Sample Question Paper

CLASS: XII

Session: 2021-22 Mathematics (Code-041)

Term - 1

Time Allowed: 90 minutes

Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

SECTION - A

In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage.

1.	$\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right] \text{ is equal to:}$		D.S.	1
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	- (C)	
	c) -1	d) 1	200	
2.	/ =	b) -1		1
		d) $\frac{1}{2}$		
3.	If $A = [a_{ij}]$ is a square matrix of A^2 is:	order 2 such that $a_{ij} = \begin{cases} 1, & wh \\ 0, & wh \end{cases}$	$en \ i \neq j$ $en \ i = j$, then	1
	a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$	b) $\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix}$		
	c) $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$	d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
4.	Value of k , for which $A = \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$	$\begin{bmatrix} k \end{bmatrix}$ is a singular matrix is:		1
	a) 4	b) -4		
	c) ±4	d) 0		
	1			

	increasing:	unction f given by f (x) = $x^2 - 4x + 6$ is strictly	1
	a) (-∞, 2) ∪ (2, ∞)	b) (2, ∞)	
	c) $(-\infty,2)$	d) (-∞, 2]∪ (2, ∞)	
		, , , , , , , , , , , , , , , , , , , ,	
6.	Given that A is a square matrix of equal to:	of order 3 and A = - 4, then adj A is	1
	a) -4	b) 4	
	c) -16	d) 16	
7.		defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. pair in R shall be removed to make it an	1
	a) (1, 1)	b) (1, 2)	
	c) (2, 2)	d) (3, 3)	4
8.	$ \left[\text{If } \begin{bmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix} \right] $, then value of a + b - c + 2d is:	1
	a) 8	b) 10	
	c) 4	d) -8	
9.	The point at which the normal to the line $3x - 4y - 7 = 0$ is:	the curve $y = x + \frac{1}{x}$, $x > 0$ is perpendicular to	1
9.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$	b) (±2, 5/2)	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$	b) (±2, 5/2) d) (1/2, 5/2)	1
9.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equ	b) (±2, 5/2) d) (1/2, 5/2) ual to:	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$	b) (±2, 5/2) d) (1/2, 5/2)	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equ	b) (±2, 5/2) d) (1/2, 5/2) ual to:	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A =	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$	1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], the	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $ ne equivalence class containing 1, is:	1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A =	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $	1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $ ne equivalence class containing 1, is: b) $\{0, 1, 2, 5\}$	1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $ ne equivalence class containing 1, is: b) $\{0, 1, 2, 5\}$	1
11.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$ c) ϕ	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $ ne equivalence class containing 1, is:	1
11.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$ c) ϕ	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $ ne equivalence class containing 1, is: b) $\{0, 1, 2, 5\}$	1

13.	Given that matrices A and B are order of matrix C = 5A +3B is:	e of order 3×n and m×5 respectively, then the	1
	a) 3×5 and m = n	b) 3×5	
	c) 3x3	d) 5×5	
14.	If $y = 5 \cos x - 3 \sin x$, then $\frac{d^2y}{dx^2}$	is equal to:	1
	a) - y c) 25y	b) y d) 9y	
15.	For matrix A = $\begin{bmatrix} 2 & 5 \\ -11 & 7 \end{bmatrix}$, $(adjA)$)' is equal to:	1
	a) $\begin{bmatrix} -2 & -5 \\ 11 & -7 \end{bmatrix}$	b) $\begin{bmatrix} 7 & 5 \\ 11 & 2 \end{bmatrix}$	
	c) $\begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$	d) $\begin{bmatrix} 7 & -5 \\ 11 & 2 \end{bmatrix}$	
16.	axis are:	= 1 at which the tangents are parallel to y-	1
	a) $(0,\pm 4)$ c) $(\pm 3,0)$	b) (±4,0) d) (0, ±3)	
17.		matrix of order 3×3 and $ A = -7$, then the denotes the cofactor of element a_{ij} is:	1
	a) 7	b) -7	
18.	$ c \rangle 0$	d) 49	1
10.	If $y = \log(\cos e^x)$, then $\frac{dy}{dx}$ is:		,
	a) $\cos e^{x-1}$	b) $e^{-x}\cos e^x$	
19.	Based on the given shaded reg which point(s) is the objective for	d) $-e^x \tan e^x$ ion as the feasible region in the graph, at unction $Z = 3x + 9y$ maximum?	1
	Y D(0,20) C(15,15)		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(60,0) $x + 3y = 60$	
	a) Point B	b) Point C	
	c) Point D	d) every point on the line segment CD	

