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FUNDAMENTAL DUTIES

It shall be the duty of every citizen of India :

(a) to abide by the Constitution and respect its ideals
and institutions, the National Flag and the National Anthem;

(b) to cherish and follow the noble ideals which inspired
our national struggle for freedom,;

(c) to uphold and protect the sovereignty, unity and integrity of
India;

(d) to defend the country and render national service when called
upon to do so;

(e) to promote harmony and the spirit of common
brotherhood amongst all the people of India transcending
religious, linguistic and regional or sectional diversities; to
renounce practices derogatory to the dignity of

women;
(f)  tovalue and preserve the rich heritage or our composite culture;

(g) to protect and improve the natural environment including
forests, lakes, rivers and wild life, and to have compassion for

living creatures;

(h) to develop the scientific temper, humanism and the spirit of

inquiry and reform;
(i)  to safeguard public property and to abjure violence;

() to strive towards excellence in all spheres of individual
and collective activity so that the nation constantly rises to

higher levels of endeavour and achievement.
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About This Textbook...

We are happy to publish the textbook for semester III for standard XII, in
continuation of textbooks of semester I and semester II for standard XI prepared
on the base of NCERT syllabus and NCF 2005.

This textbook has been prepared originally in English as in the case of textbooks of
semester 1 and II for standard XI. The manuscript has been thoroughly examined by
learned teachers from schools and colleges in a workshop in the month of October.
The suggestions and proper amendments had been accepted and the revised
manuscript has been translated in Gujarati. The Gujarati version was also examined by
teachers from schools and colleges and the necessary amendments were made. The
English manuscript and the translated version in Gujarati were read by language experts
and the corrections were made. This way the final draft of the manuscript was prepared.
It was reviewed in the office of Gujarat Higher Secondary and Secondary Education
Board by invited expert teachers in the presence of the writers. The suggestions made
by them were incorporated and the manuscript was finalized.

In chapter 1, there are explanation of relations, types of relations, equivalence
classes, functions, one-one and onto functions, inverse functions and binary operations
as functions. These points are explained in the textbook as in the NCERT textbooks. In
chapter 2, we explain trigonometric inverse functions and their graphs and related
theorems. The result of these chapters are very useful in the study of calculus. In
chapter 3, we deal with the information about determinants and their theorems and their
applications to solve a system of linear equations and in coordinate geometry. In chapter
4 we apply this information for the system of linear equations. The Echelon method
to find the inverse of a matrix is an important point of this chapter. To find the inverse
of a matrix without the use of determinants, Echelon method is useful. In semester III we
began with the study of the limits. In chapter 5, we proceed further with the idea of limit
and study continuity and differentiation in details. This chapter is very useful in the study
of application in semester IV. Chapter 6 is the beginning of indefinite integration. Study
of integration and differentiation is a base for calculus. Lebnitz and Newton both
studied them in different directions and connected them. We have started with
differentiation and taken as a basis of integration. Chapter 7 and 8 are the sections of
statistics. We have continuously the study of probability which began in standard IX
and carried it further upto binomial distribution. Chapters 8 is about linear programming.

\'%




We have studied graphs of linear inequalities in semester I of standard XI. We use
them to solve practical problems in this chapter.

Attractive four-colour title, four-colour printing and figures make this textbook
very useful and valuable. Plenty of illustrations and exercises are useful to explain
concepts and variety of problems. They will help the students in achieving good marks
in semester examination and competitive examinations.

We thank all who helped to prepare this textbook. We hope that all students,
teachers and parents all would like this textbook. Positive suggestions to enhance
the quality of this textbook are welcomed.

— Authors
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Erode, Madras Presidency
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The University of Cambridge Shreenivas Ramanujan
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RELATIONS AND FUNCTIONS 1

The roots of education are bitter but the fruit is sweet.
— Gauss

Mathematicians do not study objects but relations between them. Thus they are free to
replace some objects by others so long as the relations remain unchanged. Content to them
is irrelevent. They are interested in form only.

— Henri Poincare

1.1 Relations :

Last year we have studied the concept of a relation and a function. We also studied algebraic
operations on functions and graphs of relations and functions. We will develop these concepts further
in this chapter.

The word ‘relation” is used in the context of social obligations also. We will relate the concept
of the word °‘relation’ as used in social and family terms with the word relation as used in
mathematics.

We define a relation of the set of human beings H as

S={x y)|x€ H,y € H, x is a brother of y.}
Dev is a brother of Rucha. So ordered pair (Dev, Rucha) € S.
Let C be the set of all captains of Indian cricket team till 2011.
Let S = {(x, ) | x precedes y, x, y € C}
Then (Kapildev, M. S. Dhoni) € S.
But (M. S. Dhoni, Kapildev) ¢ S.
In the set of natural numbers N, x precedes y, if y = x + k£ for some £ € N. Let
S={( »)| x precedes y, x € N, y € N}. Then (3, 5) € Sas 5 =3 + 2. But (5, 3) € S.
If S is a relation in A i.e. S C (A X A) and (x, y) € S, we say x is related to y by S or xSy.
Let S be a relation in N defined as follows :
S = {(x, ») | | x — y| is an even positive integer x, y € N}, then whenever (x, y) € S,
o x) e S. (Why ?)
Also note that (x, x) & S.
Now we will define various types of relations.
Void or Empty relation : A relation in the set A with no elements is called an empty
relation. ) < (A X A). ) is a relation called empty relation.
The relation S in N defined by
S={x y»|x+y=0,x€ N, y € N} is an empty relation as sum of two positive integers
can never be zero.

Universal Relation : A relation in the set A which is A X A itself is called a universal
relation.

RELATIONS AND FUNCTIONS 1
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The relation S in R defined by

S={(x, ) | x < yory<x} is universal relation because of the law of trichotomy.
A relation is defined on the set of all living human beings by

S = {(x, y) | Difference between ages of x and y is less than 200 years}. Obviously S is the
universal relation.

Reflexive Relation : If S is a relation in the set A and aSa, Va € A ie. (a, @) € S,
Va € A, we say S is a reflexive relation.

For example similarity of triangles, congruence of triangles, equality of numbers, subsets in a power
set (A C A for all A € P(U)) are examples of reflexive relations.

< is not a reflexive relation in R. Infact a < a is false for all a € R.

But < is reflexive relation on R. a < a, Va € R.

Symmetric Relation : If S is a relation in a set A and if aSh = bSa

ie. (@ b)) € S = (b,a) € S Va, b € A, we say S is a symmetric relation in A.

If ABC <> PQR is a similarity relation in the set of triangles in a plane, then PQR <> ABC is
a similarity.

In the set of all non-zero integers, we define relation S by (a, ) € S < d divides a — b where
d is a fixed non-zero integer.

If m divides a — b, then m divides b — a. (@, b)) € S = (b, a) € S. If APQR = AABC then
AABC = APQR. These are examples of symmetric relations.

For unequal sets A and B, A C B does not imply B C A.

So C is not a symmetric relation in P(U).

Transitive relation : If S is a relation in the set A and if aSh and bSc = aSc, Va, b, c € A

i.e. (@, ) € Sand (b, c) € S = (@, ¢) € S, Va, b, c € A, then we say that S is a
transitive relation in A.

C is a transitive relation in P(U)as AC Band BC C = A cC C. VA, B, C € PQU).

Similarly < is a transitive relation in R, asa<band b<c =>a<c Va b c € R.

Equivalence Relation : If a relation S in a set A is reflexive, symmetric and transitive,
it is called an equivalence relation in A.

If S is an equivalence relation and (x, y) € S then we will write, x ~ y.

For example equality is an equivalence relation in R, congruence of triangle is an equivalence
relation on a set of coplaner triangles.

Example 1 : Prove that congruence = is an equivalence relation in Z.
x = y(mod m) (Read : x is congruent to y modulo m) <> m divides x —y, m € Z — {0}.
Solution : Reflexivity : a = a(mod m) as a — a = 0 is divisible by any non-zero integer m.
(Note : 0 is divisible by any non-zero real number. But no real number is divisible by 0.)
Symmetry : If a = b (mod m), then m dividies a — b.
Leta— b =mn ne Z
se b —a=—mn = m(—n) —ne’”Z
s b =a (mod m)
If a = b (mod m), then b = a (mod m)
.. = is a symmetric relation in Z.
Transitivity : If a = b (mod m) and b = ¢ (mod m) then m | (a — b) and m | (b — ¢).
(m | (@a — b) means m divides (@ — b))
forsome k€ Z,t € Za—b=mkand b —c = mt
a—b+b—c=mk+ mt
a—c=mk+ 0 k+teZ

2 MATHEMATICS 12
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a = c (mod m)
If a = b (mod m) and b = ¢ (mod m), then a = ¢ (mod m)
Congruence relation is an equivalence relation in Z.
Example 2 : Prove that similarity is an equivalence relation in the set of all triangles in a plane.
Solution : For any AABC, AABC ~ AABC for the correspondence ABC <> ABC.
If AABC ~ APQR, then APQR ~ AABC.
Also, if AABC ~ APQR and APQR ~ AXYZ, then AABC ~ AXYZ.
~ is an equivalence relation.
(Note : Similarly congruence is an equivalence relation in the set of all triangles in plane.)
Example 3 : A = {the set of all lines in plane}
S ={(x, ) | x =y or x is a line parallel to line y.}
Is S an equivalence relation in A ?
Solution : (, ) € Sas =1 So, S is reflexive. (given)
Let (, m) € S. Sol||mor l=m.
If I || m,then m || [ or if /] = m, then m = [.
If (/, m) € S then (m, ) € S.
S is symmetric.
Let (,, m) € S and (m, n) € S.
If [, m, n are distinct lines, then / || m and m || » and hence / || .
If/||mand m =nor if /] =m and m || n, then /|| n.
If/l=mand m =n,then!/=n
If (, m) € S and (m, ») € S, then (/, n) € S.
S is transitive.
So, S is reflexive, symmetric and transitive.
S is an equivalence relation.
Example 4 : Prove that the relation S = {(a, b) | |a — b| is even.} is an equivalence relation in
the set A= {1, 2,3,4,5,6, 7}.
Solution : | odd integer — odd integer | = | even integer — even integer | = an even integer
S= {1,3), G, 1),(1,5 G, 1),3,5),(5,3), (1,7, (7, 1), 3, 7, (7, 3), 5, 7), (7, 5),
(2, 4), (4, 2), (2, 6), (6, 2), (4,6), (6,4), (1, 1), (2,2), 3, 3), (4, 4), (5, 5), (6, 6), (7, T)}
Since (x, x) € S, Vx € A. S is reflexive.
Let (x, y) € S.
Hence |x — y| is even.
|x —y|=|y —x]|. So|y — x| is even. Hence (x, y) € S = (35 x) € S. So S is symmetric.
Let (x, y) € S and (y, z) € S.
If |[x — y| and |y — z| are even, then x and y have same parity (both even or both odd) and
y and z have same parity. Thus x and z have same parity.
| — z]| is even.
(x,z2)e S,if (x, y) € Sand (3 2) € S
S is transitive.
So, S is reflexive, symmetric and transitive.
S is an equivalence relation.
Antisymmetric Relation : If S is a relation in A and if (¢, b)) € Sand (b, a) € S = a = b,
Ya, b € A then S is said be an antisymmetric relation.
C is an antisymmetric relation in the set P(U)as AC Band B C A = A =B, VA, B € P(U)
< is an antisymmetric relation in R because a < band b<a=>a=b Va b€ R

Example 5 : Give an example of a relation which is (1) reflexive and symmetric but not transitive
(2) reflexive and transitive but not symmetric (3) symmetric and transitive but not reflexive.

RELATIONS AND FUNCTIONS 3
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Solution :

¢}

So S

A = the set of all lines in plane.

S = {(x, y) | x =y or x is perpendicular to y, x, y € A} is a relation in A.
Since / =1, (I, ) € S. So S is reflexive.

If (I, m) € S, then I = m or [ is perpendicular to m.

m = [ or m is perpendicular to /.

(m ) e S.

(4 meS= (mleS.

is symmetric.

Let(, m)€ Sand (m, n) € Sand !l #m m#*n, Il #*n
Hence I L mand m L n.So /| n,as Il # n.

(2)

3

Example
trans

(¢, ne&s

S is reflexive and symmetric but not transitive.

< in R is reflexive and transitive but not symmetric.

a<a Vae R So, S is reflexive.

a<band b<c=a<c¢c Va bce R. SoS is transitive.
but if a £ b, then b & a, unless a = b.

S is not symmetric.

Thus (3, 5) € S, but (5, 3) € S where S is the relation <.
S is reflexive and transitive but not symmetric.

Let A = {1, 2, 3}.

S={(1,2), 2, 1, (1A, 1), 2, 2)}

S is symmetric and transitive but not reflexive as (3, 3) € S

6 : Give an example of a relation which is (1) reflexive but not symmetric or
itive (2) symmetric but not reflexive or transitive (3) transitive but not reflexive or

symmetric.
Solution : (1) Let A = {1, 2, 3}.

S:

(2)

3)

Example

{1, 1), (2, 2), (3, 3), (1, 2), (2, 3)}

(1, D, (2, 2), (3, 3) are in S. Hence S is reflexive.

(1,2) € S but (2, 1) & S. Hence S is not symmetric.

(1,2)e §,(2,3) € Sbut (1, 3) & S.

S is not transitive.

S is reflexive but neither symmetric nor transitive.

Let A= {1, 2, 3}, S = {(1, 2), (2, 1)}

S is symmetric but neither reflexive nor transitive.

Consider < in the set R.

a<band b<c=>a<c Va bc e R. So, S is transitive.
but a € a and if a < b then b ¢ a. So, S is neither reflexive nor symmetric.

< is transitive but neither reflexive nor symmetric.
7 : Give an example of a relation which is not reflexive, not symmetric, not transitive.

Solution : Let A = {1, 2, 3}, S = {(1, 1), (2, 2), (1, 2), (2, 3)}.

(3, 3) € S. So S is not reflexive.
(1,2) € Sbut (2, 1) & S. So S is not symmetric.
(1,2) € Sand (2,3) € Sbut(l,3) & S. So S is not transitive.

S is not reflexive, not symmetric, not transitive.

MATHEMATICS 12



Example 8 : Following is a proof that a relation which is symmetric and transitive is also reflexive.
Find what is wrong with it.

Let xSy
ySx (Symmetry)
Since xSy and ySx, so xSx (Transitivity)

S is reflexive.
Solution : This is not correct argument.
There may be some x such that xSy is not true for any y in set A.
Then the argument fails.
For example let A = {1, 2, 3, 4}
S={1,1),2,2),1,2), 2, D, (1,3), (3, 1), (3, 3), 2, 3), 3, 2)}
(4, 4) ¢ S. This is because for no x, (x, 4) € S.
S is not reflexive even though it is symmetric and transitive..

Example 9 : A relation S is said to be circular if xSy and ySz implies zSx. Prove that if a relation
is reflexive and circular, it is an equivalence relation.

Solution : S is reflexive. (given)
Let xSy. We already have ySy.
xSy and ySy = ySx

xSy = ySx
S is symmetric.
Let xSy and ySz.
zSx (S is circular)
xSz (S is symmetric)

S is transitive.

S is an equivalence relation.
Arbitrary Union : Let I be a non-empty set of real numbers. Let A; be a set corresponding

toi€ I
Then we define (JA; = {x | x € A, for at least one i € I}
iel
NA; = {x|x € A, forall i € T}
iel

For example, let I = [0, 1]. Let A; = [0, ]
Then [(JA; = [0, 1]
iel
MA; = {0}
iel
Equivalence Classes : Let S be an equivalence relation in a set A. If xSy, we say x ~ y (x is

equivalent to y) (Read ~ as wiggle)
LetAp= {x|x~p, x € A}

RELATIONS AND FUNCTIONS 5
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Let us prove the following :
if p ~gq, Ap = Aq and if p is not equivalent to ¢, Ap M Aq =0
Ipr N A, #0, let x € A, NA)
xEApandxeAq
x~pand x ~ g
p~xand x ~ ¢q
P ~q
pE Aq and g € Ap
S A, CA, and A, CA,
SO A = A,
Now, if Ap M Aq # (), then Ap = Aq
Also, p ~ p.
p € AP Vp € A.
UA, =A
pPEA
Thus an equivalence relation ‘partitions’ A into disjoint sets Ap such that
@) Ap N Aq = @, if p is not equivalent to q.
@ UA, =A
PEA
These sets A, are called equivalence classes corresponding to the equivalence relation ~.
Conversely any partition of A gives rise to an equivalence relation in A.
We define x ~ y if x and y are in the same class Ap
x ~ x as x and x belong to the same classes Ap.

If x ~ y, then y ~ x because if x and y belong to the same class, then y and x also belong to

the same class.

If x ~y and y ~ z, then x and y, y and z belong to the same class. Hence x and z belong to

same class.

Hence x ~ z

~ is an equivalence relation.

Example 10 : We define a = b (mod 2), if a — b is even. Prove = is an equivalence relation in Z.

Find equivalence classes.
Solution : g = g as 2 divides 0, or 0 is even.
If a=b,then b =aas a— b is even & b — a is even.
If a=b and b = ¢, then a = ¢ since a — b is even and b — ¢ is even implies
a—c=a—b+ b— cis even.
= is an equivalence relation.
1, 3,5,..€ Ajsay. (1=3,3=5cetc)
2,4,6,...€ A,say. 2=4,4=6 etc.)
All integers are divided into two equivalence classes,
A, = the set of odd integers and A, = the set of all even integers.

MATHEMATICS 12
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Example 11 : Let Z = A; U A, U A; where A = > 4, 7,...
> 5, 8,...
6, 9,...

b

bl 2

W N =
N St

{omn
A, = {...
As={..3, 6,

Define an equivalence relation whose equivalence classes are A, A, and A,.
Solution : Let us define aSb if 3 | (@ — b) or a = b (mod 3).
Then = is an equivalence relation as

a=aq as 3 divides a — a = 0, so aSa

a = b(mod 3) = 3| (a — b)

=3} —a
= b = a(mod 3)
aSh = bSa

3| (@—b)and 3| (b — c) implies 3 | [(a — b) + (b — ¢)] = a — c. Hence aSh and bSc = aSc.

S is an equivalence relation. So we can write a ~ b, if aSb. For this equivalence relation,
Ap={...1,4,7,10,.3, Ay = {..2, 5, 8..}, A; = {...3, 6, 9...} are equivalence classes. For

this relation, difference x — y is divisible by 3, if x and y belong to the same class.

Example 12 : Let L be the set of all lines in the XY-plane and S be the relation defined in L
as S = {(L;, Ly | L; = L, or L; is parallel to L,}. Prove S is an equivalence relation and
obtain equivalence classes containing (i) X-axis (ii) Y-axis.

Solution : We have seen that S is an equivalence relation.
The equivalence class of lines containing X-axis is the set of lines y = b, b € R.
The equivalence class of lines containing Y-axis is the set of lines x = a, a € R.

Example 13 : Show that the set S = {(P, Q) | distance of P(x, y) and Q(x;, y,) from origin is same.
P, Q € R?} is an equivalence relation. What is the equivalence class containing (1, 0) ?
Solution : d(P, O) = d(P, O). So (P, P) € S. So S is reflexive.

If d(P, O) = d(Q, O) = r, then d(Q, O) = d(P, O) = r. So S is symmetric.
If d(P, O) = d(Q, O) = r and d(Q, O) = d(R, O) = r, then d(P, O) = d(R, O) =r
P, Q€ S, (Q, R)e S= (P, R) € S. Hence S is transitive.
S is an equivalence relation.
d(A(1, 0), 0O) =1
The equivalence class containing (1, 0) consists of all points at distance 1 from origin i.e. unit circle.

| Exercise 1.1 J

1. Determine which of the following relations is reflexive, symmetric or transitive ?
(1) A=1{1,2,3,..,10}. S={(x ») |y = 2x}
(Z) A=N, S = {(x, )| y divides x}
3) A=1{1,2,3,4,5,6}, S = {(x, y) | y divides x}
4 A=ZS={xylx—ye Z}
5 A=R, S={x»|y=x+1}
2. aSbif 6| (a—b), a b€ Z. Prove that S is an equivalence relation and write down equivalence
classes.
3. Prove C is reflexive, antisymmetric and transitive in P(U).
4. (1) f:N =N, f(x) =x2 is a function. We define xSy if £(x) = £(»). Is S an equivalence relation ?
What are equivalence classes ?
(2) Iff:Z — Z, f(x) = x%, what are equivalence classes for this equivalence relation ?

RELATIONS AND FUNCTIONS 7
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1.2

—

fiNXN = N XN, f((m, n)) = ((n, m)). We say (a, b)S(c, d) if f((a, b)) = f((c, D). Is S
an equivalence relation ? What is the equivalence class containing (1, 2) ?

