CBSE Class 11 Term Wise Chemistry Syllabus 2021-22

CHEMISTRY (043)

S	UNIT	Periods	Marks
1	Some Basic Concepts of Chemistry	10	11
2	Structure of Atom	12	-
3	Classification of Elements and Periodicity in Properties	6	4
4	Chemical Bonding and Molecular Structure	14	6
5	Redox Reactions	4	
6	Hydrogen	4	5
7	Organic Chemistry: Some basic Principles and Techniques	10	9
	TOTAL	60	35

SYLLABUS FOR SESSION 2021-22 CLASS XI Term-I

Some Basic Concepts of Chemistry: General Introduction: Importance and scope of Chemistry. Atomic and molecular masses, mole concept and molar mass, percentage composition, empirical and molecular formula, chemical reactions, stoichiometry and calculations based on stoichiometry.

Structure of Atom: Bohr's model and its limitations, concept of shells and subshells, dual nature of matter and light, de Broglie's relationship, Heisenberg uncertainty principle, concept of orbitals, quantum numbers, shapes of s, p and d orbitals, rules for filling electrons in orbitals - Aufbau principle, Pauli's exclusion principle and Hund's rule, electronic configuration of atoms, stability of half-filled and completely filled orbitals

Classification of Elements and Periodicity in Properties: Modern periodic law and the present form of periodic table, periodic trends in properties of elements -atomic radii, ionic radii, inert gas radii, lonization enthalpy, electron gain enthalpy, electronegativity, valency. Nomenclature of elements with atomic number greater than 100.

Chemical Bonding and Molecular Structure:

Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, concept of hybridization, involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules(qualitative idea only), Hydrogen bond.

Redox Reactions:

Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions, in terms of loss and gain of electrons and change in oxidation number.

Hydrogen: Position of hydrogen in periodic table, occurrence, isotopes, hydrides-ionic covalent and interstitial; physical and chemical properties of water, heavy water, hydrogen as a fuel

Organic Chemistry: Some basic Principles and Techniques: General introduction, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions, electrophiles and nucleophiles, types of organic reactions.

PRACTICALS

Term I: A **15-mark Practical** would be conducted under the supervision of subject teacher. This would contribute to the overall practical marks for the subject.

OR

In case the situation of lockdown continues until Nov-Dec 2021, a *Practical Based Assessment (penpaper) of 15 marks* would be conducted at the end of Term I.

Term-I Evaluation Scheme

S. No	Practical	Marks
1.	Volumetric Analysis	8
2.	Content Based experiment	2
3.	Class record and viva(Internal Examiner)	5
	TOTAL	15

Micro-chemical methods are available for several of the practical experiments, wherever possible such techniques should be used.

A. Basic Laboratory Techniques

- 1. Cutting glass tube and glass rod
- 2. Bending a glass tube
- 3. Drawing out a glass jet
- 4. Boring a cork

B. Characterization of Chemical Substances (2 Marks)

- 1. Determination of melting point of an organic compound.
- 2. Determination of boiling point of an organic compound.

C. Quantitative Estimation (8 marks)

- i. Using a mechanical balance/electronic balance.
- ii. Preparation of standard solution of Oxalic acid.
- iii. Determination of strength of a given solution of Sodium hydroxide by titrating it against standard solution of Oxalic acid.
- iv. Preparation of standard solution of Sodium carbonate.
- v. Determination of strength of a given solution of hydrochloric acid by titrating it against standard Sodium Carbonate solution.

S.No	UNIT	Periods	Marks
1	States of Matter: Gases and Liquids	9	15
2	Chemical Thermodynamics	14	
3	Equilibrium	12	•
4	s -Block Elements	5	11
5	Some p -Block Elements	9	
6	Hydrocarbons	10	9
	TOTAL	59	35

SYLLABUS FOR SESSION 2021-22 CLASS XI Term-II

States of Matter: Gases and Liquids: Three states of matter, intermolecular interactions, types of bonding, melting and boiling points, role of gas laws in elucidating the concept of the molecule, Boyle's law, Charles law, Gay Lussac's law, Avogadro's law, ideal behaviour, empirical derivation of gas equation, Avogadro's number, ideal gas equation and deviation from ideal behaviour.