20.	The least value of the function $f(x) = 2\cos x + x$ in the closed interval $\left[0, \frac{\pi}{2}\right]$ is:		1
	a) 2	b) $\frac{\pi}{4} + \sqrt{3}$	
	c) $\frac{\pi}{2}$	d) The least value does not exist.	
	In this section, attempt any 16 que	ON – B estions out of the Questions 21 - 40. of 1 mark weightage.	
21.	The function $f: R \rightarrow R$ defined as $f(x)$	$= x^3$ is:	1
	a) One-on but not onto c) Neither one-one nor onto	b) Not one-one but onto d) One-one and onto	
22.	If $x = a \sec \theta$, $y = b \tan \theta$, then $\frac{d^2y}{dx^2}$ at θ	$\theta = \frac{\pi}{6}$ is:	1
	a) $\frac{-3\sqrt{3}b}{a^2}$	b) $\frac{-2\sqrt{3}b}{a}$	
	c) $\frac{-3\sqrt{3}b}{a}$	$\frac{1}{a}$ $d) \frac{-b}{3\sqrt{3}a^2}$	
23.	In the given graph, the feasible region for a LPP is shaded. The objective function $Z = 2x - 3y$, will be minimum at:		1
24.	a) (4, 10) b c) (0, 8) d The derivative of $\sin^{-1}(2x\sqrt{1-x^2})$ w.		1
	a) 2	, -	
25.	If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 \\ -4 & 2 \\ 2 & -1 \end{bmatrix}$	$\begin{bmatrix} -4 \\ -4 \\ 5 \end{bmatrix}$, then:	1
	a) $A^{-1} = B$ b c) $B^{-1} = B$ o	a) $A^{-1} = 6B$ d) $B^{-1} = \frac{1}{6}A$	

26.	The real function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is:	1
	a) Strictly increasing in $(-\infty, -2)$ and strictly decreasing in $(-2, \infty)$	
	b) Strictly decreasing in (-2,3)	
	c) Strictly decreasing in $(-\infty, 3)$ and strictly increasing in $(3, \infty)$	
	d) Strictly decreasing in $(-\infty, -2) \cup (3, \infty)$	
27.	Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+cosx}+\sqrt{1-cosx}}{\sqrt{1+cosx}-\sqrt{1-cosx}}\right)$, $\pi < x < \frac{3\pi}{2}$ is:	1
	a) $\frac{\pi}{4} - \frac{x}{2}$ b) $\frac{3\pi}{2} - \frac{x}{2}$	
	c) $-\frac{x}{2}$ d) $\pi - \frac{x}{2}$	
28.	Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is:	1
	a) 4 b) 8	
	c) 64 d) 16	
29.	The value of b for which the function $f(x) = x + cosx + b$ is strictly	1
	decreasing over $\bf R$ is: a) $b < 1$ b) No value of b exists	
	a) $b < 1$ b) No value of b exists c) $b \le 1$ d) $b \ge 1$	
30.	Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then:	1
	a) (2,4) ∈ R b) (3,8) ∈ R	
	c) (6,8) ∈ R d) (8,7) ∈ R	
31.	The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, & x < 0 \\ -1, & x \ge 0 \end{cases}$	1
	is continuous, is/are: $(-1, x \ge 0)$	
	a) $x \in \mathbb{R}$ b) $x = 0$	
	c) $x \in \mathbb{R} - \{0\}$ d) $x = -1$ and 1	
32.	If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k , a and b respectively	1
	are:	