Let L be the set of lines in XY plane. Define a relation S in L by xSy < x =y orx L y
orx || y.

Is S an equivalence relation ? If so, what are equivalence classes ? What is the equivalence
class containing X-axis ? What happens if L is the set of all lines in space ?

*
One-one and onto Functions
We have studied the concept of a special type of relation called a function.
Remember, if A # ¢ and B # ¢ and if f C (A X B) and f # 0 such that for every x € A,

there is one and only one y € B such that (x, y) € f, then fis a function.

Thus f is a relation whose domain is A. We also studied graphs of functions and algebraic

operations of addition, subtraction, multiplication and division of functions.

Consider following two functions :
f:N >N, f(x)=x2
=41, 1D, 2,4, (3,9, 4, 16),....}
Here x; # x5, = f(x)) # f(xy).
g:Z—>Z gix)=x2
Then g = {(0, 0), (1, 1), (—1, 1), (2, 4), (-2, 4).....}
But —1 # 1 and g(—1) = g(1) = 1.

Functions like f are called one-one functions and functions like g are called many-one

functions.

Let us give a formal definition.

One-one function : If f: A — B is a function and if Vxl, X, € A, x; #x, = f(x)) # [(xp),

we say f : A — B is a one-one function, also called an injective function.

Generally we deal with equality with ease rather than working with an inequation. Using

contrapositive of defining statement, we can say that if f(x;) = f(x,) = x| = x,, Vxl, x, € A, then
f: A — B is a one-one function.

For a function f: A — A, S = {(x;, x,) | f(x1) = f(x,)} is an equivalence relation in A.

Obviously f(x)) = f(x)) (Reflexive)
f(x1) = f(xz) = f(xz) = f(xl) (Symmetry)
f(xl) = f(xz) and f(xz) = f(x3) = f(xl) = f(x3) (Transitivity)

S is an equivalence relation.

For a one-one function f: A — A, the equivalence class containing x; is {x;} only.

So A= U{x}. Also A; = {x;} is the partition of A corresponding to this equivalence relation.
xeA

Consider f: {1, 2,3, 4,5} — {2,3,6,7, 8
=41, 2), 2, 2), (3, 3), (4, 6), (5, 6)}. fis not a one-one function as 1 # 2 and

S =r) =2

MATHEMATICS 12
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Many-one function : If f : A — B is a function and if Elxl, X, € A such that x; # x, and
Sx;) = f(x;), them f: A —> B is said to be a many-one function.
See that this defining statement is the negation of the statement used to define a one-one function.
We define f(C)={y |y =f(x),x€ C,C C A, C# ¢} and
SUD)={x|y=fGx)x€ A ye D,DC B}
See that f(C) and f~!(D) are merely symbols.
We note that £(C) is never empty. Set f~1(D) could be ¢.
In this example if C = {2, 3, 4}, f(C) = {2, 3, 6}
IfC={1, 2}, f(©O) = {2}
If D = {8}, o =9
If D = {2}, o) = {1, 23
IfD = {2, 6}, YD) = {1, 2, 4, 5}
In fact f(A) is the range of f: A — B.
f~I(D) is the set of pre-images of the elements of D.
/® =a
Let us see some examples.
Example 14 : Determine whether f: N — N, f(x) = 2x is one-one or not.
Solution : Let x{, x, € N.
Jx) = f(xy) = 2% = 2%y = x| = X,
f:N — N, f(x) =2x is one-one.
Example 15 : If f: R = Z, f(x) = [x] = integer part of x (or floor function | x ), is f: R = Z
one-one ?
Solution : No. f(2.1) =[2.1]1 =2
f(2.23)=[223]=2
f: R = Z, f(x) = [x] is not one-one.
Example 16 : Is f : R = Rt U {0}, f(x) = | x| one-one ?
Solution : No. f-1)=f(1) =1
f:R = Rt U {0}, f(x) = | x| is not one-one.
Example 17 : If f: N U {0} > N U {0}, f(x) =x — 3[%], is f one-one ? Find equivalence classes
for the relation S = {(x;, x5) | f(x1) = f(xy)}.
Solution : f(1) =1 -3[L] = 1,/ @ =2,/®) =3 -3 =0,rW) =4 -3[%] =1,

- 51 = - 6] =
f&)=5-3[2]=2716=6-3[¢] =0
In fact f(#) = the remainder when »n is divided by 3.

SO =@ =/ =r>00) =...=1
S@=/C)=/@ =01 =..=2
S =)=/ =r>12)= ... =0

f:NU{0} > NU {0}, f(x) =x — 3[%] is not one-one.
The equivalence classes are {1, 4, 7, 10,...}, {2, 5, 8, 11,..}, {0, 3, 6, 9, 12,...}
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Onto Function : If the range of the function f: A — B is B, we say that f is an onto
function or surjective function or more precisely f is a function from A onto B.

If Rf=f(A) = B, fis onto.

Thus, if there exists at least one x € A corresponding to every y € B, such that y = f(x),
f: A — B is an onto function. If 3y € B, for which there is no x € A such that y = f(x),
f: A — B is not an onto function.

Example 18 : Give one example each of a function which is (1) one-one and onto, (2) one-one
and not onto, (3) many-one and onto, (4) many-one and not onto.

Solution : (1) f: N — E, E being the set of even natural numbers, f(x) = 2x.

2)

3)

4

=4, 2), (2, 4), (3, 6),.....}

S =f(x) = 2x; = 2%, = x; = X,

fis one-one.

R =1{2,4,6,..} =E

Infact every y € E is of the form 2n for some » € N and f(n) =2n =y
Rf= E

£ is an onto function.

f:N =N, f(x) = 2x

7=10,2), @, 4, G, 6),..}

f is one-one as in (1).

Rf= {2n | n € N} = E, the set of even natural numbers.
R, =E#N

fis not an onto function.

SR = Z f(x) =[]

fa.n=1,7f13)=1

f is many-one.

But Rf = Z, since for every n € Z, f(n) = n. Thus every integer is in the range of f.
f is onto.

f:1Z > Z, f(x) = x?

f(=1) =f() = 1. So f is not one-one, but it is many-one.
R,={0,1,4,9,.} #Z

fis not onto.

One-one and onto function :

If f: A — B is a one-one and onto function, it is called a bijective function.
Example 19 : Prove that f: R =& R, f(x) = ax + b a # 0 is a bijective function.
Solution : Let f(x)) = f(xy)

ax; +b=ax, + b

ax, = ax,

Xy = X, (a # 0)
f is one-one.

y=ax+b<=>x=yT_b (a # 0)

For every y € R, dx € R such that,

f(x)=f(y;b)=a(y;bj+b=y—b+b=y

10
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Range of fis R.
f: R — R is onto.
f: R — R is a bijective function.

Example 20 : In how many points does a horizontal line intersect the graph of y = f(x), if f is
one-one ?
Solution : Y

v

Figure 1.1

The graph of a one-one function f : A — B is intersected by a horizontal line y = ¢ in
at most one point.

For f: R — R, the graph of f(x) = x2 is intersected by a horizontal line y = ¢ in two points in
general (¢ > 0). For x| # x,, we should have f(x;) # f(x,). So if restrict the function to f: Rt — R,

f(x)=x2, it is one-one. The same thing happens in the case of graph of y = sinx. If x € [—E, %],

[O, E] etc, the graph of y = sinx is intersected by line y = ¢ (—1 £ ¢ < 1) in at most one point.
Otherwise the line y = ¢ intersects the graph of y = sinx in infinitely many points. (—1 < ¢ £ 1)
Example 21 : If A= {x{, X5, X3,..., X,,}, prove any function f: A — A is injective if and only if it
surjective.
Solution : Let f: A — A be one-one.
S fxps f(x5),.., f(x,,) are all distinct elements of A.
But A has n elements x;, x,,..., x,, only.
S(xq), f(xp),..., f(x,) must be x;, x,, X3,..., X, in some order.
<o Re= A
s f: A — A is onto.
Conversely, suppose f: A — A is onto.
Rf= {x1, X5, X35005 X}
Now, {f(x)), f(x3),.... f(x)} = {x1, Xy, X35..5 X},
No f(x;) can be equal to f(x). (i # j)
(If some f(x;) =f(xj), Rf will not contain all x;, x,, x3,..., X,..)
f is one-one.
Example 22 : If f: {x;, x5,..., X,,} — {¥1> Y95.-» V,,} 1S One-one, prove that m <n
Solution : f is one-one.
Jxp), f(xy),..., f(x,,) are m distinct elements from amongst {y,, ¥,,..., ¥,}

m<n
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Example 23 : If f: {x|, Xy,..., X,,} —> {¥15 Vp--» ¥,,} is onto, prove that m = n.
Solution : Some of f(x;), f(x,),.... f(x,) may be equal but they must form the set
{)’p Voseees y,,}.
If m < n, at most m elements out of {y,, y,,..., ¥,,} will be in the range, not all y,, y,,..., ¥,,.
m2=n
(Note : If A, B are finite sets and f: A — B is bijective then n(A) = n(B).

Example 24 : f: N = Z, f(n) = % n even

n—1
2

n odd
Prove that f is bijective.

Solution : £= {(1, 0), 2, 1), 3, —1), (4, 2),..}

1—-1
as f()=——7F"= (1 odd)
Q) = % =1 (2 even) etc.
If n is a positive integer, f(2n) = 27" = n. Since 2n € N, 2n € Dy 2n is even.

. o —2n+1-1
If » is a negative integer or zero, f(—2n + 1) = — (T) = n.

If n is a negative integer or zero, —2rn + 1 € N. —2n + 1 is odd.
All integers are in the range of given f: N — Z.
Rf= Z. So f is surjective.

—n o (21
J(n) ) or ( > )
LR = m—1_ _m=—1 _
Tl_?:nl_nb 2 - 2 =>n1—n2
and % - _n2_2—1 = n; + n, = 1, impossible.

f(n)) # f(ny) for any n;, n, € N.
f is one-one.

fis bijective.

Example 25 : Prove that f : R — {2} > R — {2}, f(x) = ix_—zl is one-one and onto.

2x -1 _ 2x—1
x1—2 - X/l—2

= 3x; = 3x,

= x| = X,

Solution : f(x)) = f(xy) =

f is one-one.
Let x € R — {2}.

2x—1
Let y =f(x) = xx_z where x = R — {2}

xy —2y=2x—1

G—2x=2y—1 o # 2
_2y-—1
xX=3-3

For every y € R — {2}, there is x € R — {2} such that,
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2y—1) 2()’-2)_1

y = f(x), since f(x) :f(ﬁ =

y-2 2
4y—2-y+2
T 2y—1-2y+4
=y
R,=R — {2}
fis onto.

Example 26 : f: N XN — N, f((m n)) =m+ n. Is f one-one ? Is f onto ?
Solution : f((1,2)=14+2=3,f(2,1)=2+1=3
but (1, 2) # (2, 1).
£ is not one-one.
m2l,n2l=>m+n=22
f(@m, n) =22, V(@m n) € NXN
1 & R,
fis not onto.
Example 27 : f: N X N — N X N, f((m, n)) = (n, m). Prove f is bijective.
Solution : f((my, n)) = f((my, ny))) = (1, my) = (ny, m,)
=R = ny, mp = my
= (m,, ny) = (m,, n,)
f is one-one.
V(@m, n) € N X N, f((n, m)) = (m, n)
R,=NXN

f is onto.

Exercise 1.2

Are following functions one-ome ? Are they omto ? (1 to 11)

1. f:R>R, fx)=5x+7
2. f:R>DR, f(x)=2—3x
3. f:RDR f®=x2+4x+5
4. f:R>DR, fx)=x*—x-2
5. f:N—>N, f(n)= % n is even
2 nisodd
6. f:R—= (1L 1), f&) =TI
f:AXB —A, f((a b)) =a, A and B are not singleton, A # @, B # .
J:ROR fx)=x
f:Z—>Z, fh)=|n+2 n is even

2n+1 n is odd.
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10 f:Z—>Z, f(W)=(n+1 n even
n—3 n odd.

1. f:Z—>Z, fh)=|n—2 n even
{Zn + 2 n odd.

12. How many one-one functions are there from {1, 2, 3,..., n} to itself ?
13. A, = {1}, Ay = {1, 2}, Ay = {1, 2, 3}

How many onto functions f': A; = A; (i = 1, 2, 3) are there ? Can you generalize the result ?

%

1.3 Composite Functions

We have studied the concept of composite functions. Let us revise it.

If f: A—> Band g : B—> C are two functions, their composite function gof : A — C is
defined by

(gof)x) = g(f (x))
Iff: A— Band g : C —> D are functions and Iy-C Dg,gof: A — D is defined by
(gof )x) = g(f (x))
Example 28 : If f: N 5 N, fx)=2x+ 3 and g : N = N, g(x) = 5x + 7, find gof and fog.
Solution : gof : N = N

(goH)(x) =g(f(x)) =g2x +3)=5QRx +3)+ 7 = 10x + 22
fog : N > N
(fog)x) =f@x) =fGx+ 7 =2(5x+7)+3 =10x + 17

In general, gof # fog.
Example 29 : If f: R 5> R, f(x) =x3and g: R = R g(x) = x5, prove that gof = fog.
Solution :gof : R = R, (gof)(x) = g(f(x)) = g(x3) = (x3)° = x13
fog : R = R, (fog)x) = f(g(x)) = f) = °) = x1°
Here fog = gof
(Note : Obviously (a™) = (a™)y" = a™)
Example 30 : f: {1, 2, 4,5} — {2,3,6, 7}
=11, 2), (2, 3), (4, 6), (5, 7)} and
g:42,3,6,7,8 — {1,3,5, 6}
g={2, D, 3, 1, 6, 1), (7,5), (8, 6)}. Find gof and fog whichever is possible.
Solution : R,={2,3,6,7} €D, ={2,3,6,7, 8}
gof exists.

gof ={(1, 1), 2, 1), 4, 1), 5, 5)}
as (gof)(1) = g(f(1)) = g(2) = 1, (goN(2) = g(f(2)) = g(3) = 1 etc.
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Rg= {1’ 5, 6} ¢Df= {1725 4’ 5}
Jog does not exist.

Example 31 : If f: A — B and g : B — C are one-one functions, prove that gof : A — C is

one-one.
Solution : (gof)(x;) = (gof)(xy) = g(f(x)) = g(f(x,)) (X, X, € A)
= f(x) = f(xp) (¢ is one-one)
= X =X (f is one-one)

gof : A — C is one-one.
Example 32 : If f: A — B is onto B and g : B — C is onto C, prove that, gof : A — C is onto C.
Solution : Let y € C.
Since g : B — C is onto C, there exists z € B such that g(z) = y.
Now, f: A — B is onto B and z € B.
dx € A such that f(x) = z
gD =y =gl =y
(8N =y
For every y € C, dx € A such that (gof)(x) = y
gof : A — C is onto C.
Example 33 : If gof : A = C is one-one, can you say f: A — B and g : B — C are one-one ?
Solution : No.
Let f:A—>B,A={1,2,3,4,5},B={5,6,7,8,9,10, 11}
f=11,5),2,6), 3,7, 4 8, (5, 9}
Letg: B —>B,gx)=x+1,ifx# 10 or 11
g(10) = g(11) = 5
Then gof : A = B, gof = {(1, 6), (2, 7), (3, 8), (4, 9), (5, 10)} is one-one.
But g : B — B is not one-one.
[Note : Here we have taken B = C.]
Example 34 : If f: A — B and g : B — C are two functions and gof : A — C is one-one, then
prove that f: A — B is one-one.

Solution : Let f(x) = f(xy) x;,Xx; €A
gf (x) = g(f(x) (fx,) € B, f(x;) € B)
(gf)(x)) = (goN(x)

X; = Xy (gof is one-one)

f: A — B is one-one.
Example 35 : If gof : A—> Cisonto C,are f: A—> Band g: B — C onto C ?
Solution : No. Let f: {1,2,3,4} = {2,3,4,5,6, 7}, f(x)=x+ 1
g:{2,3,4,5,6,7 > {4, 6, 8, 10}, gx) =2x ifx#6or7
g(6) = g(7) = 10

RELATIONS AND FUNCTIONS 15



“

Then gof : {1, 2, 3, 4} — {4, 6, 8, 10},
gof = {(1, 4), (2, 6), (3, 8), (4, 10)}
gofis onto C. But f: A — B is not onto as 6, 7 & Rf

Example 36 : If f: A — B and g : B — C are two functions and if gof : A — C is onto C,

prove that g is onto C.
Solution : gof : A — C is onto C.

Letz € C
dx € A such that (gof)(x) = z
gif(x)) = z

x € Aand f: A — B is a function.

f(x) € B. Let y = f(x).

g(y) = z, where y € B.

For every z € C. dy € B such that g(y) = z
g: B — Cis onto C.

Exercise 1.3

f:R—>R g:R—>R, 2: R — R are functions.

Prove : (i) (fog)oh = fo(goh) (2) (f + g)oh = foh + goh
Find gof and fog for

() f:RORf®=|x|, g:R—R, gkx) =x*
2) f:RY > RY, f(x) =x3, g: Rt = R, gx) = x%
f: Rt = R, f(x) = cube root of (3 — x3). Find fof.
f:R =R, f(x)=x%—x — 2. Find fof.

1—x

f:R={-1} > R— {-1}, f(® = 775 Find fof.

f: R — R is signum function.

fx = 1 x>0
0 x=0
—1 x<0

g: R — Z, g(x) = [x]. Find fog and gof.
f:Z —> Zand g : Z — Z are defined as follows :
f(n) = n+2 n even gn) ={( 2n n even
{ 2n —1 n odd { n2— n odd
Find fog and gof.
(1) IfA#¢,B#¢and f: A — B is a one-one function, prove that there exists a function
g : B = A such that gof = 1. (I is identity function) (g is called left inverse of 1)

16
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(2) fA#0, B#0and f: A— B is a function onto B, prove that 3 a function g : B > A
such that fog = I. (g is called right inverse of f)
(3) Combine results (1) and (2) if f: A — B is a bijective function.

1.4 Inverse of a Function

We have 3 - 1 =3 as 1 is multiplicative identity. 3 % =1 and so %
Similarly we have seen in XIth standard that for a function f: A — B, fol, = f and Igof = f
where I, and Iy are identity functions on A and B respectively. So does there exist a function

g : B — A such that gof =1, and fog = I5? The answer is yes under some conditions. We define inverse

is multiplicative inverse of 3.

of a function.

Definition : If f: A — B is a function and if there exists a function g : B — A such
that gof = I, and fog = I; we say g : B —> A is the inverse function of f: A > B and
denote g by f L.

The question arises why ‘the’ inverse ? We must prove that g : B — A is unique before we
call it the inverse of f : A — B and assign a symbol f .

Unigueness : Suppose g : B —> A and 2 : B — A are two inverses of f: A — B.

gof = 1,, fog = I, hof = 1,, foh = Ig.
g = golg = go(foh) = (gof)oh = 1,0h = h

Also g : B —> A, h: B — A are functions.

Inverse of a function f: B — A, if it exists, is unique.
When does the inverse of a function exist ? This is reflected in the following theorems.
Theorem 1.1 : If f: A — B has inverse g : B — A, then f: A — B is one-one and onto.
Proof : For x|, x, € A. let f(x)) = f(x;)
grG)) = g (xy) (f ), f(xp) € B)
€Ny = (2ofxy)
Io,(xp) = Ia(x5) (g : B— A is the inverse of f : A — B)
X1 =%
f: A — B is one-one.

Lety e B
IB(V) =Yy
(fo)) = ¥ (fog = 1)
S o) =y

g : B — A is a function. y € B. Hence g(y) € A.

Let g(y) = x. So f(g0)) =f(x) =y
x € Aand f(x) =y
For every y € B, there exists x € A such that y = f(x).
f:A — B is onto B.

Theorem 1.2 : If f : A — B is one-one and onto, it has an inverse g : B — A.
Proof : Let f(x) =y x € A
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Define g(y) = x
Since f: A — B is onto, for every y € B there exists x € A such that f(x) = y and this x is
unique as f : A — B is one-one.
g : B — A is a function.
&oNx) = gf(x)) = g(») = x
(fo)») = f(80)) = f(x) =y
gof = 1, and fog = Iy.
g is the inverse of f.
A result :
If f: A—> Band g : B—> C are one-one and onto, gof : A —> C is one-one and onto and
goH ' = fTlog™L
Proof : We know gof : A — C is one-one and onto. (Ex. 31, 32)
(gof) 7! : C — A exists and (gof) ! : C — A is a function.
f1:B—>Aand g!: C — B are functions.
f"log™1: C — A is a function.
(gof) o Flog™H = go((fof "Hog™")
= go(lgog™ )

= gog™!

