$ of the equation $f(x)=0$ is
\qquad .
Q. 22 If the polynomial

$$
p(x)=\alpha+\beta(x+2)+\gamma(x+2)(x+1)+\delta(x+2)(x+1) x
$$

interpolates the data

x	-2	-1	0	1	2
$f(x)$	2	-1	8	5	-34

then $\alpha+\beta+\gamma+\delta=$ \qquad .

Mathematics (MA)
Q. 23 Consider the Linear Programming Problem P:

$$
\operatorname{Maximize} 2 x_{1}+3 x_{2}
$$

subject to

$$
\begin{gathered}
2 x_{1}+x_{2} \leq 6, \\
-x_{1}+x_{2} \leq 1, \\
x_{1}+x_{2} \leq 3, \\
x_{1} \geq 0 \text { and } x_{2} \geq 0 .
\end{gathered}
$$

Then the optimal value of the dual of P is equal to \qquad .
Q. 24 Consider the Linear Programming Problem P:

$$
\text { Minimize } 2 x_{1}-5 x_{2}
$$

subject to

$$
\begin{gathered}
2 x_{1}+3 x_{2}+s_{1}=12 \\
-x_{1}+x_{2}+s_{2}=1 \\
-x_{1}+2 x_{2}+s_{3}=3
\end{gathered}
$$

$$
x_{1} \geq 0, \quad x_{2} \geq 0, \quad s_{1} \geq 0, \quad s_{2} \geq 0, \text { and } s_{3} \geq 0
$$

If $\left[\begin{array}{c}x_{1} \\ 2 \\ s_{1} \\ s_{2}\end{array}\right]$ is a basic feasible solution of P, then $x_{1}+s_{1}+s_{2}+s_{3}=$ \qquad .
Q. 25 Let H be a complex Hilbert space. Let $u, v \in H$ be such that $\langle u, v\rangle=2$. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|u+e^{i t} v\right\|^{2} e^{i t} d t=
$$

\qquad .

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Mathematics (MA)
Q. 26 - Q. 43 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: - 2/3).

Q.26	Let \mathbb{Z} denote the ring of integers. Consider the subring $\boldsymbol{R}=\{\boldsymbol{a}+\boldsymbol{b} \sqrt{-\mathbf{1 7}: \quad \boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}\} \text { of the field } \mathbb{C} \text { of complex numbers. }}$ Consider the following statements: $\mathbf{P :} 2+\sqrt{\mathbf{- 1 7}}$ is an irreducible element. Q: $2+\sqrt{\mathbf{- 1 7}}$ is a prime element. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q. 27	Consider the second-order partial differential equation (PDE) $\frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial x \partial y}+\left(x^{2}+4 y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=\sin (x+y)$ Consider the following statements: P: The PDE is parabolic on the ellipse $\frac{x^{2}}{4}+y^{2}=1$. Q: The PDE is hyperbolic inside the ellipse $\frac{x^{2}}{4}+y^{2}=1$. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q. 28	If $u(x, y)$ is the solution of the Cauchy problem $x \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=1, \quad u(x, 0)=-x^{2}, \quad x>0$ then $u(2,1)$ is equal to
(A)	$1-2 e^{-2}$
(B)	$1+4 e^{-2}$
(C)	$1-4 e^{-2}$
(D)	$1+2 e^{-2}$

Q. 29	Let $\boldsymbol{y}(t)$ be the solution of the initial value problem $\begin{aligned} & \frac{d^{2} y}{d t^{2}}+a \frac{d y}{d t}+b y=f(t), \quad a>0, \quad b>0, \quad a \neq b, \quad a^{2}-4 b=0 \\ & y(0)=0, \quad \frac{d y}{d t}(0)=0 \end{aligned}$ obtained by the method of Laplace transform. Then
(A)	$y(t)=\int_{0}^{t} \tau e^{\frac{-a \tau}{2}} f(t-\tau) d \tau$
(B)	$y(t)=\int_{0}^{t} e^{\frac{-a \tau}{2}} f(t-\tau) d \tau$
(C)	$y(t)=\int_{0}^{t} \tau e^{\frac{-b \tau}{2}} f(t-\tau) d \tau$
(D)	$y(t)=\int_{0}^{t} e^{\frac{-b \tau}{2}} f(t-\tau) d \tau$

Q.30	The critical point of the differential equation
	$\frac{d^{2} \boldsymbol{y}}{d t^{2}}+\mathbf{2} \boldsymbol{\alpha} \frac{d y}{d t}+\boldsymbol{\beta}^{2} \boldsymbol{y}=\mathbf{0}, \boldsymbol{\alpha}>\boldsymbol{\beta}>\mathbf{0}$, is a (A) node and is asymptotically stable
(B)	spiral point and is asymptotically stable
(C)	node and is unstable
(D)	saddle point and is unstable