Chemical Thermodynamics: Concepts of System and types of systems, surroundings, work, heat, energy, extensive and intensive properties, state functions.

First law of thermodynamics -internal energy and enthalpy, measurement of $\mathbb{Z}U$ and $\mathbb{Z}H$, Hess's law of constant heat summation, enthalpy of bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, solution and dilution. Second law of Thermodynamics (brief introduction)

Introduction of entropy as a state function, Gibb's energy change for spontaneous and non-spontaneous processes.

Third law of thermodynamics (brief introduction).

Equilibrium: Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass action, equilibrium constant, factors affecting equilibrium - Le Chatelier's principle, ionic equilibrium- ionization of acids and bases, strong and weak electrolytes, degree of ionization, ionization of poly basic acids, acid strength, concept of pH, buffer solution, solubility product, common ion effect (with illustrative examples).

s -Block Elements: Group 1 and Group 2 Elements -General introduction, electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water, hydrogen and halogens, uses.

Some p -Block Elements: General Introduction to p -Block Elements

Group 13 Elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of the group, Boron - physical and chemical properties.

Group 14 Elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous behaviour of first elements. Carbon-catenation, allotropic forms, physical and chemical properties.

Hydrocarbons: Classification of Hydrocarbons Aliphatic Hydrocarbons:

Alkanes - Nomenclature, isomerism, conformation (ethane only), physical properties, chemical reactions.

Alkenes - Nomenclature, structure of double bond (ethene), geometrical isomerism, physical properties, methods of preparation, chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov's addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition.

Alkynes - Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of - hydrogen, halogens, hydrogen halides and water.

Aromatic Hydrocarbons: Introduction, IUPAC nomenclature, benzene: resonance, aromaticity, chemical properties: mechanism of electrophilic substitution. Nitration, sulphonation, halogenation, Friedel Craft's alkylation and acylation, directive influence of functional group in monosubstituted benzene. Carcinogenicity and toxicity.

PRACTICALS

Term II: At the end of Term II, **a 15-mark Practical** would be conducted under the supervision of subject teacher. This would contribute to the overall practical marks for the subject. **OR**

In case the situation of lockdown continues beyond December 2021, a *Practical Based Assessment* (*pen-paper*) of 10 marks and Viva 5 marks would be conducted at the end of Term II by the subject teacher. This would contribute to the overall practical marks for the subject.

TERM-II Evaluation Scheme

S. No	Practical	Marks
1.	Salt Analysis	8
2.	Content Based Experiment	2
3	Project Work and Viva(Internal)	5
	TOTAL	15

A. Qualitative Analysis(Marks 8)

- a. Determination of one anion and one cation in a given salt Cations- Pb²⁺, Cu²⁺, As³⁺, Al³⁺, Fe³⁺, Mn²⁺, Ni²⁺, Zn²⁺, Co²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Mg²⁺, NH₄⁺ Anions - (CO₃)²⁻, S²⁻, NO₂⁻, SO₃⁻²⁻, SO₄²⁻, NO₃⁻, Cl⁻, Br⁻, l⁻, PO₄⁻³⁻, C₂O₄⁻²⁻, CH₃COO⁻ (Note: Insoluble salts excluded)
- b. Detection of -Nitrogen, Sulphur, Chlorine in organic compounds.
- B. Crystallization of impure sample of any one of the following: Alum, Copper Sulphate, Benzoic Acid. (Marks 2)

PROJECTS scientific investigations involving laboratory testing and collecting information from other sources.

Guidelines on Syllabus for Visually Handicapped students.

Schools are expected to rationalise and divide the syllabus of practicums for visually handicapped students into two halves on the basis of collective guidelines given for the same in the complete syllabus and as per the convenience of their students. This flexibility is given in view of the special

condition of visually handicapped students .They will, however, be assessed on 15 marks in practical examination in both the terms as rest of their peers.