Ie
(Flog™Ho(gaf) = fTlol(g " 0g) of)
= flo(gof)
= 7o
=1,
(gon ! = s log™!
Example 37 : For f: N — E, f(x) = 2x, find f~! and verify fof ! = I, flof = Iy where E is
the set of even natural numbers.
Solution @ f(x)) = f(xy) = 2x; = 2xy) = x; = X,
. f:N — E is one-one.
if y € E, y = 2n For some n, n € N
fm)=2n=y
For every y € E, dn € N such that f(n) = y
f: N — E is onto.

y=f@=x=x=3=r10=% @« =r'o)
fTESN o) =2 orf Tl = £

Verification is left to the reader.
Example 38 : f: R 2> R, f(x) = ax + b a # 0. Find the inverse of f: R — R.
Solution @ f(x)) = f(xy) = ax; + b=ax, + b
= ax; = ax,
= X = X, (a #0)
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f is one-one.

RELATIONS AND FUNCTIONS

Let y € R.
_ 2= (20 _
For every y € R, dx € R such that f(x) = f 2 =al +b=y
fis onto R.
SR> R x=flp) =22
or we may write /1 : R > R, fl(») = x—b
Example 39 : If f: Rt — R, f(x) = x2, find £~
Solution : f(x) = f(xy) = xlz = x22
= x| = x|
= X =X, (xpp X € RrRH
f is one-one.
Lety € R
Ax € R* such that x = yJy so that f(x) = x2 = y.
For every y € R, 3x € RY such that f(x) = y-
fis onto R™,
R S RY o) =y
or we may write ! : Rt — RT, f71(x) = /%
3x+2
Example 40 : f: R— {-3} > R - {3}, f() =35 FindsL.
Solution : Let f(x) = f(x))  xpx, € R — {-3}
3x,+2  3x,+2
25 +3 ° 2x,+3
6xx, + 9%y +4x, + 6 = 6x1x5 +9x, + 4x, + 6
Sxy = 5x,
1T X
f is one-one.
3x+2
Letx € R — {—%} andy=%
2xy+3y=3x+2
@y —3x=2-—3y
23y 3
x= 2y—3 y #E 3
S i -3 =
For every y € R {2}, there exists x € R { 2} such that f(x) = y.
fis onto.
SR {2} —R { 2}’f o) 2y—3 Of
—_ 3 3 _ 3x—2
rR={3) o r- {30 - - S
19
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Example 41 : If f: A — B is one-one and onto. Prove (f 1)7! exists and (f"1)7! = £
Solution : By definition of inverse if /7! : B — A has inverse 2 : A — B, it must satisfy
hof~1 = Iz and Sfon™! = I,. But f: A — B does satisfy these conditions and inverse is unique, if it
exists.
(FH7! exist and (f71)7! = £
Example 42 : A= {1,2,3}, B={1,4,9}, f: A — B, f(x) = x. Find f~! and verify f~lof =1,
fof 7l = Ig.
Solution : f= {(1, 1), (2, 4), (3, 9)}
f is one-one.
R,={1,4,9} =B
fis onto B.
FTUB =A@ = dx = {0 D, (3, 2), 69, 3))
fof =141, 1), 4, 4, 9, 9} = Iy
flof = {1, 1), 2,2), G, 3)} =1,
Example 43 : For f: R = {x | x 25, x € R}, f(x) = x> + 4x + 9, find f~! if possible.
Solution : f(x)) = f(x) = x2+4x;+9=x2+4x, +9
= xl2 - x22 +4x; —x) =0
= (x; — X)), +x, +4)=0
= x;=x, ofr x; +x,+4=0
Letx; =0, x, = —4 (To make x; + x, + 4 = 0)
Then f(0) =9, f(—4) =16 —16 +9 =9
f is not one-one.

f71 does not exist.

1_
Example 44 : If f: R— {1} > R— {1}, f(x) = ﬁ Prove that 1 exists and show that f=f"1,

Solution : (foHx) = ff(x))

- /(F%)

1-x
1_1+;\:
1—x

1+x
1+x—14+x
1+x+1—x

1+

=x
Jof =1,, where A=R — {—1}
By uniqueness of inverse and the definition of f~1, ! exists and f= f~L.
Note : Examples mark with * are only for information, not for examination.

*Example 45 : If f g h are functions from A to A and if fog and goh are bijective, prove that
f g h are bijective.
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Solution : (1) First of all we prove that f; g, s are one-one.

Let g(x)) = g(x,) X5, X € A
o) = fgxy))  glx) € A, glxy) € A

(ng)(x1) = (ng)(xz)

X1 =%

g(x)) = glxy) = x| = x,

g : A — A is one-one.

Let h(x;) = h(x,) X5, X € A
gh(x) = glh(xy))  h(x)) € A, h(x,) € A
(goh)(x)) = (goh)(x,)

X1 T %
h(x)) = h(xy) = x| = x,
h: A — A is one-one.

Let f(x) =f(xy) x;,x, € A

Since goh is onto A, E|y1, Y5 € A such that,
(goh)(yl) = X1 (gOh)@z) = X5

“ (8o = f((goh)(¥y))
(fog)(h(y))) = (fog)(h(y,))

h(y) = h(yy)

gh(y) = gth(yy))  h(y), h(»y) € A
(gom)(yy) = (goh)(»)

X1 =%

oSG =S = X = x,

. f: A — A is one-one.

(2) Now we prove f, g, h are onto A.

Lety € A
Since fog is onto A, Jz € A such that
(fog)(z) = y
L f@) =y

Let g(z) = x. Then x € A. Also f(x) =y and x € A
For every y € A, dx € A such that f(x) = y.
. fis onto A.
Similarly, since gok is onto A, 3z € A such that
(goh)2) = y
&) =y
Let A#(z) = x. Then g(x) = y where x € A
g is onto A.

(fog is one-one)

(goh is one-one)

) = Fxy)

(fog is one-one)
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Let y € A. Now g(y) € A.
Since goh is onto A, Jx € A such that
(goh)(x) = g(v)
gh(x)) = gy
But g is one-one.
h(x) =y
For every y € A, dx € A such that A(x) = y.
h is onto A.

*Example 46 : f: A—> Band g: B — C and 2 : B — C are functions.
(1) Prove if f is surjective and gof = hof, then g = h.
(2) Give an example in which gof = hof but g # A.
Solution : (1) Let y € B. fis onto B.

dx € A such that f(x) =y

g () = g0v) (fx) € B
hf () = gy (gof = hoj)
h() = g0

Since y € B is arbitrary and g : B — C and # : B — C are functions, g = A.
2) f:{1,2,3,4y > {5,6, 7}
S=1, 3), (2, 6), 3, 6), (4, 5)}
Let g: {5, 6,7} — {6, 8}, g= {(5, 6), (6, 8), (7, 8)}
Let h: {5,6,7} — {6, 8}, h = {(5, 6), (6, 8), (7, 6)}
gof = {(1, 6), (2, 8), (3, 8), (4, 6)}
hof = {(1, 6), (2, 8), (3, 8), (4, 6)}
gof = hof. But g # h
*Example 47 : If f: A — B, g : A — B are functions and 2 : B — C is a function.
(1) Prove if hof = hog and h is one-one, then f = g.
(2) Give an example where hof = hog but f # g.
Solution : (1) hof : A = C and hog : A — C are functions.
(hof)(x) = (hog)(x) for Vx € A
h(f(x)) = h(g(x))
fx)=gx) Vxe A (k is one-one)
f=g
(2) f:41,2,3} > {45}, [f={14, 2,4, G, 4}
g:{1,2,3} = {45}, g={1,5),2,5),G, 5}
h: {4, 5} > {6, 7}, h= {4, 6), (5 6)}
hof = {(1, 6), (2, 6), (3, 6)} = hog, but f # g.
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l Exercise 1.4 I

Find 771 if it exists : (1 to 6)
1. f:R >R, f(x)=2x + 3.
2. fi1Z—>2Z, fx)=x—1.
3. f:Rt — RT, f@) = x3.
4. f:{1,2,3,4,.,n} > {2,4,6,.., 2n}, f(n) = 2n.
5. f:Z—>2ZX{0,1}, f(n)= (%,0) n even.
[nT—l’ 1) n odd.
6. f:Z >N, f(n)= 4n n>0, n even
4 n|+1 n<0, neven
dn + 2 n>0, nodd
4|n|+ 3 n<0, nodd
(Hint : fis not onto. 3 & Rf)
For f: A — B, 1 a function g : B — A such that gof = 1,. Prove f is one-one.
For f: A — B, 3 a function # : B — A such that foh = Ig. Prove f is onto B.
Examine if following functions have an inverse. Find inverse, if it exists :
(1) f:R >R, f&) = [x] (Floor function)
2) f:R > R"U {0} f@ = x|
(3) f:R—>[0, 1), f@) =x — [x]
(4) f:RDZ, S =[x] (Ceiling function)
5) f:C—>C, f@ =7z (C = set of complex numbers)
(6) f:NXN—N, f{(m n)=m+n
(7) f:NXN—>N XN, f((m, n)) = (n, m)
%
1.5 Binary Operations
We know that addition of two natural numbers is a natural number.
iie.a€ N,be N=a+be N.
Similarly a — b€ Z if a b€ Z
axXbeZ if abe Z

Thus there is a non-empty set X and an ordered pair of elements (aq, b) of X X X giving a

unique element of X obtained by so
operations on X.

Binary Operation : Let A# . A

called ‘addition’, ‘multiplication’ etc. These are called binary

function * : A X A — A is called a binary operation. Instead

of notation like f((a, b)) or *(a, b), we use the notation a * b for the image of this function
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for (a, b) and call * a binary opration on A. Thus, corresponding to (4, ) € A X A, a unique
element a * b of A can be obtained by *.
Thus + is a binary operation on N, Z, Q, R, C.
X is a binary operation on N, Z, Q, R, C.
— is a binary operation on Z, Q, R, C as a — b does not necessarily belong to N if
a€ N, b e N.
For example 3 € N, 7€ N,but3 —7=—4¢& N.

Similarly <+ is a binary operation on Q — {0}, R — {0}, C — {0}. If 6 = 0, % is not defined

in Qor in R or in C.
Ifae N, b € N,then%e N unless 5 | a.

Hence division is not a binary opertion on N.

Commutative law : If * is a binary operation on set A and ifa * b=b *a, Va, b € A,
we say * is a commutative operation.

+ is commutative on N.

— is not commutative on Zasa— b #* b —a,a b € Z.

Associative law : If * is a binary operation on A and if (@ * b) * c = a * (b * o)
Ya, b, c € A, we say * is an associative binary operation on A.

What is the need of this law ?

See that (a + b) + ¢ = a + (b + ¢) i.e. + is associative on R. Hence we can write a + b + ¢
without ambiguity for this expression.

(@a—-b)—c#a—(b—c) Va b ceR

Hence ‘—’ is not associative on R. So we have to specify brackets while using ‘—’ for three
real numbers.

Identity Element : If * is a binary operation on A and if there exists an element e in
A such that @ * e = ¢ * @ = a, Va € A, we say e is an identity element for *.

0O+a=a+0=a Vae R

l-a=a-1=a, Va € R

.. 0 is the additive identity and 1 is the multiplicative identity in R.

a—0#0—gqgfora e R unless a = 0.

.. ‘=’ has no additive identity.

Inverse of an element : If * is a binary operation on A with an identity element ¢ and
if corresponding to @ € A, there exists an element @' € A such that a * @' = a' * g = ¢
where ¢ is the identity element for *, we say ' is an inverse of ¢ and we denote the
inverse a' of a by a .

—1 _

S.ooa*a al*xg=e¢

. 1 C e
In R, every non-zero real number @ has an inverse Z for multiplication.

Every element a has an inverse —a for addition in R.

0 has no inverse for multiplication in R.
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Operation Table : If A is a finite set and n(A) is ‘small’, we can prepare a table as follows :

* a; a, az..... a

a
as

as

a4

a; * a is written at the intersection of the ith row and jth column.

If * is commutative, the table is symmetric about the main diagonal.

Example 48 : * is defined on N U {0} by a * b =|a — b|. Is it a binary operation ?

Solution : Yes. Ifae€ N U {0}, be NU {0},thena—b € Zand |a—b| € N U {0}

.~ * is a binary opeation.

Example 49 : Determine whether following operations * are commutative or not ? associative

or not ?

(1) On N U {0}, a * b =29

a
(2) OnRY, a*b=1737

Solution : (1) a* =290 =2b0a=p x g Vg be NU {0}
S % is commutative.

(2 %3) % 4=26%4=22°"4=225%

2% (3% 4)=2%212=22:27_ 5"

* is not associative.

b
a+l1

2) a*b=357.b*a=

bfl'_1=aﬁ_1 = a+a=b+5b

= @—b)a+b)+(@—5b=0
= @—b)a+b+1)=0
Ifa=bora+b+1=0,thena* b=>5 * qa.

2
* is not commutative.

2 %3 1 3 %2 3 1

Q*3)*4=2%4=

= 3 Z__10_5
2*@*4=2%3 i+1 8 4

.. * is not associative.
Example 50 : A : R X R — R is defined by A(a, ) = a A b = min(a, b).
Prepare the operation table for A for the subset {2, 3, 4, 7, 8}.
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Solution :

A2 3 4 7 8
212 2 2 2 2
3,2 3 3 3 3
412 3 4 4 4
712 3 4 7 7
8,2 3 4 7 8

Example 51 : Define * on {2, 4, 6, 8} by a * b = g.c.d (a b).

Prepare the operation table for *. Is * commutative ?

Solution :
g.c.d. 2 4 6 8
2 2.2 2 2
4 2 4.2 4
6 | 2 2 6 2
8 2 4 2 8,

Obviously g.c.d. (a, b) = g.c.d(b, a)
* is commutative.
See that the table is symmetric about dotted diagonal.

Example 52 : * is the binary operation on N defined by a * b = L.c.m. (a, b)
(1) Find 8 * 10, 5 * 3, 12 * 24,
(2) Is * commutative ?
(3) Is * associative ?
(4) Find the identity for *, if it exists.
(5) Find inverse of those elements for which it exists.
Solution : (1) 8 * 10 = Le.m. (8, 10) =40
5% 3 =lcm (5 3) =15
12 * 24 = [em. (12, 24) =24
(2) lem. (a b) = lLem. (b, a)
* is commutative.
(3) * is associative.
(4) a*e=a Va€ Nmeans lLcm (g, ¢) =a, Vae N
e|la Va € N. In special case ¢ | 1. So, e = 1
Also, lL.e.m. (a, 1) = a.
1 is the identity for lc.m. operation.
(5) Lem. (a, b) 2 a and Lem. (a, b) 2 b.
Le.m. (a, b) # 1 unless a = b = 1. Inverse of 1 only exists and it is 1.
Example 53 : Let X # . Prove that union and intersection are binary operations on P(X). Are

they commutative ? Are they associative ? Find the identity and inverse if any for \U and M.
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Solution : AU B € P(X) and A N\ B € P(X) if A, B € P(X).
U and M and are binary operations on P(X).
Let A, B, C € P(X).
AUB=BUA ANB=BNA
and AUBYUC=AUBUCand(ANBYNC=ANBNCOC
U and M and are associative.
Also AU P =9 U A=A forall A € P(X)
0 is the identity for union.
ANX=XNA=A forall Ae PX)
X is the identity for intersection.
AUB=0& A=B=4.
¢ is the only element of P(X) having § as the inverse for union.
(AN B)C A . Hence AN B # X unless A =B =X.
X is the only element of P(X) having inverse X for intersection.
Example 54 : Define a ¥ b = a + 2b on N. Is ¥ commutative ? Is * associative ? Is there any
identity or inverse for any element in N ?
Solution : 2*%3=2+4+6=28
3%¥2=3+4=7
* is not commutative.
2*3)*4=8*x4=8+8=16
2% 3*4)=2%11=2+22=24
* is not associative.
Ifa*e=e*a=qg thena+2e=e+2a=a Vae N
a+2e=a
e=0
But 0 ¢ N.
* has no identity and therefore there is no question of inverse.
Example 55 : * is defined on Z by a * b =a + b + 1. Is * associative ? Find the identity and inverse
of any element, if it exists.
Solution : (@ * b)) * ¢c =@+ b+ 1) *¢
=a+b+1+c+l=a+b+c+2
a*b*c)y=a*b+c+)=a+b+c+1)+1=a+b+c+2
* is associative.
Leta*e=e*a=aforVae Z
ate+1=a
e=—1
Also,a* (—)=a+ D)+ 1=a Also(-1)*a=(-1)+a+1=a.
—1 is the identity for *.
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a*b=a+b+1=-1=>b=-2—a
Alsoa* (—a—2)=a+(—a—-2)+1=-1
—a — 2 is the inverse of a.

Example 56 : Prove if * is an associative binary operation having identity e and if a has an
inverse, the inverse is unique.
Solution : Suppose a has two inverses a4' and a".
a*ad=ad *ag=e
a*ag"=a"*a=e
Now a' =a ¥ e =4 * (a ¥ a")
(@ * a) * a"

=e * q"

=q"
The inverse is unique.
Example 57 : Define * on R by a * b = a + b — (ab)>.
(1) Prove * is commutative but not associative.
(2) Find the identity element for *.
(3) Prove that 1 has two inverses for *.

(4) Prove if a € R, a has at most two inverses.

(5) Which elements have no inverse ? Which have only one inverse ? Which have two inverses ?
Find the unique inverse if there is any.

Solution : (D a*b=a+b— (@ =b+a— (ba> =b * a
* is commutative.
R *¥3)* (—2)=Q2 + 3 — 36) * (—2)

(—31) * (2)
=31 — 2 — (62)%
—33 — 3844
—3877
2% (@B *(=2)=2%(3—2— (-6 =2 *(=35)
=2 + (—35) — 4900
=—4933

* is not associative.
(2) a*e=a+e—(ae)l =e+a—(ae)) =a =>e—a%?=0 Vae R=>e=0
(Take in particular a = 0)
a*0=a+0—-—0=ag=0%a
0 is the identity for *.
(3) Let 17! =aq.
l¥a=1+a—a*=0

a2—a—-1=0

= 1E45
2
-1 = J§2+1 or 1—2J§

1 has two inverses.

28 MATHEMATICS 12



(4) Let b be inverse of a, a € R.
Soa*b=0
Sooa+b—a?h?=0

S B —b—a=0

This is a quadratic equation in b.

.. Every element a can have at most two inverses.

1
Ifd4a3 < —lora< (_%)3, A<O
.. a has no inverse.

If 4a3 > —1, a has two inverses.

If @ = _Tl’ a has only one inverse.
,_ . li‘/1+4a3
s Ifa=3 Tl’ a has only one inverse, namely 6 = — ——_ = %
2a? 2a
1 1 1 \2 1 1 1 4a +1
- K — = — (LY = —_ = = .
oarspa ety (2a) At o T a4t 2

S.oa= ‘3’_71 has only one inverse namely ﬁ

(0 is identity)

It has at most two real roots as A = 1 + 44> and A may be positive or negative or zero.

=0

(Note : Here * is not associative. Hence uniqueness of inverse cannot be asserted.)

Miscellaneous Examples

Example 58 : A relation S is said to be triangular, if xSy and xSz = ySz.

Prove S is an equivalence relation < S is reflexive and triangular.
Solution : Suppose S is an equivalence relation.

». S is reflexive.

Let xSy and xSz

ySx and xSz

ySz

. xSy and xSz = ySz

». S is triangular.

Conversely let S be reflexive and triangular.
Let xSy. Also xSx.

. ySx

s xSy = ySx

.+ S is symmetric.
Let xSy and ySz

. ySx and ySz
s xSz

. S is transitive.

.. S is an equivalence relation.

(S is symmetric)

(S is tranmsitive)

(S is symmetric)

Example 59 : In R, let xSy if x — y € Z. Prove that S is an equivalence relation. What are

equivalence classes ?
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Example 60 : Prove f: R — {2} =& R — {1}, f(x) =

Solution : x —x € Zas 0 € Z
xSx
S is reflexive.
Ifx—ye€ Z theny —x € Z
xSy = ySx
S is symmetric.
Ifx—ye Zand y —z € Z, then
x—y+ty—z=x—z€ Z
If xSy and ySz, then xSz
S is transitive.
S is an equivalence relation.
So now we can denote S by ~.
Now x ~ y < x — y is an integer.
Like if x =7.82, y =282, thenx —y=5€ Z
X~y
x—[x]=782—7=0.82
y — [¥] = 5.82 — 5 = 0.82 must be same, if x ~ y.
x — [x] consists of those real numbers whose decimal expressions after decimal point are identical.
x — [x] =y — [y] or equivalently x — y = [x] — [¥].
The equivalence class of x consists of those real numbers y for which x — y = [x] — [y]

X
. . —l
+ is one-one and onto. Find /7.

X

N __ %
n+2 X +2

Solution : f(x)) = f(xy) =
= x1%y + 2x; = x1%y + 2x,
=X T X
f is one-one.