Q. 31	The initial value problem $\frac{d y}{d t}=f(t, y), \quad t>0, \quad y(0)=1$ where $f(t, y)=-10 y$, is solved by the following Euler method $y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right), \quad n \geq 0$ with step-size h. Then $y_{\boldsymbol{n}} \rightarrow \mathbf{0}$ as $\boldsymbol{n} \rightarrow \infty$, provided
(A)	$0<h<0.2$
(B)	$0.3<h<0.4$
(C)	$0.4<h<0.5$
(D)	$0.5<h<0.55$

Mathematics (MA)

Q. 32	Consider the Linear Programming Problem P : $\text { Maximize } c_{1} x_{1}+c_{2} x_{2}$ subject to $\begin{aligned} & a_{11} x_{1}+a_{12} x_{2} \leq b_{1}, \\ & a_{21} x_{1}+a_{22} x_{2} \leq b_{2}, \\ & a_{31} x_{1}+a_{32} x_{2} \leq b_{3}, \end{aligned}$ $x_{1} \geq 0$ and $x_{2} \geq 0$, where $a_{i j}, b_{i}$ and c_{j} are real numbers $(i=1,2,3 ; j=$ 1,2). Let $\left[\begin{array}{l}\boldsymbol{p} \\ \boldsymbol{q}\end{array}\right]$ be a feasible solution of P such that $\boldsymbol{p} \boldsymbol{c}_{1}+\boldsymbol{q} \boldsymbol{c}_{\mathbf{2}}=6$ and let all feasible solutions $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ of P satisfy $-5 \leq c_{1} x_{1}+c_{2} x_{2} \leq 12$. Then, which one of the following statements is NOT true?
(A)	P has an optimal solution
(B)	The feasible region of P is a bounded set
(C)	If $\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$ is a feasible solution of the dual of P, then $b_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3} \geq 6$
(D)	The dual of P has at least one feasible solution

Q. 33	Let $L^{2}[-1,1]$ be the Hilbert space of real valued square integrable functions on $[-1,1]$ equipped with the norm $\\|f\\|=\left(\int_{-1}^{1}\|f(x)\|^{2} d x\right)^{\mathbf{1 / 2}}$. Consider the subspace $M=\left\{f \in L^{2}[-1,1]: \int_{-1}^{1} f(x) d x=0\right\}$. For $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}$, define $\boldsymbol{d}=\inf \{\\|f-\boldsymbol{g}\\|: \boldsymbol{g} \in \boldsymbol{M}\}$. Then
(A)	$d=\frac{\sqrt{2}}{3}$
(B)	$d=\frac{2}{3}$
(C)	$d=\frac{3}{\sqrt{2}}$
(D)	$d=\frac{3}{2}$

Mathematics (MA)

Q. 34	Let $C[0,1]$ be the Banach space of real valued continuous functions on $[0,1]$ equipped with the supremum norm. Define $T: C[0,1] \rightarrow C[0,1]$ by $(T f)(x)=\int_{0}^{x} x f(t) d t$ Let $R(T)$ denote the range space of T. Consider the following statements: $P: T$ is a bounded linear operator. $Q: T^{-1}: R(T) \rightarrow C[0,1]$ exists and is bounded. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q. 35	Let $\ell^{1}=\left\{x=(x(1), x(2), \ldots, x(n), \ldots)\left\|\sum_{n=1}^{\infty}\right\| x(n) \mid<\infty\right\}$ be the sequence space equipped with the norm $\\|x\\|=\sum_{n=1}^{\infty}\|x(n)\|$. Consider the subspace $X=\left\{x \in \boldsymbol{e}^{1}: \sum_{n=1}^{\infty} n\|x(n)\|<\infty\right\}$ and the linear transformation $T: X \rightarrow \boldsymbol{\ell}^{1}$ given by $(T x)(n)=n x(n) \text { for } n=1,2,3, \ldots . \text { Then }$
(A)	T is closed but NOT bounded
(B)	T is bounded
(C)	T is neither closed nor bounded
(D)	T^{-1} exists and is an open map

Q.36	Let $f_{n}:[0,10] \rightarrow \mathbb{R}$ be given by $f_{n}(x)=n x^{3} e^{-n x}$ for $n=1,2,3, \ldots$. Ponsider the following statements: $\left(f_{n}\right)$ is equicontinuous on [0, 10]. Q: $\sum_{n=1}^{\infty} f_{n}$ does NOT converge uniformly on $[0,10]$. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q. 37	Let $\boldsymbol{f}: \mathbb{R}^{\mathbf{2}} \rightarrow \mathbb{R}$ be given by $f(x, y)=\left\{\begin{array}{cl} \sqrt{x^{2}+y^{2}} & \sin \left(y^{2} / x\right) \\ 0 & \text { if } x \neq 0 \\ 0 & \text { if } x=0 \end{array}\right.$ Consider the following statements: $P: f$ is continuous at $(0,0)$ but \boldsymbol{f} is NOT differentiable at $(0,0)$. Q: The directional derivative $D_{u} f(0,0)$ of f at $(0,0)$ exists in the direction of every unit vector $u \in \mathbb{R}^{2}$. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