	a) -6, -12, -18	b) -6, -4, -9	
	c) -6,4,9	d) -6, 12, 18	
33.	A linear programming problem is	as follows:	1
	Minimize Z = 30x + 50y		
	subject to the constraints,		
	$3x + 5y \ge$		
	$2x + 3y \le$		
	$x \ge 0, y \ge$		
	In the feasible region, the minimu	ım value of Z occurs at	
	a) a unique point	b) no point	
	c) infinitely many points	d) two points only	
34.	The area of a trapezium is define	ed by function f and given by $f(x) = (10 +$	1
01.	$x)\sqrt{100-x^2}$, then the area when		
	$x/\sqrt{100-x}$, then the area when	TICIS MAXIMISECUIS.	
	a) 75 <i>cm</i> ²	b) 7./2 cm ²	
	c) $75\sqrt{3}cm^2$	b) $7\sqrt{3}cm^2$ d) $5cm^2$	
	C) /5\3cm-	d) Sciii	
		at Countille	
35.	If A is square matrix such that A ²	= A, then $(I + A)^3 - 7$ A is equal to:	1
	a) A	b) I + A	
	c) I – A	d) I	
36.	If $tan^{-1} x = y$, then:		1
		-т т	
	a) $-1 < y < 1$	b) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$	
	c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$	d) $y \in \{\frac{-\pi}{2}, \frac{\pi}{2}\}$	
	2		
		9 6 7	
0=			4
37.		and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function	1
	from A to B. Based on the given i	information, f is best defined as:	
	a) Surjective function	b) Injective function	
	c) Bijective function	d) function	
38.		,	1
00.	For A = $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then 14A-1 is given	ven by:	•
	a) $14\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$	b) $\begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}$	
	′ 11 3 1	/ 12 6 1	
		» o[−3 −11	
	c) $2\begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$	d) $2\begin{bmatrix} -3 & -1 \\ 1 & -2 \end{bmatrix}$	
39.		-11x + 5 at which the tangent is $y = x - 11$	1
	is/are:		
	0) (240)	b) (2 0)	
	a) (-2,19)	b) (2, -9)	
40	c) $(\pm 2, 19)$	d) (-2, 19) and (2, -9)	1
40.	Given that $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$	3I, then:	ı
	[γ α]		

	a) $1 + \alpha^2 + \beta \gamma = 0$	b) $1 - \alpha^2 - \beta \gamma = 0$ d) $3 + \alpha^2 + \beta \gamma = 0$	
	c) $3 - \alpha^2 - \beta \gamma = 0$	d) $3 + \alpha^2 + \beta \gamma = 0$	
	SECTION In this section, attempt Each question is of 1- Questions 46-50 are base	any 8 questions. mark weightage.	
41.	For an objective function $Z = ax + by$, where the feasible region determined by a set of $(0, 20)$, $(10, 10)$, $(30, 30)$ and $(0, 40)$. The maximum Z occurs at both the points $(30, 40)$ and $(30, 40)$ by $a = 0$	constraints (linear inequalities) are condition on <i>a</i> and <i>b</i> such that the , 30) and (0, 40) is:	
	c) $a + 2b = 0$ d) 2a	a-b=0	
42.	For which value of m is the line $y = mx + r$	1 a tangent to the curve y ² = 4x? 1	
	a) $\frac{1}{2}$ b) 1		
	c) 2 d) 3		
43.	The maximum value of $[x(x-1)+1]^{\frac{1}{3}}$, 0:	$\leq x \leq 1$ is:	
	a) 0 b) $\frac{1}{a}$	- 49	
	c) 1 d) $\sqrt[3]{\frac{1}{3}}$		
44.	44. In a linear programming problem, the constraints on the decision variables and y are $x - 3y \ge 0$, $y \ge 0$, $0 \le x \le 3$. The feasible region		
		bounded in the first	
		uadrant pes not exist	
45.			
	a) A =0	b) A ε(2,∞)	
	c) $ A \epsilon(2,4)$	d) $ A \in [2,4]$ $ $ E STUDY	
		el cost per hour for running a train is proportiona	al
		square of the speed it generates in km per hour	
	the fue	l costs ₹ 48 per hour at speed 16 km per hour	
	and the	e fixed charges to run the train amount to ₹	
	Assume the speed of the train as $v \text{ km/h}$.	er hour.	

	Based on the given information	n, answer the following questions.	
46.	Given that the fuel cost per hour is k times the square of the speed the tragenerates in km/h, the value of k is:		1
	a) $\frac{16}{3}$	b) 1/2	
	c) 3	b) $\frac{1}{3}$ d) $\frac{3}{16}$	
47.	If the train has travelled a dista the train is given by function:	nce of 500km, then the total cost of running	1
	a) $\frac{15}{16}v + \frac{600000}{v}$	b) $\frac{375}{4}v + \frac{600000}{v}$	
	c) $\frac{5}{16}v^2 + \frac{150000}{v}$	d) $\frac{3}{16}v + \frac{6000}{v}$	
48.	The most economical speed to run the train is:		1
	a) 18km/h	b) 5km/h	
	c) 80km/h	d) 40km/h	
49.	The fuel cost for the train to travel 500km at the most economical speed is:		1
	a) ₹3750	b) ₹750	
	c) ₹7500	d) ₹75000	
50.	The total cost of the train to tra	vel 500km at the most economical speed is:	1
	a) ₹3750	b) ₹75000	
	c) ₹7500	d) ₹15000	