Let ye R— {1}, x € R — {2}

X
Let y = 333

For every y € R — {1}, dx € R — {2} such that y = f(x)
R,=R — {1}

fis onto R — {1}.

SR - {1 5 R- 2} W = 72

Example 61 : * is defined on R by a * b = a + b — ab. Is there an identity for * ? What is inverse

of a € R, if it exists ?
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Solution ta*e=e*ag=ag,Va€ R =2 a+e—ae=a Va € R
= e—ae=10 Va € R
= e=0 (Take a = 0 in particular)

Alsoa*0=0*a=ag+0—0=aqa
0 is the identity for *.
Nowa*b=a+b—ab=0= (1 —a)b =—a

= b= ifa#1

a—1-

a
a—1

Ifa#1, a! exists and a ! =

Example 62 : Define relation S on Z — {0} X Z — {0} by (a, b)S(c, d) < ad = bc. Prove that
it is an equivalence relation. What about equivalence classes ?
Solution : (a, b)S(a, b) as ab = ba

S is reflexive.
If (a, b)S(c, d), then ad = bc

cb = da

(c. d)S(a, b)

S is symmetric.
Let (a, b)S(c, d) and (¢, d)S(e, f)
. ad = bc and c¢f = de

ade = bce and acf = ade

acf = bce
af = be, since ¢ # 0
(a, b)S(e, /)

S is transitive
S is an equivalence relation.
a _ ¢ =
In fact b d if ad = bc.

The equivalance class of fractions (a, b) consists of non-zero rational number %.

Example 63 : Let * be defined by a * b = 42 for 4 b € Q*

Find the identity element. Find 471 and (4 * 5)7L.

Solution:a*b=a=>‘1’—g=a=>b=10 (as a # 0)
Alsoa*10=10*a=“1'01°=

10 is the identity for *.
Let4 * =10

4_a =
10 10
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a=25
-1 _ - 425 o
41 =25 (4 *25 = 222 =10
4.5
E3 = o, =
4k5=20=2

Now 2 * g = 10 =>§—g=10

= a=50
@*5y1=21=50

Exercise 1

)

Prove that there is only one relation in {1, 2, 3} which is reflexive and symmetric but not

transitive and which contains (1, 2) and (1, 3).

Prove that the number of equivalence relations in {1, 2, 3} containing (1, 2) is two.
S is defined on R by, (¢, H) € S 1 +ab>0 Va be R

Prove S is reflexive and symmetric but not transitive.

(Hint : Takea=3, b=, c=—-8. (a4 b)€ S, (b c) € Sand (g c) & S)

A={1,2,3,.,14, 15}, S={(x »|y=5x,x, y € A}
Determine whether S is reflexive, symmetric or transitive.
The relation S is defined on R as follows :

S={a b |a<h?abec R}

Prove S is not reflexive, not symmetric and not transitive.

Let S (R X R). S = {(A, B) | d(A, B) < 2}. Prove S is not transitive.

S is defined on N X N by

(a, b) S (¢, d) & ad(b + ¢) = bc(a + d). Prove that S is an equivalence relation.

Determine whether following functions are injective or not ? surjective or not ?

(1) f:R>DR, f(x)= {2x+1 x20

x2 x<0

2) f:R—=R, fx)= —x + 1 x20
{ x2 x<0

3 fZ-Z fn = {n—l n odd
n n even

4) f:Z>Z, f(n) = n n even
{nT—l n odd

(5) FRX®R={0) SRS =7

6) f1ZoZ, f(n)= (n n even
2n+3 n odd (Hint : Is 3 € R, ?)

7 f-L = [FL 1L fG) = x | x|
@) f:N—>NU{0}, f(n) =n+ (1)

32
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10.

11.

12.

13:

14.

18,

16.

17.

18.

19.

(9) f:N— {1} = N, f(n) = largest prime divisor of n.

(IO f:R— {3} > R— {1}, f(x) =

x—3
(1) f: R >R, f(x) = x — [x]
f:00,1] = [0, 1], f(x) = (=x x€ Q
{l—x x & Q

Prove (fof)(x) = x.
fi1Z —>Z,f(n) =5n and

g:Z—)Z,g(n)={% if 5|n
0 otherwise. Find gof and fog.
f:R =R, f(x) = 1 x>0

0 x=0

—1 x<0
and g : R > R, g(x) = [x]. Prove (fog)(x) = (gof)(x) Vx € [—1, 0)
If f: A— B and g: B — A are two functions such that gof = 1,, then prove that f is
one-one and g is onto A.
Prove for functions f : A —> Band g : B > C
(1) Ifgof:A—> Cisonto C, g: B — C is onto C.
(2) If gof : A — C is one-one, f: A — B is one-one.
(3) Ifgof: A— Cis onto and g : B — C is one-one, f: A — B is onto.
(4) If gof : A— C is one-one and f: A — B is onto B, g : B — C is one-one.
F:RY U {0} > Rt U {0}, f&) = Vx, g : R > R, gx) = x2 — 1. Find fog or gof
whichever exists.
Iff:NU {0} >DNU{0},fm)=(n+1 n even

{n -1 n odd. Prove f= f1.

10* —10~*

iR > (=1, 1), f&x) = Find £, if it exists.

10* +107%"
2 4x+3 -1
f:R — {3} — R, f(x) = gx—=7- Prove (fof)(x) = x. What can you say about f~ ?

* is defined on R by a * b = a + b + ab. Is * commutative ? Is it associative ?
Answer the same question if a ¥ b = a — b + ab.

Examine whether following binary operations are commutative or not and associative or
not :

(1) a*b=a>onN

(2) a* b=gcd (a b) on N
(3) a*b=a—>bonQ

(4) a*b=a’hon Q

(5) a*b=a+b—50nkR
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20.

(6)
)

3)
)

a*b=#onR—{—1}

a*b=a-2|-b on Q
a*b=a;b on Q
a*b=a+b—2o0nZ

(1)ya*b=a+ 2b—3 on Z
Find the identity element for following binary operations and inverse of any element in
case it exists (provided identity exists) :

@
(2)
3)
4
)
(6)
(N
(®
&)

a*b=a+ b+ abon Q— {—1}
a*b=290onQ- {0}
a*b=a+b—2o0nZ

a*b=a+ b—abonR — {1}
a*b=monR
a*b=3a+4b—2o0onR
a*b=a+3b2o0nZ

a* b=gecd (a b) on N.

A * B=A M B on P(X) for a non-empty set X.

(10) A * B=A U B on P(X) for a non-empty set X.

Section A (1 mark)

Select a proper option (a), (b), (c) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

1)

(2)

3)

4

The relation S = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} on {1, 2, 3, 4, 5} is ...... ]
(a) symmetric only (b) reflexive only

(c) transitive only (d) an equivalence relation

If A= {1, 2, 3}, then the number of equivalence relation containing (1, 3) is... ]
@1 (b) 2 (c) 3 @3

S is defined in Zby (x, y)) € S& |x —y| < 1. Sis... ]

(a) reflexive and transitive but not symmetric.
(b) reflexive and symmetric but not transitive.
(c) symmetric and transitive but not reflexive.

(d) an equivalence relation

If S is defined on R — {0} by (x, y) € S & xy = 0. Then S is... ]
(a) an equivalence relation (b) reflexive only

(c) symmetric only (d) transitive only

Which of the following defined on Z is not an equivalence relation... 1]
@QEye Sesx2y bB)(x,y)e S x=y

©) (x, y) € S & x — y is a multiple of 3 d) (x, y) € Sif |x — y]| is even

34
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(6) Ifa* b=a>+ b2on Z, then 2 * 3) * 4 = ...

(a) 13 (b) 16 (c) 185 ) 13
(N Ifa*b=a®+b>+ab+2o0n2Z then3 * 4= ...
(a) 40 (b) 39 ©) 25 ) 41

(8) Ifa * b= aTb on Qt, then the identity for * is ......

(@ 2 (b) 3 ©0 @1
(9) If a * b = aTb on QT, then the inverse of a (a # 0) for * is ......
@ 2 (b) = © = @ 2

(10) The number of binary operations on {1, 2} is ......
(a) 16 (b) 8 (c) 2 4
(11) The number of binary operations on {1, 2, 3,..., n} is ......

@ 2 ® " © 7 (d) n>"

(12) fa*b=a+ b+ abonR — {—1}, then g ! is ......
—a 1

@) @ ® 5 © T+ @ -7
(13) Fora* b=a+ b+ 10 on Z, the identity is ......

(@ o0 (b) =5 (c) —10 @1
(14) The number of commutative binary operations on {1, 2} is ......

(a 8 (b) 4 (c) 16 (d) 27
(15) If a * b = % on Q*, inverse of 0.1 is ......

(a) 100000 (b) 10000 (c) 1000 (d) 10

Section B (2 marks)
(16)A =[-1, 1], B=[0, 1], C = [-1, 0]
S;={xy|x*+)y>’=1,x€ A, ye A}
S,={x»|x*+y>?=1,x€ A,y € B}
S;={x »|x*+y*=1,x€ A, ye C}
S4={(x,y)|x2+y2=1,x€ B, y € C}, then

(a) S, is not a graph of a function. (b) S, is not a graph of a function.
(c) S;3 is not a graph of a function. (d) S, is not a graph of a function.
(17)f:R DR, fx)=3*+3xI=__.
(a) one-one and onto (b) one-one but not onto
(c) many-one and onto (d) many-one and not onto
X — .
(18) f: R—{q} > R — {1},f(x)=xTIq’,p¢q, then f is ......
(a) one-one and onto (b) many-one and not onto
(c) one-one and not onto (d) many-one and onto

O oo o o 00

]

I

O
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19) f:[-1,1] = [-1, 1], f(x) = =x | x| is ...... 1]
(a) one-one and onto (b) many-one and onto
(c) many-one and not onto (d) one-one and not onto

(20) If f: R = R, f(x) = 2x — 3, then... 1

— 1 — +3

@ '™ =3 ® [l = 25
(©) 7! does not exist @ f @) =3x—2

1) f: [-E£, Z] - [-1, 1] is a bijection if... ]
@ fx) = |x| (b) f(x) = sinx ©) fx) = x? (d) f(x) = cosx

(22) f: R > R, f(¥) = x%2 + 2x + 3 is... 1
(a) a bijection (b) one-one but not onto
(c) onto but not one-one (d) many-one and not onto

23y Ifa*b=ab+ 1onR,is.. 1
(a) commutative, but not associative (b) associative, but not commutative

(c) neither commutative nor associative (d) both commutative and associative

(24) If a * b = a2 + b2 on Z, then * is... 1
(a) commutative and associative (b) commutative and not associative
(c) not commutative and associative (d) neither commutative nor associative

(25) If a * b =a+ b — ab on Q — {1}, then the identity and the inverse of a for * are

respectively... 1
@ 0and 755  (b) 1 and £ () —1 and a @o, L

(26) I a * b =40 on QF, then 3 * (1 * 1) is... ]
@ % () 35 © 2% @ 2

(27) If A is defined on P(X) (X # 0) by, AA B = (A U B) — (A N B), then... ]

(a) identity for A is ¢ and inverse of A is A
(b) identity for A is A and inverse of A is ¢
(c) identity for A is A' and inverse of A is A
(d) identity for A is X and inverse of A is ¢

Section C (3 marks)

(28) S is defined on N X N by ((a, ), (c, d)) € S a+d=b+c.. ]
(a) S is reflexive, but not symmetric (b) S is reflexive and transitive only
(c) S is an equivalence relation (d) S is transitive only

36 MATHEMATICS 12



(29) Let S be the relation on the set A = {5, 6, 7, 8},

S = {(5, 6), (6, 6), (5, 5), (8, 8), (5,7, (7, 7), (7, 6)}, then... ]
(a) S is reflexive and symmetric but not transtive
(b) S is reflexive and transitive but not symmetric
(c) S is symmetric and transitive but not reflexive
(d) S is an equivalence relation.
B If:RY SR, fx) = x+1 is ... ]
(a) one-one and onto (b) one-one and not onto
(¢) not one-one and not onto (d) onto but not one-one
B IKEf:R2DR fxX)=[x],g: R >R, gx) =sinx, h : R > R, g(x) = 2x, then
ho(gof) = ...... 1
(@) sin[x] (b) [sin2x] (c) 2(sin[x]) (d) sin2[x]
- |
GHIEf:R>CL D, f(x)= x2 , then f71 = . i
1 . , I x|
(a) 21 (b) —signum x T=Tx1
2
© & @ 25
B33 f:RDR, fx)=(—1 x<0
0 x=0
1 x>0
g: R —>R, gx) =1+ x — [x], then for all x, f(g(x)) = ...... ]
(@l (b) 2 ©0 (d) -1
Section D (4 marks)
BHIEf: {x|x2L,x€ER > {x|x22,x€ R}, f(x) =x+ %,f_l(x)= ...... -
2
@I IVE o (g 2 @ P-4
(35) Iff: R > R, f(x) = x — [x], then f1(x) = ... -
(a) does not exist (b) is x (c) is [x] (d) x — [x]
(26) If f(x) = '/—2, then (fo(foH))(x) = ...... 1
X 1+ x° x X
@ T+ 2 (b) p © m (d) W
(37) f:R >R, f(x) =x%, g: R = R, g(x) = 2%, then {x | (fog)(x) = (gof)(®)} = ...... 1
(a) {0} (b) {0, 1} (©) R @ {0, 2}
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(38) f: R D Z, f(x) = [x] is ...... -
(a) one-one and onto and has an inverse (b) many-one and not onto, no inverse
(c) many-one and onto, no inverse (d) one-one and not onto, no inverse

(39) A=4{0,1,2,3,4,5,6}. Ifa b € A, a* b =remainder when ab is divided by 7. From
binary operation table of #*, inverse of 2 is ...... ]
(@1 (b) 5 (c) 6 4

We have studied the following points in this chapter :
1. Relation and equivalence relation.

One-one and onto functions

Composition of functions

Inverse of a function

th & W N

Binary Operations on a set

Srinivasa Ramanujan

Born in Erode, Madras Presidency, to a poor Brahmin family, Ramanujan first encountered formal
mathematics at age 10. He demonstrated a natural ability, and was given books on advanced trigonometry
written by S. L. Loney. He mastered them by age 12, and even discovered theorems of his own, including
independently re-discovering Euler's identity. He demonstrated unusual mathematical skills at school,
winning accolades and awards. By 17, Ramanujan conducted his own mathematical research on
Bernoulli numbers and the Euler—Mascheroni constant. He received a scholarship to study at
Government College in Kumbakonam, but lost it when he failed his non-mathematical coursework. He
joined another college to pursue independent mathematical research, working as a clerk in the
Accountant-General's office at the Madras Port Trust Office to support himself. In 1912—-1913, he sent
samples of his theorems to three academics at the University of Cambridge. Only Hardy recognised
the brilliance of his work, subsequently inviting Ramanujan to visit and work with him at Cambridge.
He became a Fellow of the Royal Society and a Fellow of Trinity College, Cambridge, dying of illness,
malnutrition and possibly liver infection in 1920 at the age of 32.

During his short lifetime, Ramanujan independently compiled nearly 3900 results (mostly identities
and equations). Although a small number of these results were actually false and some were already
known, most of his claims have now been proven correct. He stated results that were both original and
highly unconventional, such as the Ramanujan prime and the Ramanujan theta function, and these
have inspired a vast amount of further research. However, the mathematical mainstream has been
rather slow in absorbing some of his major discoveries. The Ramanujan Journal, an international
publication, was launched to publish work in all areas of mathematics influenced by his work.
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INVERSE TRIGONOMETRIC 2

FUNCTIONS

No matter how correct a mathematical theorem may appear to be, one ought never to be
satisfied that there was not something imperfect about it untill it also gives the
impression of being beautiful.

— George Boole

Mathematics consists of proving the most obvious things in the least obvious way.

— George Polya

2.1 Introduction

We have studied that a function has an inverse if and only if it is one-one and onto. There are
many functions which are not one-one or not onto or both and hence they cannot have an inverse
function. In class XI, we have studied that all trigonometric functions are periodic and hence they
are all many-one functions. Therefore, they cannot have an inverse. In order to have inverse of
these functions, we must restrict their domain and codomain in such a way that they become one-one
and onto. With this modified domain and codomain, it can have an inverse.

We know that if f= {(x, y) | y = f(x), x € A, y € B} is one-one and onto, then 1 exists and
S1={o®|y=/x),x€ A, y € B}

Also fof 7! = I and flof = I,

L x€EASDS(Flox)=x,y€E B=(of Hy) =y

In this chapter, we shall discuss the existence of the inverse of trigonometric functions and
discuss their properties.
2.2 Inverse of sine Function

We know that sin : R — R is many-one and range of sine is [—1, 1]. So, it is not onto R.
sine = {(x, y) | y = sinx, x € R, y € [—1, 1]} is a many-one function on R and is onto [—1, 1]. It is
many-one and periodic with period 27T. We can see from its graph that, if the domain of sine is
taken as, [—%, %] or [%, 37“ or [371':, 571‘] or [(2k - 1)%, 2k + 1)%], k € Z, it becomes one-one
and remains onto [—1, 1].

y = sinx
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So, to define the inverse of sine function, we can take any of these intervals as the domain of
sine. We shall take the domain of sirne function as —?, 2] to define the inverse of sine. So we
consider the function sirz = {(x, Y |y =sinx, x € —-—i—, 2] y € |—1, 1]}. This is a one-one and
onto function. Therefore, it will have an inverse function. The inverse of sine function is

denoted by sin—l.
sin~ {(y,x)|y—smx,x€[~2,-§,yellI[}

Thus, for x € [~——72-§, 2] and y € [1, 1]

=1

y = sinx & sin 'y = x

The domain of sin~! is [—1, 1] and the range is *—-’-,f—, 21

Remember that if y € [—1, 1], sin”ly is not just any real x for which sinx = y but only
that x € [— > 2] for which sinx = y. For instance, given y = £, we know that sin % = g and
% € —%, E] SO sin_l(gj = E. Although sin(TC—?) = sm(zgt) = g, we can not
write sin_lg 27: because 2& ¢ [ = ﬂ].

Also VO € [—%, %], sin_l(sine) =0

sin(sin"x) = x. Vx € [-1, 1].

For instance, sin(Sin_lg) = %, because % € [—1, 1]. sin_l(sinzTn) = 2Tn because
21 _ T _1( (315)) 31r, T
5 € [ > 2] but sin™ | sin 5 )) # because 3L [ 2].

If the inverse of f: A — B is f~1 : B — A, then we know that,
fof 1 =1z and flof = I,

Thus, sin : [—%, %] — [—1, 1] has inverse, sin” ! : [-1, 1] = [—%, %]

sin~(sinx) = x, Vx € [—%, %] and sin(sin 1x) = x Vx € [—1, 1].
We note that,

T I i <
(l)xe[z,z](:) <x S2@|x| 2and
y € [-1, 1]<=>—1 Sy<1&e |yl <1

, that is sin”lx # (sinx)™!

Q) sin"lx # Tinx

2.3 The Graph of y = sin lx

The domain and the range of sin~! are [—1, 1] and [—%, % respectively. Its graph will be
yi4

confined between the two vertical lines x = —1 and x = 1 and the two horizontal lines y 5

andy=%.
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We can use our knowledge of the graph of y = sinx to get the graph of y = sin lx. To obtain it,

let us first examine how to find the graph of f~! from the graph of f, when inverse of f exists.

The graph of y = f(x) and the graph of y = f~1(x) are
very interestingly related. If point (a, #) is on the graph
of y = f(x), then b = f(a) and so a = f~1(b). Therefore,
the point (b, @) is on the graph of y = 1(x). The converse
is also true. Hence, A(a, b) is on the graph of y = f(x)
if and only if B(b, @) is on the graph of y = f~1(x).
We can see that the line y = x is the perpendicular
bisector of the line-segment joining A(aq, ) and B(5, a).
Slope of the segment joining A{a, b) and B(d, a) is

b—a ) <
a—b — —1. The slope of y = x is 1. Hence AB is

perpendicular to the line y = x. Also the mid-point AB is

a+b a+b . o .
5 25 | and obviously it lies on the line y = x.

X'«

Y

A
A@b)
B(b,q)

> X
O
W
Yl
Figure 2.2

- The line y = x is perpendicular bisector of AB. Thus, B(b, a) is the mirror image of A(a, b) in the

line y = x. Thus, the graph of y = f~1(x) is just the image of the graph of y = f(x) in the line y = x.