Q.38	Let \boldsymbol{V} be the solid region in \mathbb{R}^{3} bounded by the paraboloid and the plane $\boldsymbol{y}=\mathbf{4}=\left(\boldsymbol{x}^{2}+z^{2}\right)$ (A) 128π (B) 64π (C) (D) (De value of $\iiint_{\boldsymbol{V}} 15 \sqrt{\boldsymbol{x}^{2}+z^{2}} d \boldsymbol{V}$ is

Q.39	Let $\boldsymbol{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(\boldsymbol{x}, \boldsymbol{y})=4 \boldsymbol{x y}-2 \boldsymbol{x}^{2}-\boldsymbol{y}^{\mathbf{4}}$. Then \boldsymbol{f} has
(A)	a point of local maximum and a saddle point
(B)	a point of local minimum and a saddle point
(C)	a point of local maximum and a point of local minimum
(D)	two saddle points

Q.40	The equation $\boldsymbol{x y}-\boldsymbol{z} \log \boldsymbol{y}+\boldsymbol{e}^{\boldsymbol{x} \boldsymbol{z}}=\mathbf{1}$ can be solved in a neighborhood of the point $(\mathbf{0 , 1 , 1})$ as $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{z})$ for some continuously differentiable function \boldsymbol{f}. Then
(A)	$\nabla f(0,1)=(2,0)$
(B)	$\nabla f(0,1)=(0,2)$
(C)	$\nabla f(0,1)=(0,1)$
(D)	$\nabla f(0,1)=(1,0)$

Q.41	Consider the following topologies on the set \mathbb{R} of all real numbers.
	$\mathrm{T}_{\mathbf{1}}$ is the upper limit topology having all sets $(\boldsymbol{a}, \boldsymbol{b}]$ as basis.
	$\mathrm{T}_{2}=\{\boldsymbol{U} \subset \mathbb{R}: \mathbb{R} \backslash \boldsymbol{U}$ is finite $\} \cup\{\varnothing\}$.
	T_{3} is the standard topology having all sets $(\boldsymbol{a}, \boldsymbol{b})$ as basis.
Then	

Q.42	Let \mathbb{R} denote the set of all real numbers. Consider the following topological spaces. $\boldsymbol{X}_{\mathbf{1}}=\left(\mathbb{R}, \mathrm{T}_{\mathbf{1}}\right)$, where $\mathbf{T}_{\mathbf{1}}$ is the upper limit topology having all sets $(\boldsymbol{a}, \boldsymbol{b}]$ as basis. $\boldsymbol{X}_{2}=\left(\mathbb{R}, \mathrm{T}_{2}\right)$, where $\mathbf{T}_{2}=\{\boldsymbol{U} \subset \mathbb{R}: \mathbb{R} \backslash \boldsymbol{U}$ is finite $\} \cup\{\varnothing\}$. Then
(A)	both X_{1} and X_{2} are connected
(B)	X_{1} is connected and X_{2} is NOT connected
(C)	X_{1} is NOT connected and X_{2} is connected
(D)	neither X_{1} nor X_{2} is connected

Q.43	Let $\langle\cdot, \cdot\rangle: \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}$ be an inner product on the vector space $\mathbb{R}^{\boldsymbol{n}}$ over \mathbb{R}. Consider the following statements: P: $\|\langle\boldsymbol{u}, \boldsymbol{v}\rangle\| \leq \frac{\mathbf{1}}{\mathbf{2}}(\langle\boldsymbol{u}, \boldsymbol{u}\rangle+\langle\boldsymbol{v}, \boldsymbol{v}\rangle)$ for all $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{\boldsymbol{n}}$. $\mathbf{Q : ~ I f ~}\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\langle\mathbf{2 u},-\boldsymbol{v}\rangle$ for all $\boldsymbol{v} \in \mathbb{R}^{\boldsymbol{n}}$, then $\boldsymbol{u}=\mathbf{0}$. Then
(A)	both P and Q are TRUE
(B)	P is TRUE and Q is FALSE
(C)	P is FALSE and Q is TRUE
(D)	both P and Q are FALSE

GATE

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Mathematics (MA)
Q. 44 -Q. 55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).