S.No	UNIT	Periods	MARKS
1	Solid State	8	10
2	Solutions	8	
3	p-Block Elements	7	10
4	Haloalkanes and Haloarenes	9	15
5	Alcohols, Phenols and Ethers	9	
6	Biomolecules	8	
	TOTAL	49	35

SYLLABUS FOR SESSION 2021-22 CLASS XII Term-I

Solid State: Classification of solids based on different binding forces: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea). Unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, packing efficiency, voids, number of atoms per unit cell in a cubic unit cell, point defects.

Solutions: Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, Raoult's law, colligative properties - relative lowering of vapour pressure, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties.

p Block Elements: Group -15 Elements: General introduction, electronic configuration, occurrence, oxidation states, trends in physical and chemical properties; Nitrogen preparation properties and uses; compounds of Nitrogen: preparation and properties of Ammonia and Nitric Acid.

Group 16 Elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties, dioxygen: preparation, properties and uses, classification of Oxides, Ozone, Sulphur -allotropic forms; compounds of Sulphur: preparation properties and uses of Sulphur-dioxide, Sulphuric Acid: properties and uses; Oxoacids of Sulphur (Structures only).

Group 17 Elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; compounds of halogens, Preparation, properties and uses of Chlorine and Hydrochloric acid, interhalogen compounds, Oxoacids of halogens (structures only).

Group 18 Elements: General introduction, electronic configuration, occurrence, trends in physical and chemical properties, uses.

Haloalkanes and Haloarenes: Haloalkanes: Nomenclature, nature of C–X bond, physical and chemical properties, optical rotation mechanism of substitution reactions.

Haloarenes: Nature of C–X bond, substitution reactions (Directive influence of halogen in monosubstituted compounds only).

Alcohols, Phenols and Ethers: Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only), identification of primary, secondary and tertiary alcohols, mechanism of dehydration.

Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophillic substitution reactions, uses of phenols.

Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses.

Biomolecules: Carbohydrates - Classification (aldoses and ketoses), monosaccahrides (glucose and fructose), D-L configuration Proteins -Elementary idea of - amino acids, peptide bond, polypeptides, proteins, structure of proteins - primary, secondary, tertiary structure and quaternary structures (qualitative idea only), denaturation of proteins.

Nucleic Acids: DNA and RNA

PRACTICALS

Term I: A 15-mark Practical would be conducted under the supervision of subject teacher/ internal examiner. This would contribute to the overall practical marks for the subject. OR

In case the situation of lockdown continues until Nov-Dec 2021, a *Practical Based Assessment (penpaper) of 15 marks* would be conducted at the end of Term I at the school level and marks would be submitted by the schools to the Board. This would contribute to the overall practical marks for the subject.

Term-I Evaluation Scheme

S. No	Practical	Marks
1.	Volumetric Analysis	4
2.	Salt Analysis	4
3.	Content Based experiment	2
4.	Class record and viva(Internal Examiner)	5
	TOTAL	15

(1) Volumetric analysis (4 marks)

Determination of concentration/ molarity of KMnO₄ solution by titrating it against a standard solution of:

- i. Oxalic acid,
- ii. Ferrous Ammonium Sulphate

(Students will be required to prepare standard solutions by weighing themselves).

(2) Salt analysis (Qualitative analysis) (4 marks)

Determination of one cation and one anion in a given salt. Cations- Pb²⁺, Cu²⁺, As³⁺, Al³⁺, Fe³⁺, Mn²⁺, Ni²⁺, Zn²⁺, Co²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Mg²⁺, NH₄⁺ Anions – $(CO_3)^{2^-}$, S²⁻, NO₂⁻, SO₃²⁻, SO₄²⁻, NO₃⁻, Cl⁻, Br⁻, l⁻, PO₄⁻³⁻, C₂O₄⁻²⁻, CH₃COO⁻ (Note:

Insoluble salts excluded)

(3) Content Based Experiments (2 marks)

A. Chromatography

- i. Separation of pigments from extracts of leaves and flowers by paper chromatography and determination of Rf values.
- ii. Separation of constituents present in an inorganic mixture containing two cations only (constituents having large difference in Rf values to be provided).
- B. Characteristic tests of carbohydrates, fats and proteins in pure samples and their detection in given foodstuffs.