Y Thus, the graph of y = sin~lx is obtained by
4 simply reflecting the graph of sirn through the line
=1 (1%) y = x. First draw the graph of y = sinx, x € [—%, %],
y € [—1, 1] on a piece of paper. Now fold this paper
y = sin”x on the line y = x. Now turn the paper upside down,
X' pi S ; 5> X interchange the X-axis and Y-axis and look at the

graph. What you see is the graph of y = sin lx.
MNote : The student herself should perform this

activity in the class-room.
(_1’_%) 3T For the graph of y = sinx, x € [—E, %],
;(f, y € [~1,1] and for the graph of y = sin lx,
Figure 2.3 x€ [-1,1]and y € [_%a %]

Example 1 : Obtain the value of : (1) sin_l(%), (2) sin_l(f), 3) sin_l(—%).

T

Solution : (1) sz'n_l(%) = sin_l(sing) = %, because
- -—1L=-—1(-£=£ I _E &
(2) sin (ﬁ) sin| sing 4 because € [ > 2].

)

4
@) sin(=%). = sin"Y(—sink) = sin!(sin(-F

2.4 Inverse of coesine Function

I
6

< [£3

I I —
L because 6 € [

E It
27 2F

We know that cos : R — R is many-one and range of cosine is [—1, 1]. So, it is not onto.

cos = {(x, Y |y =cosx, x € R, y € [—1, 1]} is a many-one function onto [—1, 1] with
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Figure 2.4

period 27L. We see from its graph that it becomes one-one and onto if the domain is restricted to
[0, 7] or [T, 27] or [2T, 37] or... [kW, (kK + 1)), k € Z

We shall take the domain of cosine function as [0, ] to define the inverse of cosine. So
consider the function cos = {(x, y) | y = cosx, x € [0, &], y € [—1, 1]}. This is a one-one and
onto function. So, its inverse exists. We denote its inverse hy cos™ 1.

S cos 1= {(», x) | ¥y = cosx, x € |0, ], y € [—1, 1]}. Thus, for x € [0, ®] and y € [—1,1],

¥y = cosx < cos ly = x.

The domain of cos ! is [-1, 1] and its range is [0, ®].

Like sine function, here also we have to remember that if y € [—1, 1]. cos 1y is not just any
real x for which cosx = y but only that x € [0, 7], for which cosx = y. For instance co. % = % and

J3

% € [0, m]. HenJc_e, cos_l[T) = %. But, cos(—%) = cas% = % But, —% & [0, m].
cos_l(Ts) #* —%.

cos : [0, | — [—1, 1] has the inverse cos™ ! : [—1, 1] — [0, T].
So, cos (cosx) = x, Vx € [0, 7] and cos(cos 1x) = x, Vx € [-1, 1].
Note that sin (sinx) and cos™!(cosx) Y
exist, Vx € R, but they may not be equal -Lm M

to x. However, each will be equal to x in its
appropriate domains. [The above experiment

can be done with some appropriate change.] y =cos 'x
2.5 The Graph of y = cos 1x a,0)
We have discussed the method of X € _:1 o >X

drawing the graph of the inverse function
from the graph of the function. As in

the case of the graph of sin~! the graph
of cos™! as obtained from the graph of

y = cosx, x € [0, ] is shown in the ;;,
figure 2.5. Figure 2.5
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Example 2 : Obtain the value of : (1) cos™! (%) (2) cos™1 (—éj
: —1(a -
Solution : (1) cos 1(3) = cos ](cos%) = %, because % € [0, ]

(2) cos1 (—g) = cos ! (coss?“) = STT':, because 5—“ € [0, m].

2.6 Inverse of tan Function

We know that fan : R — {(2k + 1)% | £ € Z} — R is many-one and range of fam is R.
So it is onto.
tan = {(x, y) |y =tanx, x € R — {(2k + 1)% | £ € Z}, y € R} is many-one function with

T T T 3n 3m 5w

period T and it is onto R. If its domain is restricted to (—?, 7) or (?’ 7) or (T’ T) or

((2k - 1)%, 2k + l)%), k € Z; it becomes one-one and remains onto R. So we can get its inverse

by taking one of these intervals as its domain. We shall take (—7, 2) as the domain and get the

inverse which is denoted by tan~!. So, tan! = {(y, X) |y =tanx, x € (——f’ 2) y € R}

Thus, for x € (—--121:——, 2) and y € R,

y = tanx < tan”y = x.

Domain of zan~! is R and its range is (h-g-, -’—2'_‘—)

. —1

_ sin_ x

L yanlx * = .
tanx cos X

Note : tan lx # (tanx)™! ie. tan x #

tan \(tanx) = x, Vx € (—%, %) and fan(tanx) = x, Vx € R.
_E) - _ _ -t

tan( 4) 1 and 46( 2,2).

So, tan (1) ‘_T

But tan(Tn) = —1 does not imply tan 1(—1) = 3Tn as 371': & (—%, %)
tan_l(tan(—%)) = —%, because —% € (—%, %) and zan (tan_l(%)) = 5—?:35

)¢ 3L pecause 2L ¢ (—E E)

_1(
But tan tank >

6

2.7 The Graph of y = tan 'x

The graph of y = tan lx is obtained by taking the image of y = tanx, x € (—%, %), y € Rin

—1

the line y = x. We get the graph of y = tan 'x as shown.
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Figure 2.6
2.8 Inverse of cot Function
We know that cof : R — {it | k € Z} — R is many-one and the range of cof is R. So cot is
onto. cot = {(x, y) |y =cotx,x € R — {kIt | k € Z}, y € R} is a many-one, onto and periodic function
with period 7t. The function becomes one-one and onto R, if its domain is restricted to (0, Tt) or
(T, 21) or (2|, 3M) or (kW, (kK + D), £ € Z. We shall take the domain as (0, ) and get the
inverse which is denoted by cor™ 1.
So, cof ' = {(y, x) | y = cotx, x € (0, ™), y € R}.
Thus, for x € (0, ™) and y € R,
y = cotx < cof Vy = x
Domain of cor ! is R and its range is (0, 7).

cot Ycorx) = x, x € (0, T) and cot(cof 1x) = x, x € R.

Figure 2.7
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2.9

Note that cot_l(cot(%)) = %, because 3Tn e (0,

Also cot(%) =—1 & cof 1(-1) = 3%
cot(—%) = —1, but cot 1(-1) # —% because —% & (0, ).

cot_l(cot%t) #* 4Tn’ because 4TTC & (0, ).

However, cot(4Tn) = cot(ﬂ:+%) = cot% and % € (0, m).
~ AR _ —1( L) - I
So, cof (cot 3 ) cor | cot3 3

1

The graphs of y = cotx and y = cotf™ 'x are given in figure 2.7.

The Inverse of sec Function
We know that cos : [0, Tt] — [—1, 1] is one-one and onto.
sec : [0, TT] — {%} —> R — (-1, 1) is also one-one and onto.
sec = {(x, M|y = sex, x € [0, ]| — {%}, y € R— (-1, 1)} is one-one and onto.
Therefore inverse of this function exists and is denoted by sec .
So, sec™! = {(, x) | y = seex, x € [0, W] — {-g—}y € R — (1, 1)}.
Thus, for x € [0, ©] — {%}, y € R— (-1, 1), y = secx & sec’ly = x.
Domain of sec! is R — (=1, 1) and its range is [0, &t] — {3—}

2
Also, sec(%) = \/5

So, sec_l(\/i) = %, because % € [0, ] — {%}

But sec(—%) = J2 does not imply sec_l(ﬁ )= —% because —% & [0, ] — {%}

Figure 2.8
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> }, sec l(secx) = x and for each x € R — (—1, 1), sec(sec 1x) = x.

For each x, x € [0, ] — {
Wenotethatx e R— (-, ) @ x<—-lorx21 & |x|21
The graph of y = secx and y = sec”lx are given in figure 2.8.
2.10 Inverse of cosec Function

We know that sin : [—%, %] — [—1, 1] is one-one and onto.

».  cosec : —7, 7 — {0} > R — (-1, 1) is also one-one and onto.

cosec = {(x, ¥) | ¥y = cosecx, x € [*-g&, -"',f-] — {0}, y e R- (-1, 1)} is one-one and onto.
Therefore, the inverse of this function exists and is denoted by cosec 1.
So, cosec™! = {(y, X) | ¥y = cosecx, x € [—-—;5-, E—] = sy e R = (=1; l)}.
Thus, for x € [—~2, 2] — {0}, y € R — (-1, 1).
y = cosecx <> cosec \y =
Domain of cosec ' is R — (—1, 1) and its range is I——2 > 2] - {0}.

- _I -
Also, cosec— = ./3’ € [ > 2] {0}.

1.2
12 _ X
So, cosec I EX

For each x € R — (—1, 1), cosec(cosec 1x) = x and for x € [—%, %] — {0}, cosec V(cosecx) = x.

The graphs of y = cosecx and y = cosec”!x are given in figure 2.9.

Y y = cosecx

>

y = cosec” lx

L
P

X

v 4

Figure 2.9

Example 3 : Evaluate : (1) tan_l(\/g) (2) cot_l(—\/g) 3) cosec_l(—%j

Solution : (1) tan_l(ﬁ) = tan_l(tan%) = % (

wld
m
T
0|3
w3

)
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2) cof (—3) = cot_l(—cot%) = cof~ l(cotSTn) =3 (Z € o, m)

3) cosec_l(—%) = cosec_l(—coseo%) = cosec_l(cosec (—%)) = —% ( - e [-——-’21:—, —-’23:—] - {0})

Example 4 : Evaluate : (1) cos™'(cosZE) (2) sin~Y(sin2) (3) tan~(tanE)
(4) cor\(tant)  (5) cos™I(sinE)
Solution : (1) cos™}(cos2) = 2L (2 € 10, =)
&) s (sinZ) = s ) @ & [-£.5)
= sin~Y(sinZ)
sin™(sinZE) = & 5% 3)
&) tan(1an2E)= ran(1an( %))
- o -en(3)
- (-5
o {onF) - SEISE)
) cor YtanZE)= cor!(tan(2m — %))
- cor{cran)
- cor (o (E+3)
= cor™Y(cor3E)
coran?E) = 35 (= < 0. m)
(5) cos™V(sinZ) = cos™(cos(F—F))
= cos™(cos3E)
< cosT(sinf) = 3L (3L e 10, m)
Example 5 : Find the value of :
(1) cos(2sin™' 2)  (2) sin(2tan™1 %) (3) tan’(fcos13)  (4) cos(3cos™! )
Solution : (1) Consider cos(2sin™! 2).
Let sin '3 =0,0 € [-Z, £]. So sinf = 3.
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So, cos(2sin_1 %) = cos20

=1 —2e20 =1 — o2} = _1
1 — 25?0 = 1 — 2(%) = -4
. 7 _ll = —l
. cos(2sm 4) 3
(2) Let tan™' 3 0.0 € ( L 2). Then tan© z
2tan® 2%)
y _li = y = = = —40
So, sm(2tan 5) sin20 T+tan®® ~ 1+% = 1
. 14\ _ 40
. sm(2tan 5) an
(3) Let cos_l% =0, 0 € [0, ). Then % = cos0O
o) 1-cos© -3 4-3
2(1 . —13) _— 20y %7 4 275 _ 1
So, tan (Ecos Z) = tan (2) 1+cosB 1+2 ~ 443 7

tanz(%cos_1 %) = %

(4) Let cos™

wIN

=0, 0 € [0, w]. Then cos® = %

So, cos(?:cos_1 %) = cos30

32-54 22

27 27

= 4c0s30 — 3cos0 = 4(%) - 3(%) =

s cos(3cosT12) = —22
( )

3 27

Example 6 : Express the following in the simplest form :

_ ll—cosx - cosx 14 14
1) tanl[ _1+cosx],_n<x<7t (2)tanl(m’—?<x<?
1—cosx
Solution : (1) tan_l( 1+cosx] tanz%) = tan”(|tan £ |)

Case 1 : If—1c<x<01;hen—72c <§<0

. X
e tan2 <0
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CaseZ:IfOSx<7l‘,,thenOS%<

V]

S tanXx 20

) = tan! (tan%) = %

=
A
[(S]
A
(S
S—

cosX # 0, why ?
2

_,[ [L=cosx % 0<x<Tm
tan T+cosx | = X
—= —M<x<0
2
2X iy 2X
X _ gin ‘&
) tan 1| TELE_ | = g1 —
1+ sinx cos *£ + sin *£ + 2sin £ cos £
( X iy X X 71 X
(cos % + sin 7)(cos? — sin T)
= tan! 2
X 2 X
\ (cos?+sm7)
( X - x
. cos;—sm;]
= tan~ X s X
\COS7+sm?
. l—tan%]
= tan x
\1+tan7
- o1 l_l)
= tan (ta"(4 2
I i L ~_X n
Now, 2<x<2.Hence ) 2<4

Exercise

1. Evaluate :

1) tan—l(%j

) tan{(—3)
2. Evaluate :

) sin_l(—

N =

)
)

) sin\(cosZ)

5) sec_l(

Gl

@) tan1(tanF) (4) sec™! C"S“(%)j
3. Evaluate :

(1 sin(2tan_1 %) (2) tanz(%cos_1 %)

(@) sin(2c0s7' &) @) tan?(}sin”' %)

(3) sec 1(—=2)

(6) cosec_l(—ﬁ )

5 sin(3 sin”1 %)
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4. Express in the simplest form :

cosx — sinx
-1 ——| _= b8
tan (cosx+smx)= T <x*x<Z

2.11 Values of Inverse Trigonometric Functions for —x

‘We have seen that by restricting the domain and codomain of a trigonometric function, it can be
made one-one and onto, which is the necessary and sufficient condition for a function to have its inverse.
Also, we have restricted the domain in such a way that the domain of each trigonometric function

contains (0, %) as its subset. By doing so, we always have the value of each inverse function in

(0, %), whenever the value of the function is positive. We also make a note that the domain of all the
inverse trigonometric functions are such that x belongs to the domain if and only if —x also belongs
to it. This is because the domain is [-1, 1] or R or R — (=1, 1), iee. [x| <1 orRor |x| 21
respectively. If A is in any of this set, then x € A & —x € A.

The values at x and —x of every trigonometric inverse function are related as shown in
the following theorem.

Theorem 2.1 : (1) sin~l(—x) = —sin"lx, x| <1
) cosI(—x) = ® — cos”Ix, x| <1
(3) tan1(—x) = —tanlx, x € R
(4) cof I(——x) = m — cof lx, xE€ER
(5) cosec 1(—x) = —cosec \x, [%] 2Z %
(6) secI(—x) = m — sec”lx, | %] 2= 1

Proof : (1) x| =1
Suppose sin lx =0. 0 € [—%, %] Then x = sin0.

sin(—0) = —sin0

s sin(—0) = —x @)
I T I I
Ge[ 2’2]=> 2 =03
=L2-62-L
< I
= -2<-0<7%
—0 € [-Z, Z] and |x| = | x| Hence [x| <1 = |=x| <1
o s _ T T
By (i), sin(—0) = —x (—9 B [——i—, E-], |—x| < 1)
sin 1(—x) = =0 = —sin"lx
sooosin i (—x) = —sin"lx

(2) Suppose cos"lx =0.0 € [0, 7], | x| < 1. Then x = cos®
Also, cos(t — 0) = —cos0,
s cos(M — 0) = —x @)
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Oe0,t] >0<0<T7
=02-02-x
=S>nT2MmM—0)20
=>0<(-0 <™
(@ —0) e [0, 7] and |x| = |—x|. Thus [x| < 1 = |—x| < 1
By (i), cos(t — 0) = —x mM—-—0 e [0,x], |—x|<1
cos I (—x)=T — 0 =7 — cos" Ix
1

cos {(—x) = T — cos 'x

(3) Suppose tan 1x =0. 0 € (—E, %), x € R. Then x = tan©®

2
Now, tan(—0) = —tan® = —x )
6e (£ L)=-L<0<Z
= ? >—-0> ——
-0 € (—%, 7) and x € R. Thus—xG R
By (i), tan(—0) = —x (—9 = (——g-, -72!'-), —x € R)

tan Y(—x) = =0 = —tan"Ix
tan Y(—x) = —tan"lx
Slrnllarly we can prove (4), (5) and (6).

Example 7 : Evaluate :
() sin (-3 @) cofl(‘@) &) tan“(—ﬁ] (4) cof (1)
Solution : (1) sin—l(—%) - _s,-,,—l(i) --&

(2) cos_l(—%) =7 — cos_l‘/3 =T — % = 5?“

A3) fa"_l(_%j = —tan_l[% = —%

2.12 Values of Trigonometric Functions for -‘%

Now we get relations between the values of trigonometric inverse functions at x and at L

when x # 0.

Theorem 2.2 : (1) cosec x = sin! -il.-, x| 21
(2) sec”lx = cos™! -_-,{.-, |x]| 2 1
(3) (@) cof x = tan1 L, x>0

(b) cof x = ran—'-l- +n, x<0

Proof : (1) Let cosec lx =0, 0 € [— ] — {0}. Then x = cosecO. | x| 2

2’ 2
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2)

3

x| 2 ISox¢0and|%|_1.

cosecO = x

sin® = 1
0 = sl @<([53-wcFs i3]
cosec \x = sin”! i
Let sec lx =0, 0 € [0, ] — {%}, |x| 2 1. Then x = secB®
|x| = 1. Sox¢0and|%|S1.
secO® = x
cos® = +
0= cos_li e (omn—-{E)com,||=<1)
sec lx = cos™1L
(a) Letcof 'x=0,0 € (0,%), x € R
. ocot® =x
x > 0 and hence x # 0. So % € R.
o tan® =L ~ and 0 € (0, M)
Now, since x > 0, tanB = ; >0
Also 0 < © < T. So we must have 0 < 0 < L, (tan® > 0)

2
Thus, tan® = %, 0 e (0 E) c (—E ﬂ)

72 27 2

s 0= tan] (%)
s cof x = tan™! %
(b) As we have seen above, if cof 'x =0, 0 € (0, T), x € R, then co® =x.

Since x < 0, cof® = x < 0. Thus, tan® < 0 and 0 € (0, T).

This means that % <0<m
%—n<(6—n)<n—n
—§<(e—1c)<o
ie. 0—mwe (—— )

tan(0 — T) = tan0 =

_T T 1
> Z)andx € Rasx#0

(Period of fan is )

xln-’ ~

s tan(® — ) = ;

L 0-—T= tan_li (@ -=me (-% L)

: € R)

i
x
tan_li =cof Ix — T

+. Forx <0, cof Ix = tan! i + TT.

52
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(Note : We can derive from this theorem that

(1) sin"'x = cosec 1%, x € [-1, 1] — {0}

@) coslx = sec 1L, x € [-1, 1] — {0}

Il

3) (a) tanlx cor"l-_%:, x>0

(b) tan1lx = cot_l-}.- —TmMx<0
2.13 Formulae for Value of Trigonometric Inverse Functions for Complementary Numbers :
Theorem 2.3 : (1) sin lx + cos lx = %, x| <1
(2) cosec x + secx = -25, 2] =1
(3) tan'x + cof 'x = %, x€R
Proof : (1) Let sin Ix=0.0 € [—%, %], |x| < 1. Then x = sin0
cos(% — 9) =x
Now, 0 € [—% %] =-2<6

IA
MY

2
(E - G) € [0, W] and | x| < 1. Also cos(% - 9)=x
cos Ix = % 0= % — sin"x

sin"Ix + cos 1x = %

(2) Letcoseclx=6,0 ¢ [—%, %] — {0}, |x| =2 1. Then x = cosecO

sec(Z — 0) = x
Now, 0 € [, Z]- (0} == -2<6<Z,0%0
=>%2—92——,6¢0
>n2(£-6)200%0

Also%—ﬂ#%asﬂio

%—QE [0,1[:]—{%}, |x|21audsec(%—9)=x.

sec lx = % -0
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S 0+ secIx = %

s cosec x + sec lx = %

s _ — .- _ 1
or we think in another way as, cosec”!x + sec lx = sin 1% + cos 1% ([x] 21=>T7 S I)

-z (By (1))
(3) can be proved similarly as (1).
2.14 Addition and Subtraction Formulae
Theorem 2.4 : If x > 0, y > 0, then
(1) tan'x + tanly = (x+y ] if xy < 1
X

1l

(2) tan lx + tanly + tan1 (I xy] if xy > 1

(3) tan x + tanly = &, if xp =1

pony
(4) tanlx — tan_ly = tan™! ("_'Z“)
Proof : Here, x > 0, y > 0.

Let tan 'x = 0t and tan” 1y = B, a, B € (—%, %)

s tand=x>0and tanf =y > 0

As tand. and tanf} are positive and O, B € (—%, %)’ a, B e (O, %)

tana+tan  x+y
1—tanotanp ~ 1—xy

Let x>0,y >0 and xy < 1. Hence, (1 —xy) > 0 and x + y > 0.