Q. 44 Let \boldsymbol{G} be a group of order 5^{4} with center having 5^{2} elements. Then the

 number of conjugacy classes in G is \qquad .Q. 45

Let \boldsymbol{F} be a finite field and \boldsymbol{F}^{\times}be the group of all nonzero elements of \boldsymbol{F} under multiplication. If F^{\times}has a subgroup of order 17 , then the smallest possible order of the field F is \qquad .
Q. 46 Let $R=\{z=x+i y \in \mathbb{C}: 0<x<1$ and $-11 \pi<y<11 \pi\}$ and Γ be the positively oriented boundary of R. Then the value of the integral

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{e^{z} d z}{e^{z}-2}
$$

is \qquad -
Q. 47 Let $D=\{z \in \mathbb{C}:|z|<2 \pi\}$ and $\boldsymbol{f}: D \rightarrow \mathbb{C}$ be the function defined by

$$
f(z)=\left\{\begin{array}{cc}
\frac{3 z^{2}}{(1-\cos z)} & \text { if } z \neq 0 \\
6 & \text { if } z=0
\end{array}\right.
$$

If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ for $z \in D$, then $\quad 6 a_{2}=$ \qquad .
Q. 48 The number of zeroes (counting multiplicity) of $P(z)=3 z^{5}+2 i z^{2}+7 i z+$ 1 in the annular region $\{z \in \mathbb{C}: 1<|z|<7\}$ is \qquad .
Q. 49 Let A be a square matrix such that $\operatorname{det}(x I-A)=x^{4}(x-1)^{2}(x-2)^{3}$, where $\operatorname{det}(M)$ denotes the determinant of a square matrix M. If $\operatorname{rank}\left(A^{2}\right)<\operatorname{rank}\left(A^{3}\right)=\operatorname{rank}\left(A^{4}\right)$, then the geometric multiplicity of the eigenvalue 0 of A is \qquad .

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Mathematics (MA)
Q. 50 If $y=\sum_{k=0}^{\infty} a_{k} x^{k},\left(a_{0} \neq 0\right)$ is the power series solution of the differential equation $\frac{d^{2} y}{d x^{2}}-24 x^{2} y=0$, then $\frac{a_{4}}{a_{0}}=$ \qquad .
Q. 51 If $u(x, t)=A e^{-t} \sin x$ solves the following initial boundary value problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0 \\
u(0, t)=u(\pi, t)=0, \quad t>0
\end{gathered}, \begin{array}{ll}
60, & 0<x \leq \frac{\pi}{2} \\
u(x, 0)= & \frac{\pi}{2}<x<\pi
\end{array}, ~ \begin{aligned}
& 40, \\
& \frac{\pi}{2}<x
\end{aligned},
$$

then $\pi A=$ \qquad .
Q. 52 Let $V=\left\{p: p(x)=a_{0}+a_{1} x+a_{2} x^{2}, a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\}$ be the vector space of all polynomials of degree at most 2 over the real field \mathbb{R}. Let $T: V \rightarrow$ V be the linear operator given by

$$
T(p)=(p(0)-p(1))+(p(0)+p(\mathbf{1})) x+p(0) x^{2}
$$

Then the sum of the eigenvalues of T is \qquad .
Q. 53 The quadrature formula

$$
\int_{0}^{2} x f(x) d x \approx \alpha f(0)+\beta f(1)+\gamma f(2)
$$

is exact for all polynomials of degree ≤ 2. Then $2 \boldsymbol{\beta}-\gamma=$ \qquad .
Q. 54 For each $x \in(0,1]$, consider the decimal representation $x=\cdot d_{1} d_{2} d_{3} \cdots d_{n} \cdots$. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)=0$ if x is rational and $f(x)=18 n$ if x is irrational, where n is the number of zeroes immediately after the decimal point up to the first nonzero digit in the decimal representation of x. Then the Lebesgue integral $\int_{0}^{1} f(x) d x=$ \qquad .

Mathematics (MA)

Q. 55	Let $\widetilde{x}=\left[\begin{array}{c}11 / 3 \\ 2 / 3 \\ 0\end{array}\right]$ be an optimal solution of the following Linear Programming Problem P: $\operatorname{Maximize} 4 x_{1}+x_{2}-3 x_{3}$ subject to $\begin{gathered} 2 x_{1}+4 x_{2}+a x_{3} \leq 10 \\ x_{1}-x_{2}+b x_{3} \leq 3 \\ 2 x_{1}+3 x_{2}+5 x_{3} \leq 11 \end{gathered}$ $x_{1} \geq 0, x_{2} \geq 0$ and $x_{3} \geq 0$, where a, b are real numbers. If $\widetilde{y}=\left[\begin{array}{c}\boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{r}\end{array}\right]$ is an optimal solution of the dual of \boldsymbol{P}, then $\boldsymbol{p}+\boldsymbol{q}+\boldsymbol{r}=$ \qquad (round off to two decimal places).

END OF THE QUESTION PAPER