(1) tan(Ol + B) =

. x+y
S Toxy

Alsoo, Be (0,%) o<a<Zado<P<Z

> 0. Hence, fan(0. + B) > 0

s 0<a+PB<m

But tan(0. + ) > 0. Hence, 0 + B € (0, %)

+
Thus, tan(ot + B) = = x_}y’
. 1 Xt T = -
S0+ Beran 75 (@+pe(0X)c(-£ 1)
+
S tan x + tan”ly = tan_l(lx_xi’,).
(2) tan(—m + o + PB) = tan(o. + B) (T is a period of tan)
_ _tana+tanf
~ 1—tand tanf
+
S tan(-Tm A+ o+ B) = lx_);
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Now, x> 0,y > 0. Also, xy > 1.80,1 —xy <0
x+y
1—xy
s tan(-T+ o+ B) <0

Now o, B € (0, Z).

<0

. T T
So0<a<Zand 0<P< i

o<oa+B<m
L M<o+P-m<O
But, as tan(-T+ 0+ B)<0,—-Z <o+ P -7 <0.
So, o + B-me (-£,0)

Xty

Thus, tan(- + 0 + Py =755, a +B-m e (-Z. 0)

2’

. _ 1 (xtYy
s~ A+ o+ B=ran (l—xy)

. _ -1 x+y
oo+ B=ran (l—xyj + 7

x+
tan " x + tan_ly = tan_l(l_x;)) + T

(3) tan x + tan_ly = tan x + tan™! i

1

D

tan Ix + cot 1 x (x>0

Cy

T

2

(4) As we have noted O, B € (0, %)
Thus,0<0(.<%and0<|3<%.so_%<_[3<0‘
0<a<%and_%<_|3<0_
fE<@-p<E

Thus, (@@ — B) € (_%’ %)

B) - tano — tanf

tan(0. — P) = T ana tanP

s tan(@ = B) = 1555 a-Be (-£. %)

(1— = tan~ ( ) (::_—yeRandx>0,y>0;soxy#€—1)

x f—
s tan Ix — tanly = tan_1(1+x§:)
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Example 8 : Prove :

12 1 7T — 4511
(1) tan 11 + tan o7 tan (2)
—1 1 ~11 - 3¢
(2) cof > T cot " 3 y
-11 -14 -19 -1
(3) tan 7+tan 7+tan = >
Solution : (1) L.H.S. = tan™] 12—1 + tan™1 %
&t % o0
— 11 24
= tan™! | 25 (T{x"ﬁd)
11 24
48 + 77
= tan~! (264_14 tan 1(%) = tan 1% = R.H.S.
(2) LHS.=cof ' + cor '
= tan 12 + tan13 2>0,3>0)
2+3
=1t+tan_1(mj 2Zx3>1
=T + tan 1(-1)
=T — tan 1 (1) (tan ! (—x) = —tan " 1x)
T 1 I R.H.S
(3) LHS. = tan_I% + tan_l$ + tan 12
7 7
= tan~! 7|+ tan 12 & 502 g
7+ 28
= tan~1 (49_4) + tan_l-%
= 1 (35 -1(2
= lan (45) + tan (7)
-1(Z 1{2
= fan (9) + tan (7)
-t _ Tsse & =
=2 =RHS. (9 X 2 =1)
Example 9 : Prove that : 3sin lx = sin"1(3x — 4x3), if —% <x< %
Solution : Let sin 'x=0.0 € [—%, %], |x| < 1. Then x = sin@®
Now, sin30 = 3sin® — 4sin30
s sin30 = 3x — 4x3
-1 1 in (—& i in I
Now, — <x< > =>sm( 6)Ssm9 < sin 2
< ¥4 in i in (&, &
6_9S6 (sm:s?m(z,z))

56

MATHEMATICS 12



Since sin30 = 3x — 4x3, —% <30 < %
30 = sin 1(3x — 4x3)
<o 3sinlx = sin 13x — 4x3)

1 a—Xx
a+x

Example 10 : Prove :(1) tan™ = %cos_lf, —a<x<a, ac Rt

) cor! J1+ sinx + J1— sinx _E_x Rcycq
J1+ sinx — J1— sinx 2 2

1 ,/1+x—,/1—x - 1 |
(3) tan Jtx+l—x = — 7cos x, 0 <x <1
. L . —1 a—Xx _
Solution : (1) Consider tan 2T s 2<x<a
—a<x<a=>—1<%<1 (@ € RY

X —
e (-1,1)

s d0 € (0, 1) such that cos9=§ or O =cos_1%
0<0<mSo,0<d<

a—x _, |a—acos6
a+t+x a+acos 0

I
-~
Q
S

Now, tan!

I
=~
§

AN

e
+‘I
|2} B2
QIS
128 R%]
[« ] Kand

= tan! tanzg

= tan~! | tan% |

=tan1(tan%) (0<£ <X
-3 G333
= %cos_lf

(2) LHS. =cor’! J1+sinx+J1—sinx] T <cx<Tm
Ji+sinx — Ji—sinx |’ 2
= cot ™!

= cor 1
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As,£<x<n=>ﬂ<l<%

co. <sm2 andcos—>0 sm >0
(cos% + sin%) - (cos% - sin%)
= —1 X — gin X| = — X — gin X
cot (cos§+sin§)+(cos§—sin%) ( Icos g 2| (cos g ))
= 1 X
cof (tanz)
_ 1 _x . . X s
= cot (COt(z 2)) (0< 5 5 <71_)
_T X _T T _ T T _x
Now, 4> 2> 2.So,2 4>2 2>0
. R _x i
. 0< > 5 < 2"
. LHS.= % — £ =RHS

(3) Consider tan—

Em—m

,/1+x+,/1—xJ’ 0<x<1

Let O = cos™1x, O € [0, t]. x € (0, 1). Then x = cosO.

L.HS.

tan

tan

tan

—1

—1

—1

J1+cos® - J1—cos®
\‘/1+cos6 +y1—cos8

JZco J2s 2
‘/2cos >+ J2sm2

)

v Nlo

~|<D ~|<D

|cos—|+|
\

As,0<x<1 = 0<cosb <1

Also, — &

So,0<(%—%)<

4

L.H.S.

= cos% < cos O < cos0
=>0<9<%

8.z
=>O<2<4

<-2 <0
=
4
cos® —sin8
= tan_l[ 3 g
cos3 + sin?
1—tan
= lan 1[1+tan%]
= tan™! (tan(%—%))
=%—%=%—%cos lx = RH.S

(cos is 4 in the 1st quadrant)

0|
s[4
S

(cos?

3 # 0. Why ?)
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2.15 Inter-relations Between the Inverse Functions

J = tan J_—xz,lfﬂ<x<l.
2) cm‘x“smlJ =r¢m‘II ,if0<x<1.
J_ i

(1) sinlx = cos™

iI

(3) tan— cos ,if x>0

Proof : Suppose, sin lx=0,0 € [—%, %] and x € (0, 1). So sin® = x
Also, sin® = x > 0. Hence, 0 € (0, %)
Also, cos?0 =1 — sin?0 =1 — x2

cos® = J1- 42 (cose > 0 in (l], -g—))

1—x2 (9 & (0, 12"1), 1< 1(1—x2 < ])

sin©

Also, tan® =
cosO
tan® = == =
1-x

9=tan_1'/1i67 , as 0 € (0, %)

—1 1

X = tan~ ,/:7

Similarly (2) and (3) can be proved.

L. sin

Example 11 : Prove : sin_I% + cos™! 15 + sin ! gg = %
L.HS. =sin" 12 + cos™! 15 + sin”! gg
3 225 36
—_ — 289 —
= tan"! _l+tan1 T T & 11362
25 17 852
- —1 /289 —225 1 36
tan 5_9 T tan s + tan o7 — 26
= 1 é —1 L 1 3_6
tan " + tan 15 + tan T
JE R
_ -1 4 15 -1 (&) 3 8
= tan 1—%x% + tan Z] (4x15<1)
45+ 32
— —1 1 3_6
- o () + ! ()
tan (36 + tan |33
=X — FL o 80 1=
2 T RHS (Fx %=1
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]Exercise 2.2 [

Find the value of :

1y sir 1B — cos [~ L) + 2an1(1y
2 2
2) 3sin_1% + 4cos™! é + sec 11
s 1 211 _ -1 () — -1-L
(3) cof ' (1) + 3sin > cosec” ' (—2) — 3tan 3
(4) 5cos™1 (—é) — 4tan 1 (—3) + 3sin”1(1)
(5) cos (sin_1 (—%)) + sin (tan_1 %) + cos (cosec_1 %)
in(& — -13 AR _ 12 -17
(6) sin (2 cos 7) + cos( > sin 7) + cot(tan 6)
i sindl —1 s —1 in
(7) sin (szn 3 ) + cos (cos 3 ) + tan (tan 3 )
Prove :
-14 -12 _— 122
(1) tan 3 + tan 3 tan =
(2) tan 5 + tan 3 tan" 5
(3) tan > + tan S + tan 3 )
(4) tan 3 + 2tan 7 3
11 11 _ —11 — 121
(5) tan 5 + tan 3 tan " = tan " o
11 —-11 —11 -11 _ T
(6) tan 5 + tan o + tan 3 + tan 1
Prove
14 135 — o1 (36
(1) cos 5 + sin 33 tan ( 3)
(2) sin 1% + cos_I% = cof 1(%
(3) 2sin 13 cos”" 160
13 -124 _ T
(4) 2sin 5 + cos 55 >
(5) 2cof 12 + cosec_I% = %
in—13 i1 8 -136 - T
(6) sin 5 + sin 7 + sin 35 >
Prove :
(1) 2c0f 1L +tan 13 =g
3 4
2) cof 11 + tan 12 + cot_I% =T
~11 1., ~112 _ |
(3) cof 5 + 2cot 5 >
. 112 -14 -163 _
(4) sin 13 + cos 5 + tan 16 T
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Example 12

cos'a + cos1b + cos™!

: Prove : c =
where a, b, c € [—1, 1].
Solution : Let cos la = o, cos b = B, cos™lc =y
a = cosQ, b = cosPB, ¢ = cosy
Now, cos la + cos™1b + cos™lc = &
Lo o0+B+y=T
T o+B=mw—vy
cos(QL + |3) = cos(Tt — )
S cosOL cosB — sinOL sin[.)) = —cosy
s cosQ cosP + cosy = sinQ. sinf3
(cosOL cosP + cosy)? = sin’Ol sin’[3
S (@bt 0?2 =1—-dd)(1 - bd
a’b? + 2abc + c% =1 — a® — b2 + a?b?
@+ b + 2 + 2abc = 1

Solution : L.H.S.

= cosec[tan_l(cos (cot_ 1 (sec (sec_1

—=))]
= cosec[tan_l(cos (ta”_l m ))]

1

= cosec[tan_l(cos (cot_1

= cosec[tan_l(cos (cos_

_ 1
= cosec(tan 1 > )
J 2—a

1

1_ az)
1
y
2

2
’1 +
2
= cosec(sin_l ;)
J3 -a

= cosec(cosec_l 3_q2 )

= cosec(sin_

= J3-4%? = RHS.

Example 14 : Solve the following equations :

(1) tan W3 + 2fan"x = 5?“

Solution : (1) tan_lﬁ + 2fan 1x = 5?713

I -1, — 3T
3 + 2tan 3

T = a2 + b2 + 2 + 2abe

Example 13 : Prove that cosec[tan Y(cos(coi (sec(sin"! a))))] =

cosec[tan Y(cos(cot V(sec(sin™! a))))]

1
‘ll—a2

)]

Miscelleneous Examples :

=1,

[, B, ¥ € [0, 7]

3_qg2, where 0 < a < 1.

(tan_lx

(mn_lx

(2) tan 12x + 2tanx = %

(sin_l a

cos 1 [1 - 42 )

INVERSE TRIGONOMETRIC FUNCTIONS
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Sox=1
Equations involving inverse trigonometric functions can also be solved. However, as the domain
and range of such functions are restricted, one must always verify the answer by substituting the

solution in the original equation.
Verification : Putting x = 1 in the given equation,

= to—1 -1, — T y_&X 4 | _ 5T _
L.H.S. tan \E + 2tan” 'x 3 +2(4) 3 + > 3 R.H.S.

. The solution set is {1}.
(2) tan 12x + 2tanlx = %
We observe that if x = 1, then 2tan 1x > 2 - % = %

that is tan 12x < 0 which is not possible. Since x = 1.
If x <0, L.HS. <0, RH.S. > 0. This is not possible.

S 0<x < 1.

Now, fan 12x + 2tan x = %

o tan 2% + tan Ix + tanx = %

x+x

s tan 12x + tan™! (l—xz] = % 0<x2<1)
S | e Y 4
T 1—x? 2
We know that, xy = 1 < fan"x + tan”ly = %

. _2x

2x 1— x?

S Ax2=1—x2

. 5x2 =1

. x2= %

Verification : Taking x = 5
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LHS. = tan %= + 2tan—lﬁ

2 —1-L —1-L
tan + tan 5 + tan 5
L4 L
2 | EE
an 1
S5 1-5

2 (5445
=tan T + tan 51

Il
g
—_
Sl

5
= tan 1% ~145
tan 5 + tan >
—— E —-_
> R.H.S.

The solution set is {%}
Example 15 : If 0 < x < 1 and if tan~1(1 — x), tan " 'x and tan~1(1 — x) are in arithmetic progression,
prove that x3 + x2 = 1.
Solution : As tan }(1 — x), tan " 'x and tan (1 — x) are in A.P.

2tan x = tan (1 — x) + tan~ (1 + x)

1—-x+1+x
tan”lx + tan”Yx = tan™! T 1" A-2>0,1+220,0<1 =2 <)
_ 2 _

. tan 1(1_’;2) = tan 1(%) 0<x2<1
IEJ; > = ﬁ (tan~! is one-one)
x3=1-—x2
B+ x2=1

Example 16 : Solve cos x + sin"12x = %

Solution : cos™lx + sin~12x = %

Let cos x = o, o0 € [0, T]. Then, x = cosCL.

sinQlL = ‘/1_00520( = Jl_xZ (sinat 2 0 as oo € [0, 7))

Let sin 12x =B, B € [—%, % . Then, 2x = sinf.

cosP = ,1_4)‘2 (cosB >20as P e [*-275, %‘])

Now, cos Ix + sin~12x = %

a+p==%

sin(0t + B) = sin%

sin® cosP + cosOL sinP} = %

sof1m2? J1-ax? F a0 =1
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Verification : For x = 1

J1-22 J1-ax2 =3 - 222

Ji-5:2 a2 =1
— 2 4 — (1 _ 2
1= 5x2 + 4xt = (1 — 222

1= 5x2 + 4x* = L — 2x2 + 4x*

— 2x2

2-3
3x )
=1
x2 7
=+l
X= =3

DX

L.H.S. = cos 5 + sin '1 3 + > #* 3 # R.H.S.

For x = —=

1
2,

The solution set is {_%}

Exercise 2

Prove :

1)
2)
3

C))

)

(6)

)

3

®

sin1(2x 1—x2) =2sin"lx, |x|< %
cos 12x2 — 1) = 2cos Ix, 0<x<1
cos~1(4x3 — 3x) = 3cos lx, % <x<1

2
ot [_v/“x‘lj - _ 1

x 2 T plan

I

. 2X —
sin 1(1+x2J = 2tan" lx, x| €1

L (3x=x3 _ 1
tan~1 I — 3x2 =3tan"x, 0 < x < ﬁ
/J T 0
1+ Sinx + {1 - sinx
—1 =X r
cot J1+sinx—‘/1—sinxj 2° 0<x< 3
1+ cosSx + /1 —cosx
tan™! J v =2 _x gp<x<33&
( 1+ cosx — 1 -cosx 4 2 2
/
. 1+ 22+ i-x2 .1 Lo
tan~ ==+ =cos x5, —-1<x<I1
Ji+2 - Ji-x2 | 4 "2
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acosx — bsinx
—p | LA T ERRE | -1(a) _, _Tt T a —
(10) tan [bcosx ; ] tan (b) x, =5 <x <3, b tanx > —1

A

(1) sin~1 M
2
(1) If tan x + tan 'y + tan 'z = T, then prove that x + y + z = xyz

=D _ I
4+x, 4<x<4

— -1 4 —
(2) If cof LL y ocorl— + cor1d
X y z
(3) Ifcor la+ cof b+ cof lc=m

= %, then prove that xy + yz + zx = 1

, then prove that ab + bc + ca = 1

c—a

b+1 bc+1 +1
(4) Ifa> b > c > 0, then prove that cot_l(‘;_bj + cot_l(bc_cj + cot_l(ca ) =T

(5) If tan™! % + tan™! ';% + tan™! chy_r = %, then prove that x2 + y2 + z2 = 2,

(6) If tan™! %+tan_1 5—2+tan_1 % =T, then prove that a + b +c=vr. (a b, ¢, ¥ >0)

(7) If sin"lx + sin”ly + sin"1z = T, then prove that xJ] —x2 + le_ y2 + zJ1 —z2 = 2xyz.

(8) Prove that tan(%+%cos_l%) + tan(%—%cos_lﬁ) = %
n
- 1 -
(9) Prove : rz—:l tan l(m) = tan (n + 1) — %
(10 tan_l(%tanZA) + tan l(cotA) + tan"(coPA) = | 0, if % <AL %

T if0<A< %
Solve the following equations :

1 x—1 X+
x—2 x+2

(1) tan

(2) tan 12x + tan~13x = ¥ L
(3) 2tan N(cosx) = tan 1Q2cosecx)

(4) sin"x + cos 12x = %

112
X

(5) sin_I% + sin™

R

6) tan Yx + 1) + tanlx — 1) = tan_I%

(7) tan 2% + tan”! (xLJ -z

Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

Section A (1 mark)

1) sin(3sin_1%) = ]

@ 2 ® 1 © Z @ 28
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(2) If sin 1x = % for some x € (=1, 1), then the value of cos lx = ...... =3
@ & (b) 3L © & ) &

(3) secX(tan™12) + cosec®(cor 13) = ...... . 1]
(a) 15 ®) 6 () 13 (d) 25

(4) cos l(cos%t) = e . 1]
@ L ) 3 () —% @ &

(5) The domain of cos™! is ...... . 1
(@) (=00, ) (b) [0, 1] (©) [0, m] D [-1, 1]

(6) The range of tan™! is ...... . 1
(a) (-, ™) (b) R © (0, ™) @ (-£. %)

(7) The value of cos_l(cos(—%)) is ...... . 1
@ -% ® % () & (@ 2

(8) sin_l(cos%) is equal to ...... . ]
@ & ® % © X @

(9) The value of sin~ (smsTn) is ...... . 1
@ —% (b) 2 © % @ 2

(10) cos(cos_l(—%) + sin_l(—%)) is ... . 1
@ 5 ® % © 0 @ —3

(11) co (%) + 2sin (‘/5) is ...... 1
@ ® % (©) 4 @ “F

(12) sin~ (sm%t) is ... . -
@ & ®) L © =% @ =

(13) sm{% — sin~ (— )} is .. : -
@ 0 ® 1 © L2 @1

(14) Value of sin(cos 1 g) is ... . ]
@ 3 (b) 2 () 2 @ 2

(15) Value of cos(tan_1 %) is ... . 1]
(@ 2 ® % (© 2 @ 2
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Section B (2 marks)

(16) 2tan™ 15 + tan™! % = ... 1
@ F ®) ZF ©m @ Z

(17) If sin " x + sin"Ix = T’ then cos™lx + cos™ly = ...... 1
@£ ®) & © & @mn

(18) If 4sin 1x + cos lx =T, then x = ...... 1
@ —% ®) + © —% @ 3

(19) sin(tan 1(tan 77“:)) + cos (cos l(cos 7Tn) = . .
@ -1 ()0 © 1 @ L

(20) If cos(2sin"x) = l, then the value of x = ...... 1
@ 2 ) 2 © 3 (@1

(21) The value of sin[2sin”!(cosA)] is ...... -
(a) sinA (b) cosA (c) cos2A (d) sin2A

(22) The value of sin[3sin_1(%)] is ...... ]
@ —3 ®) 7> © 135 @ 355

(23) tan‘l( tan 138“) is ... |
@ —3 (b) 3 (©) —3% @ BF

(24) sin~ (sm 3%7‘) is ...... 1
@ ®) T (©) ¢ OR

(25) Value of cos[% + cos™! (—%)] is ... -

J3 - - J3

@-L (b) S (© Lt @ S

(26) tan 12 + tan™13 is ... ]
@ -Z Ok ) & @

(27) The value of sin [tan_l(—‘/g ) + cos™1 (—g) is = ... 1
@ —1 (b) 0 © 5 @1
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(28) sin~! % + tan 1 = is ...

1
7
@ % ®) % ©m

29) The value of tan(cos ! 3 + sin 12 — sec™!3) is ......
4 4

@ 75 ® 75 © 375

(30) The value of sec [tan_1 [Ztgj — tan! (%)] is ......
(a) 1 ®) V2 ©) 2
Section C (3 marks)
(31) The value of cot [% - 200t_13] is ...

(a) 3 (b) 7 () 9

(32) tan_l[%] - tan_l(

@ & ®) £ © £

® | %
+] 1
<=
N~
I
N\
< =
v
o
Ne—

33 Ifx= l, then the value of cos(2cos™x + sin"lx) = .....

@ |3 ) % © L

34) cos_l(%) + cosec”! (i) = I then the value of x is ......

4 2°
@1 (b) 3 ©S5
(35) The value of cot (cosec_lg + tan_l%) is ...
3 4 5
@ 55 ®) 7= © 5=

(36) tan (2cos_l é) is ...
8 24 7
(@ 3 (®) 55 © 35
(37) The value of tan [%cos_lg] is ..

@ 22 (b) 2555 © 22

2
(38) If 0 < x < 1, then tan~! (—Jl"x) iS o

1+x

— 1-x
(a) %sin_1 1-x (b) %cos_lx (©) Leor? (1 Tx

2

“

(d) sin™1 %

@ 575

@) 4

@ 2

@@=

@ 3

4

@ <

@ —%

@ J§4+ 1

@ gan~" (3)
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(39) If costanlx) = L then the value of x is ......

@ 75 b 1-3
(40) The value of tan {sin_l(%) + cos_l(%
@ =% -2

(41) If sin_l% + cosec_l% =2 then x is

(@) 1 ®) 2

©1-7 @ V3

© —$2 @ -3

.....

(©3 (d) 4

(42) sin"Ncos(sin~1x)) + cos (sin(cos™1x)) is ...

(@ 0 ®) &

© % @ &

Section D (4 marks)

1- sinx + 1+ sinx
—1 _ i
(43) cof (JI_SW_JHSWJ ...... (0<x<Z)
(@ % () & —2x (c) 2T — x r-%
(44) If sin~! % = 2tan”! % + cos™! %, then x = ......
@ 2 ® I () 12 @ -1

45 If o = cos_l(%), B = tan—l(%), oL, B € (0,%), then Ot — B =

(b) tan™! (%)

(46) Match the following :

(a) sin_I%

(c) cos™! (#J (d) sin™1 ( b

Column (A) Column (B)
() tan (1) + tan~1(L) @ Z
) sin_l(%) + sin_l(%) + sin_l(g—g) (b) T

@ i+ cor(-4) + s (4

@ 2tan™\(5) + tan ()

(@1l-¢2-b,3-d,4-a
(c)l-¢,2-a,3-b,4-d

(b)l-¢c,2-a,3-d,4-b
d1-a,2-b3-d,4-c¢
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(47) tan (Ztan 5 4) ...... 1
@ 3% ) = © & @ %
(48) If sin 11 — x) — 2sin” 1x = % then x is ...... 1
-1 1 1
(a) —2 ) 0 © 1 @ 1
(49) The number of values of x satisfying the equation
tan (x + 1) + tan x + tan Y(x — 1) = tan 13x is ...... ]
(a) 2 ®) 3 () 4 (d) infinite
(50) If cot Ix + corly + cor 1z = %, thenx +y +z = ... ]
@xy+yz+zx (b) 1z @i+t 4+l (gHExrtz
X y z 3
(51) If sin ! ( 2"2J + sin~] ( 2b2J = 2tan 'x, then x is ...... 0<ab<l) ]
l+a 1+b
a—b a+b b b
(a) 1+ ab (b) 1—ab (C) 1—ab (d) 1+ ab
"

We have studied the following points in this chapter :
Definition of inverse trigonometric functions.

2. Graphs of inverse trigonometric functions.

3. () sinN—x) = —sin"lx, x| <1
Q) cos i (—=x) =7 — cosIx, |x|<1
B) tan W(—x) = —tan"lx, x€ R
@) cofl(—x) =T —cof'lx, x€ R
(5) cosec Y (—x) = —cosec lx, |x| 21

6) sec l(—x)=T —sec’lx, |x|21

4. (1) cosec lx = sin_lé, x| 21
2) sec lx = cos_li, [Fc|F===1
3) cot x = tan_li, x>0
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5. () sinx + cosTlx = % [x] <1

@) cosec lx + seclx = % [x] =1

B) tan x + cof lx = %, x € R
6. Ifx>0,y>0, then

(1) tan x + tan_ly = tan~1 (lx_t; ), if xy <1

Q) tan 'x + tanly = W + tan™! (lx—-’-x;) ), if xy > 1

B) tan 'x + tan ly = %, if xy =1

x_
@) tanx — tan_ly = ta"_1(1+x§)

) o —1/ = fol =E— 4
7. (1) sinlx =cosT1f1- 42 = tan 1_x2,1f0<x<1

2
~ly = sin 1 [1_ 2 = =2
(2) cos 'x = sin 1—x tan — ,if0<x <1

|
s

B3) tanx

Il
o
Q
1)

N

Il

(54

Srinivasa Ramanujan : Adulthood in India

On 14 July 1909, Ramanujan was married to a nine-year old bride, Janaki Ammal. In the branch
of Hinduism to which Ramanujan belonged, marriage was a formal engagement that was consummated
only after the bride turned 17 or 18, as per the traditional calendar.

After the marriage, Ramanujan developed a hydrocele testis, an abnormal swelling of the tunica
vaginalis, an internal membrane in the testicle. The condition could be treated with a routine surgical
operation that would release the blocked fluid in the scrotal sac. His family did not have the money
for the operation, but in January 1910, a doctor volunteered to do the surgery for free.

After his successful surgery, Ramanujan searched for a job. He stayed at friends' houses
while he went door to door around the city of Madras (now Chennai) looking for a clerical position.
To make some money, he tutored some students at Presidency College who were preparing for their
F.A. exam.

In late 1910, Ramanujan was sick again, possibly as a result of the surgery earlier in the year.
He feared for his health, and even told his friend, R. Radakrishna Iyer, to "hand these [my mathematical
notebooks] over to Professor Singaravelu Mudaliar [mathematics professor at Pachaiyappa's College]
or to the British professor Edward B. Ross, of the Madras Christian College." After Ramanujan
recovered and got back his notebooks from Iyer, he took a northbound train from Kumbakonam to
Villupuram, a coastal city under French control.
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DETERMINANTS 3

In mathematics, the art of proposing a question must be held of
higher value than solving it.
— Georg Cantor
*
Mathematics is the cheapest science. Unlike Physics and Chemistry,
it does not require any expensive equipment. All one needs is a pencil and paper.
— George Polya

3.1 Introduction

The expression a is called a 2 X 2 determinant and its value is defined to be ad — bc. This

d
is another symbolic way to present real number ad — bc. Do you remember the method of solving a

pair of simultaneous linear equations in R2 by the method of cross multiplication ? Do you realise
the connection now ?

3.2 Second Order Determinants

‘; Z , where a, b, ¢, d are real numbers, is called a second order determinant. These

real numbers are called the elements or entries of the determinant. @ b is the first row, ¢ d is

Symbol

the second row, ‘cl is the first column ‘bi is the second column, 4 4 s the principal diagonal,

is the secondary diagonal of the determinant. The expression ad — bc is called the value

c
of the given determimant. We write Z, = ad - bc.
Thus, @ Z = the product of the elements on the principal diagonal minus the product of the

elements on the secondary diagonal.
1 5
4 6
3.3 Third Order Determinants

So, for instance I = (1)®6) — (4)5) =6 —20=—14

If we want to solve a system of three simultaneous linear equations in three variables, we
shall have to deal with a ‘third order determinant’.

a b q
@ by ¢ js called a third order determinant.
a3 by c3
Here a;, b;, c; are real numbers (i = 1, 2, 3). These real numbers are the elements or
entries of the determinant. a; b, c¢;; a, b, c,; a, b3 cy are the first, second and third
a b q
rows respectively. @2; 5; C2 are the first, second and third columns respectively.
a b o
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The value of a third order determinant is written as

a b q

C a C a
@ b o =a1b2 2 — b 2 7 + ¢ 2 b
a b o by az ¢ as by

= a; (bycz — b3c,y) — by (aye3 — azcy) + ¢ (ayby — azby)
= aybyc3 — aybscy, — aybicz + azbic, + abzey — azb,cy is the expansion or
the value of the third order determinant.
Now, further we shall use D for both, a determinant as well as for its value.

Note : In obtaining the value of a third order determinant, the multiplier of a, is the second order
determinant obtained by removing the row and the column of the given determinant containing a; and

b o

3

keeping the other entries in the same position. We get it as . The same applies for the multiplier

of b, and c,.
3.4 Some Symbols

When we work with determinants, it is convenient to convert one determinant into another by
performing certain operations on rows and on columns. To denote them in a precise form, we
shall use some symbols. We introduce them now.

(1) R, —>» C, : We shall use this symbol, if we want to convert every row into the corresponding

column (or every column into the corresponding row). Performing the operation R; — C; on D, the

aq a a3
given determinant D will become D' = |by by, b3].
aq & ¢
2) R‘.j. (C’.}.) (7 # j) : If we want to interchange ith and jth rows (columns), we shall use symbol
Rij (Cij).
¢.g. C,3 is the process to interchanging second and third columns.
a b ¢
So, if D = |22 b o , then after performing C,3; on D,
a3 by
we get a new determinant
a q b
D =2 o b
a3 c3 by

(3) R(k) [CK)] : Denotes the symbol of multiplying all elements of ith row (column) by k.
k € R — {0} (called multiply ith row (column) by %.)

@ b g
If, D= |%2 b | on performing R;(3) on the given determinant, D changes to
a b g
3a; 3b 3q
D=2 b cof.
a b
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(4) Ry [Cy0] (7 # J) : This symbol is used for the operation of multiplying each elements
of the ith row (column) by a non-zero real number £ and adding its elements to the corresponding
elements of jth row (column).

ay—2a; b —2by c—2c;

Thus, performing R;;(—2) on the determinant, D changes to D' = @ by @
as bs 3
1 3 x+1 X
Example 1 : Evaluvate : (1) o 4 ) e
1 3
Solution : (1) We have o 4| = 1-(4)—(2)-3=—4+6=2
x+1 x )
@ ., mE+FDE-D-@WE=x—1-x*=-1
2 3 =2
Example 2 : Evalvate |1 2 3.
-2 1 -3
_ 232 1p o3 3 12
Solution : D =|1 2 3[=2|, 4 —3 2_3+(—2)_21
-2 1 3
=2(—6—3)—3(-3+6)—2(1 +4)
=—18—9—10=-37
Exercise 3.1
1. Evaluate :
2 =3 cos®  sinb 2+J§ 3+\/H
8 7 11 2) —sin® cosO @) 3-J11 2-43
2. Solve :
2 3 2x -1 x 3 0o 2
W ax| =5 « @ la & T2x 5|
3. Evaluate :
2 -1 1 2 1 =2
1 13 2 1 213 7 1
9 -5 4 5 3 4
—coso.  sinf 0
4. Prove : 0 —sinet.  coso| =0
sinol 0 —sinf
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3.5 Properties of Determinants

We shall now prove some properties of determinants. We shall consider third order determinants.
They are also true for second order determinants.
Theorem 3.1 : If all the rows of a determinant are converted into the corresponding columns,

the value of the determinant remains same.

[Note : If R; — C; is performed on D, then the value of determinant does not change.]

a b ¢
Proof : Let D = [%2 b o,
a3 by o3

Converting all the rows into the corresponding columns (i.e. performing the operation R; — C)),
the new determinant D' obtained is,

aq 4 a3
D' =|b b b
a @
=D
So, converting all the rows into corresponding columns, the value of a determinant does
not change.
2 1 -1
Example 3 : Evaluate D=(3 4  2|. Verify that the value of D does not change while performing
5 -3 4
R; > C; on D.
2 1 -1
Solution : D=3 4 2| =2(16+6)— 1(12 — 10) + (—1)(—9 — 20)
5 3 4

=44-2+29=171
Now performing R; — C; on D gives

2 3 5
D=1 4 -3 =216 + 6)—3(4 —3)+ 52 + 4)
-1 2 4
=44 —-34+30=71
So, D =D

Theorem 3.2 : If two rows (columns) of a determinant are interchanged, the value of the new
determinant is the additive inverse of the value of the given determinant.

[Note : If Rij (Cij) is performed on D and we get new determinant D', then D' = —D]

aq b q
Proof : Suppose D = |2 b ¢
a3 by c3

DETERMINANTS 75



Interchanging, the first and the second rows (i.e. performing R,,), we get a new determinant
aQ b o
D'=|a b ¢«
a by o
=-D

Thus, the value of the determinant obtained by interchanging any two rows is the additive
inverse of the value of the given determinant. We can have the same result for columns also.

(Try it 1)
1 2 3
Example 4 : Evaluate D = |=3 4 -1l Verify that the value of the new determinant obtained
2 1 4
by performing the operation C,; is the additive inverse of the value of D.
1 2 3
Solution : D=3 4 -1 =116 +1)—2(-12+2)+ 3(—3 —8)
2 1 4

=17+20—-33=4
Now, performing operation C,;, we get

1 3 2
D =|-3 -1 4] =1(-1—16) — 3(-3 — 8) + 2(—12 + 2)
2 4 1

=—17+33 —-20=—4
So, D' = —D.
Theorem 3.3 : The value of a determinant gets multiplied by %, if every entry in any of its
row (column) is multiplied by k(k # 0).

[Note : If the result of R(k) or C, (k) on D is D', then D' = kD. (k # 0)]

@ boq
Proof : Suppose D = |92 b o,
a3 by 3
Multiplying all the elements of its first row by & (i.e. performing R;(k)); we get
ka; kb kc
D'=|% b | =rkaj(byey — byc,) — kby(a,c3 — azcy) + key(ahy — azhy)
a b

kD
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ka1 kbl kC] a1 bl Cl
Hence, | ®2 by ol =fan b o ke R
a3 by a3 by c3

Note : If all the elements of a row or a column of a determinant are multiplied by a non-zero
real number £ and the value of the determinant is divided by k, we get the value of the given

kay kb kg aq b ¢

determinant, i.e. % a b ag|=la b o k #0)
a b o a3 by c3
3 2 1
Example 5 : Evaluate D = 4 5 6 Verify that the value of D becomes 3 times its value after
1 -3 2

performing C,(3).
2
Solution : D = 5

o~ OV

1
6] =3(10 + 18) — 2(8 — 6) + 1(—12 — 5)
3 2

=84—4—17=63

Now, performing operation C,(3), we get

9 2 1
D =12 5 6[ =9(10 + 18) — 2(24 — 18) + 1(—36 — 15)
3 -3 2
=252 —12 — 51
=189
= 3(63)
D' = 3(D).
a+dy bt+e a+fil | b g d e f
Theorem 3.4 : | %@ b Q |=la b o+l b o
az by c3 a3 by 3 a3 by 3

Proof : LHS. = (a; + d|)(byc5 — bscy) — (b + e Xaycq3 — ascy) + (¢; + fiayb; — aszh,)
= ay(bycy — bscy) + di(bycy — bycy) — by(ayey — azey) — eq(ayes — aze,) +
ci(ayby — aszb,) + fi(ayb; — azb,)
= [a; (bye; — bycy) — by (aye; — azcy) + cq(azb; — azby)] +
[d) (bycz — b3cy) — eq(aye; — azey) + f(ayby — azb,)]
aq b ¢ d ¢ hH
@ b gl +|w b o =RHS.
a3 by 3 a3 by
[Note : Thus a determinant can be written as a sum of two determinants. This applies to any row

or column. Theorem 3.3 and 3.4 suggest that a determinant is a linear (multilinear) function of its rows
or columns. Thus a determinant is a ‘multilinear’ form.]
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Theorem 3.5 : If the corresponding entries in any two rows (columns) are identical, the value of the

determinant is zero.
Proof : Suppose the first and second rows of a determinant are identical.

o b q
ie.D=|a1 b <
a3 by o3

By interchanging the first and the second row (i.e. performing R;,) we should get —D.
(Theorem 3.2)
But we see that D remains unchanged, since the first two rows are identical. So D' = D.

Hence D' = —D and D' = D, So D = —D.
2D = 0. Hence D = 0
Thus, if two rows or columns are identical, then determinant has value 0.
Theorem 3.6 : The value of a determinant does not change if any of its rows (columns) is multiplied
by non-zero real number & and added to another row (column). (k # 0)

aq b g
Proof : Suppose D = |92 b ©
a by

Let D' be the determinant obtained from D by performing R, (k) on it. Then we get

ayt+kay b +kb, c+kec
D' =| & by )
a3 by 3
a b q kay, kb, kcp
D =l b g+ b o (Theorem 3.4)
a by a b
a b q @ b g
=l b o+l b o (Theorem 3.3)
a3 by a by
=D + KO0) (Theorem 3.5)
=D

Thus, a determinant does not change if all elements of any row (column) are multiplied by a
non-zero real number £ and added to the corresponding elements of another row (column).

1 a b
Example 6 : Prove that |1 a+b b | =ab
1 a a+b
1 a b
Solution : Let D=1 a+b b

1 a a+b
0 -b 0

=11 a+b b [Ry,(—1)]
1 a a+b

=b(a+ b — b) (terms with multiplier 0 are 0)

= ab
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Solution :

0 a -b
Example 7 : Without expanding, prove that |[-a 0 —c| =0
b ¢ O
0 a -b
let D=|-a 0 -—c
b ¢ O
0 —-a b
=|la 0 ¢ R, > C)
b —c O
0 a b
=@-1»|-a 0 -c ®R(-1),i=1,2,3)
b ¢ O
=-D

Thus D = =D, giving 2D =0 or D = 0.

cos(0+¢) —sin(0+¢) cos2¢

Example 8 : Prove that the value of sin® cos0 sind | is independent of O.

Solution :

Let D

2 6 4
5 0 6
35 2

—cos9 sin@ cosd

cos(0+¢) —sin(0+0) cos2d

= sin® cos0 sinQ

—cos0 sin® cosh

cos0 cosQ — s5in0 sind —sinO cos® — cosO sind cos2

= sin® cos0 sin®

—cos0 sin® cos®

0 0 cos2¢+1

=| sin® cosO sind R,,(sind), Ry, (cos}))

—cos®  sin® cosd

= (cos2® + 1)(sin’0 + cos20)
=1 + cos2{, which is independent of 0.

2 6 4
Example 9 : Without expanding, show that 11 divides 5 0 6]
35 2
Solution : Performing C;3(100) and C,3(10), we get
2 6 264
=|5 0 506
3 5 352
2 6 11x24
=15 0 11x46
3 5 11x32
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2 6 24
=115 0 46
3 5 32
=11-n
11 divides the given determinant.
a* b?
Example 10 : By using theorems, prove that [a b
1 1
2 P A2 2-b® P 2
Solution : la b c¢| =|a-b b—c ¢
1 1 1 0 0 1
a+b
=@—-bb—-¢o| 1
0
a—c
=@a—bb—-0¢| 0
0

=(a— b)b—c)a—c)|0 1 c

(n € 2)
8
c| =—@a— b - o) — a)
1 @#b b#*c c#a)
(First C,;(—1) and then Cz,(—1))

b+c 02 1 1

1 . Ci\7=5) C2\5=¢ )
0 1 a;tb,b#c)
b+c c*

1 c [Cy(—1)]
0 1

1 b+c c2

(ci() @=o)

0 O 1

= (@ —=b)b —c)a — ) [1]
=—(a — b)b — c)c — a)

[Note : If a=b or b =c or ¢ = a, D = 0. Hence the result is true in this case also. ]
1 1 1
Example 11 : Without expanding the determinant, prove that | x y z |=0
y+z z+x x+y
1 1 1
Solution : Let D =] x y z
y+z z+x x+Yy
1 1 1
= x y z [C23(1)]
xX+y+z x+y+z x+y+z
1 11
=x+y+2)|x y z (C3(———'x+;+z],x+y+z¢0))
1 11
=@x+y+2(©0) [R; = Ryl
=0
[Note : Even if x + y + z = 0, R; = 0 and the expansion gives D = 0.]
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2x+3 3x+4 4x+5

Example 12 : Solve [ ¥+2 2x+3 3x+4| =9
3x+5 5x+8 10x+17

2x+3 3x+4 4x+5
Solution : | X+2 2x+3 3x+4 | =9
3x+5 5x+8 10x+17

2x+3 3x+4 4x+5
x+2 2x+3 3x+4] =0 [R;3(—D]
x+2 2x+4 6x+12

x+1 x+1 x+1
x+2 2x+3 3x+4|=0 [R,,(—D)]
x+2 2(x+2) 6(x+2)
1 1 1
x+Dx+2)[x+2 2x+3 3x+4| =0
1 2 6
1 0 0
G+ Dx+2)[x+2 x+1 x+1[=0 (Cp3(—1) and Cy,(-1))
1 1 4

x+Dx+2D)E+D4d—1x+ 1] =0
3x+ Dx+2)-x+1)=0
x=—1 or x=-2

.. The solution set is {—1, —2}.

x 4 6 5 6 1 2 3 9

Example 13 : Solve : |12 3 9] +16 4 5| =|2x-1 -8 -11].
5 6 1 2 3 -9 5 6 1

2 3 -9 2 3 9 2 3 9

Solution : (=D |x 4 6] —]6 4 5|=(C-1)|1-2x 8 11

5 6 1 5 6 1 5 6 1

(Performing R;, in the first determinant, R;; in the second determinant
and R, (—1) in the third determinant.)

2 3 -9 2 3 -9 2 3 9
x 4 6|+|6 4 5|=[1-2x 8 11
56 1 5 6 1 5 6 1
2 3 -9 2 3 9
x+6 8 11| =|1-2x 8 11 (Theorem 3.4)
5 6 1 5 6 1
2 3 -9 2 3 -9
x+6 8 11| —|1-2x 8 11| =0
5 6 1 5 6 1
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2 3 9
3x+5 0 0|=0
5 6 1
2 3 -9
Gx+5|1 0 Ofl=0
56 1
3 +5=0 as 1]° | o0
6 1
x=—3
The solution set is {—%}
Exercise 3.2
Prove using theorems,
1 1 1
(1 |x ¥y z|=0—=»0—2z—x).
Yo x Xy
1 x x
@) 1y Y| =6@-»0-2E—0+y+2).
1 z 23
1 1 1
3) x y z =@x =0 —2)(z —x).
(x+1?2 (y+1D? (z+1)?
X y z

@) |x=y y-z z—x| =x3+ )3+ 23 — 3xz
y+z z+x x+y

0 ab® ac®

%) la® 0 bc?| = 283633

a’c b 0

coso.  sind.  cos(o.+ d)
Without expanding, prove that |cosp sinP cos(B+8)| =0
cosy siny cos(y+398)

X 5 9
Find the solution set of [16 3x+8 36| = 0.
3 1 7
a a+b a+b+c
Prove that [3a 4a+3b Sa+4b+3c| = —d.
6a 9a+6b 1la+9b+6¢
1+ sin’0 cos?0 45in40
Solve | sin®0  1+cos’® 4sind® | =0,0< 0 < %
sin0 cos®® 1+ 4sin40
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a b c
6. Prove that [b ¢ a| = —%(a + b+ o)(a—b?+ (b—c)+ (c — a)?]
c a b

x—2 2x-3 3x—-4
7. Find the solution set of [x—4 2x-9 3x-16/ =0
x—8 2x-27 3x—-64
at+x a—x a—x
8. Prove that the roots of the equation [a—x aea+x a—x| =0 are x = 0 and x = 3a.

a—x a—x a-tx

x? ¥ zx + 22
9. Prove that x2 + xy y2 X = 4x2y222.
v Yy 2
a+bx d+ex p+gx a d p
10. Prove that lax+b dx+e px+ql=Q0Q —x)|b e g¢q
c f r c f r
(b+c)2 ab ca
11. Prove that | ab  (c+a)? bc | = 2abc(a + b + ).
ca bc (a +b)2
ES

3.6 Minor and Cofactor

Minor : Removing entries of the column and the row containing a given element of a
determinant and keeping the surviving entries as they are, yields a determinant called the
minor of the given element.

For example, to get minor of ¢ in the determinant

a b ¢
D=|% b |, we shall remove the entries of the column and the row of D containing c; and
a3 by c3

a

we shall keep the remaining entries in the same position. We get the determinant . This

bl|
by
determinant is the minor of ¢5.

Cofactor : If we multiply the minor of an element by (—=1)' +/, where i is the number of

the row and j is the number of the column containing the element, then we get the cofactor
of that element.

a b g
InD = |%2 b <, the minor of a, is bial and multiplying this by (—1)2 + 1, we get
C
a3 by c3 3

cofactor of a,. (a, is in second row and first column.)
b ¢
by c

The cofactors of a;, b;, ¢; in D are denoted by A;, B;, C; respectively, where i = 1, 2, 3.

Thus, the cofactor of a, is -D2+1. = —(bic3 — bsc)).
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In advanced mathematics, we write D as
a1l Y2 913
D =|ay axn az;
asz) aszp asj

Here, a;; means the element in the ith row and jth column.

Cofactor of a; = (=1)! *J (minor of aij)
+ - +
Simply remember following symbolic determinant format [— + —|.
+ - +
Element in any diagonal have the minor prefixed by + and other elements have the minor
prefixed by — to get the corresponding cofactor.

[Wote : The cofactor of an element is the factor by which that element gets multiplied in the
expansion of the determinant or the multiplier of that element in the expansion of the determinant.]

a b q
IfD=|% b o], then
a b3 c3
Ay = byey — bsey By = —(aye3 —asc;))  Cy = ayby — azh,
Ay = —(bjcy — bzc)) B, = aje; — a3 Cy = —(ayb3 — a3by)
Az = by, — byey By = —(ajc; — ayey) C3 = a1by — ayb,
1 2 7
Example 14 : Find the minors and cofactors of 2 and —1 in |3 7 -5].
-1 4 3
i 3 -5
Solution : The minor of 2 = 1 3
- 1+2 |3 5 _ =
The cofactor of 2 = (—1) 1 3| T —1X4=—4
2 7
The minor of —1 =
7 -5

2
The cofactor of —1 = (—1)3 + 1

=1 X (—59) = =59
2 = rxes

1 4 0
Example 15 : If D = |4 2 1, then find the value of the determinant formed by the cofactors
0 -1 3
of the elements of D.
1 4 0
Solution : D=4 2 1
0o -1 3
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2 1
The cofactor of 1 is A; = (—1)! +1 3| =1X(@6+1)=7

-1
-4 1
The cofactor of 4 is B; = (—=1)! +2 o 3 =CD(12) =12
4
0

2

The cofactor of 0 is C; = ()1 +3 _1| =@ =4

The cofactor of —4 is A, = (=12 +1

4 0
1 3| =D =-12

1
The cofactor of 2 is B, = (—1)> + 2 0

0
of = 3 =3

Similarly C, = 1, A; = 4, B; = —1, Cy = 18. (Find by yourself !)

7 12 4
The determinant formed by the cofactors of the elements of D is |-12 3 1].
4 -1 18

Tts value = 7(54 + 1) — 12(=216 — 4) + 4(12 — 12)
=385 + 2640 + 0
= 3025

[Note : The value of D is 55. The value of the determinant formed by cofactors is 3025 = (55)2.
This is true in general.]

Theorem 3.7 : The value of any third order determinant can be obtained by adding the

products of the elements of any of its rows or columns by their corresponding cofactors.

aq b g

Proof : If D = [@2 b | and cofactors of a,, b,, c, are A,, B,, C, respectively, then
a b

c

%=&W+121

= —(byc3 — b3cy)
c3

242 |1 A
B, = (-1) a o = ajc3 — a3z

a b

C2 = (_1)2 +3

a b g
ap bz Q| = D
a3 by c3
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aA, + b,B, + ¢,C, =D (i)
Similarly a;A; + 5;B; + ¢,C; =D (ii)
azA; + b3B; + c;C; =D (iiii)
ajA| + ayA, + az3A; =D (iv)
bB, + b,B, + b3B; = D )
1€y + ¢6,Cy + ¢3C3 =D (vi)

Here, (i), (ii) and (iii) are called expansions of the determinant by the second, the first and the
third row respectively. Similarly (iv), (v), (vi) are expansions according to the first, the second and the
third column respectively.

Theorem 3.8 : If we multiply all the elements of any row (column) of a third order
determinant by the cofactors of the corresponding elements of another row (column)
and the products are added, then the sum is zero.

a b ¢
Proof : Let us multiply the elements a,, b;, c; of the first row of D = [a; by c¢;|, by the
a3 by o3
cofactors of the corresponding elements of the second row i.e. with A,, B,, C, respectively and

add. That is to say we evaluate a;A, + 5B, + ¢,C,.

C;
Now, A, = (—1)2+1 2 c; = —(byc3 — bycy)

242 |B1 4
B, =D a3 | ~ 419 T 936

q

by
Cy=(—12+3 a3 by| = (@103 — asb).

Thus, ajA, + b;B, + ¢,C, = —a; (bjcy — bycy) + by (ajc3 — azcy) — cy(a1by — azby)
= —a\bjc; + aybscy + abjcy — azbicy — aybyey + azbicy
=0

Similarly, a;A; + ;B3 + ¢,C3 =0

A, + b,B; +¢c,C =0
aAy + 5B + ¢,C3 =0
azA; + bBy +c;C =0
azA, + b3B, + ¢;C, = 0

[Note : Similar results hold for columns also. Infact a;A, + 5B, + ¢,C, = the value of the
determinant where first row and second row are both a; b, ¢, i.e. identical.

S ajAy, + 5B, + ¢,C, = 0]
3.7 Solution of Two Simultaneous Linear Equations

Suppose, we wish to solve simultaneous linear equations a;x + by + ¢; = 0 and
ayx + by + ¢, =0 in R2. Here a;, b;,c; € R and ai2 + bi2 0. (G=1,2).
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We shall consider only those equations in which none of a;, a,, b;, b, is zero. (If some of
these are zero, then it is easy to solve the equations).

We have already studied the method of solving two simultaneous linear equations known as
Method of Cross-Multiplication. The method is

X . y . 1 . X _ o1
by o ¢ a a b bo-bo T aa-ca - ab-ab
b o G O a, b
Cox _ Yy __1

b« a q a b
b o a G a b
Now, in this chapter we shall use determinant notation.
|b1 a a
b, o @ a b,’
So, x = and y = — ——=", where |} # 0.
‘al bll 7 a b a, b,
a, b, @ b

This form of the solution is known as Cramer's Rule.

Note : (1) If a;b, — ayb; = 0 but a;c, — aycqy # 0 or bjc, — byc; # 0, then we get solution
set of the above equations as empty set.

) If a1b, — ayb; = bjc, — byey = ajc, — ayc; = 0, then solution is not unique it is
the infinite set, {(x, y) | a;x + by +¢; =0, x, y € R]

Consistent Equations : If the solution set of a system of equations is not empty, then the
equations are called comsistent equations.

Equations which are not consistent are called inconsistent equations.

Equivalent Equations : For the equations a;x + by + ¢; = 0 and ayx + by + ¢, = 0,

if there is a non-zero real number &, such that @, = ka,, b; = kb,, ¢; = kc,, then the two
equations are said to be equivalent. If they are mot equivalent, then they are called distinct.

Example 16 : Solve : 2x + 3y — 8 = 0 and 5x — 4y + 3 = 0, using Cramer's rule.

a1b1=23
b, 5 —4

So we shall have a unique solution.

b ¢
b o

Cramer's rule gives x = o b~ B - s
a b
a q
B» 2] _ -
a, b 23 23 23
a bz|

Solution : Here D = =—8 —15=-23 #0.

and y = —

Hence, (x, y) = (1, 2).
.. The solution set is {(1, 2)}.

Example 17 : Solve : 2x + 3y = 13xy and 5x — 2y = 4xy.
Solution : These equations are not linear equations. They are quadratic equations in x and y.
So they have two solutions.
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One solution is x =0 and y = 0 x=0=2>04+3y=0=y=0)
If x # 0, then obviously y # 0. 0=0=>x=0)
We can convert these equations in a linear form taking xy # 0 and dividing them by

xy # 0, we have linear equations in the form of

2z ,3_ 2 _2_
y + - 13 and y P 4.
1
Now, let us write ; = m and % = n. Then, the system is 2m +3n — 13 =0, 5Sm —2n—4 =10
which is a system of linear equations.
2 3
Here,D=| =—4 —15=-19 # 0.
5 =2
So, we shall have a unique solution for m, n.
[ 3 -13 2 -13
_ -2 —4 5 4 _ -12 - 26 _—8+65 _ (=38 =57\ _
m, ny = | 5=, - L= —[ TR ]—(_19,_19)—(2,3)
(m, n) = (2, 3).

=

1
but m=7andn=

The solution set is {(0,0),(%,%)}.

3.8 Area of a Triangle

In eleventh standard, we have found out area of a triangle, if coordinates of vertices of
a triangle are given.

If the vertices of a triangle are (x;, y;), (x5, ;) and (x3, y3), then we have applied the

expression % [0, — ¥3) + x,(y3 — ¥)) + x3(0/; — »,)] to find the area of a given triangle.

n n 1l
We shall write this expression in the form of determinant as % xy ¥y 1.
¥ oy 1

Since area is always a positive quantity, so we shall take absolute value of the above

determinant. We denote area of a triangle by A.

u oy 1
Here A = 5|D| where D = [x; ¥ 1.
x y3 1

Shifting of origin does not effect the area of a triangle.

If we shift origin to (A, k), then the vertices (x,, y,), (x,, ¥,) and (x5, ;) of the triangle will change
to (x; — h, y; — k), (xy — h, y, — k) and (x3 — h, y; — k) respectively.

Now, area of the triangle after shifting the origin is A = %| D'|.
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xl—h }’I—k 1

where D' xp—h y,—k 1

x3—h y3—k 1

xn n 1

=lxp ¥y 1 (applying C;,(%) and C;,(k))
x o y3 1

=D

| v o— 1
A=3D'|=3D]|
Thus, the area remains same.
As an example find the area of the triangle having vertices (2, 3), (5, 1), (7, =2).

2 3 1
D=|5 1 1] =203)—-3(=2)+ 1(-17)
7 21

6
A=3IDI=31-51=3
If we shift the origin to (2, 3), new coordinates of A(2, 3) are (0, 0). B(5, 1) changes to
G6—-2,1-3)=@3, 2.
C(7, —2) changes to (7 — 2, =2 — 3) = (5, —5)

0 0 1
D=3 2 1=|3 _2’=—15+10=—5
5 5 1 I5 -5

A=3D|=3-5|=3

Thus, the area remains same.

Example 18 : Find the area of the triangle whose vertices are (5, 4), (2, 5), (2, 3).

5 41
Solution : D =12 5 1| =5(5—3) — 42 —2) + 1(6 — 10)
2 31
=10—-0—14
=6

— — 1 —
A=1p|=1161=3

The area is 3.
Example 19 : If area of a triangle whose vertices are (8, 2), (k, 4) and (6, 7) is 13, find £.
8 2 1
Solution : D=|k 4 1| =84 —7) —2(k — 6) + 1(7k — 24)
6 7 1
=24 —-2k+ 12+ Tk —24
= 5k — 36
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Now, A = 1D

13 = )56 — 36|
5k — 36 =26 or 5k — 36 =—26

5k =62 or 5k=10
k=6—52 or k=2
k=20r%.

Cartesian Equation of a line :

In standard XI, we have studied the equation of a line when two distinct points on the line
are given.

&> >
If A(x;, y;) and B(x,, y,) are two distinct points of AB, then the equation of AB

o XTh X TXh . . =
is 53—, % — %" (Xk)i is not perpendicular to any axis)

x y 1
The determinant form of the above expression is |x; y; 1] = 0.
X ¥y 1

Example 20 : Find equation of the line passing through (7, 8) and (5, —2) using determinant form as
well as by using two point form.

x y 1
Solution : The equation of the line is [ y; 1| =0,
x y 1
where (x;, y;) = (7, 8) and (x,, ¥,) = (5, —2)
x y 1
7 8 11 =0
5 21

x(8+2)—y(7—5)+1(-14 —40)=0
10x —2y —54=0
5x—y—27=0

] . . YN XTX
The two point form of the equation of the line is = % —x
y—8 x—17

y—8 _ x—17

-10 2
—2y + 16 = —10x + 70
10x —2y —54=0

Sx—y—27=0

Exercise 3.3

1. Solve the following systems of equations using Cramer's rule :

(1) 4x + 10y = 2xy 2) x—2=17 @ F+2-09
4
S5x + 16y = 3xp 5x—3y=6 7+%=11,(xy¢0)
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2 6 1
Using cofactors of the elements of third row, evaluate |-3 0 5.
5 4 7
2 3 =2
Using cofactors of the elements of second column, evaluate | 1 2 3.
-2 1 3

Using determinant, find the area of the triangle whose vertices are

(1) (11, 8), (3, 2), (8, 12)  (2) (7, 9), (10, 8), (12, 10)

Find %, if the area of the triangle whose vertices are (2, 2), (6, 6) and (5, k) is 4.
Find g, if area of the triangle whose vertices are (5, a), (—2, 5) and (=2, 3) is 7.
Using determinant, obtain the equation of the line pasing through the points

(1 G,2),CL4 @G, -1D,6,3) (3)3d,-3),6,-2)

111
Find the value of the determinant formed by the cofactors of the elements of |3 4 3|.
3 3 4
%
Miscellaneous Examples :
—2a a+b a+c
Example 21 : Prove that |b+a -2b b+c| = 4(a + b)b + c)c + a)
c+a c+b 2c
—2a a+b a+c b+c a+c a+b
Solution : |b+a 2b b+c|=|b+a -2b b+c (Ry(1) and R3(1))
c+a c+b “2c c+a c+b 2c
a+b+2c 2a+b+c a+b
=| a-b c—b b+ c| (First C,,(1) and then Cj,(1))
a+b+2c b—c —2c
0 2(a+c) a+b+2c
2(a+ 0 b—
= [2@*o © (Ryy(—1) and Ryy(1))
a+b+2c b—-c —2c¢

=—2@+c)[“4cla+c)—(b—c)a+ b+ 20)] +

(a+ b+ 2)-2(a+ )b — )
=8c(a+cyY +2a+c)b—c)a+b+2)+

2(a + )b — cXa + b + 2c)

=8c(a + c)* + 4a + c)b — c)a + b + 2¢)
=4(a+c) [2c(a+ )+ (b — c)a + b + 20)]
= 4a + ¢) 2ac + 2¢% + ab + b% + 2bc — ac — bec — 2c?)
= 4(a + ¢) (ac + ab + b2 + bc)
=4(a+ c) (a+ b)b + ¢
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1+x 1 1
Example 22 : Prove that, [I+y 1+2y 1 | =2xz (3"'&"'?"‘%)
1+z 14z 143z
(xyzatO,i +Jy~ + 1 +3#:0)
1 1 1
I+ ¥ % 1
- . = L 1 L 58 45 1
Solution : L.H.S. xyz |1+ Y 2+ Y Y (R‘(x)’ Ri[y]’ R3(z)’ xyz # 0)
1 1 1
1+z 1+z 3+z
1.1, 1 1,1, 1 1,11
B+ tyty B+ x+yty 3+x+y+z
_ 1 1 1
1+1 1+< 3+1
1 1 1
_ 11,1 1 1 1 1
_xyz(3+x+y+zj I+5 245 (R1(3+1+-‘-+-’-))
1 1 1 £ 3 z
1+E 1+E 3+E
1 0
= 3+l4Llyll i+l 1 1 c 1 d C 1
= XxXyz X y  z y ( 12(_ ) an 13(_ ))
1+L 0 2
z
- 34141, 1
2xyz( x 'y 2
1+a% -b? 2ab —2b
Example 23 : Prove 2ab 1-a? +b? 2a = + a* + b2)3
2b -2a 1-a? - b?
1+a® -b? 2ab -2b
Solution : L.H.S. = 2ab 1-a? +b? 2a
2b —2a 1-a? - b?
1+a? +b? 0 -2b
= 0 1+a? +b? 2a (C3;(—b) and Cyy(a))
b(1+a®>+b%) —a(l+a>+b>) 1-a>-b?

1 0 —2b
=1 +a+p2[0 1 2a ———-) Cz[Ta'zl'ﬁ
b —a 1-—a®-b*
=1+ a® + )2 [(1 — a® — b? + 2a%) — 2b(—h)]
=(1+a*+ )0 +a+ b
=+ a* + )
= RHS.

)
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x—3 x—4 x-—a
Example 24 : If [x—2 x-3 x-b| = 0, then prove that a, b, ¢ are in arithmetic progression.
x—1 x-2 x-c
x—3 x—4 x-—a
Solution : [x—2 x-3 x—-b| =0
x—1 x-2 x-c
-1 -1 b-a
-1 -1 ¢-b|l=0 (Ry;(—1) and then Ry;y(—1))
x—1 x-2 x-c
0 0 2b—a—c
-1 -1 c-b | =0 Ry, (—1)]
x-1 x-2 xX—-c

2b—a—o)[-1x—2)— (x—DED]=0
2b—a—oc)(=x+2+x—1)=0
2b—a—c=0
2b=a+c
a, b, ¢ are in A.P.
Example 25 @ If two rows of a determinant are identical, then the value of the determinant is zero.

Using this fact prove that if two rows are interchanged, then the value of determinant so
obtained is additive inverse of the value of the original determinant.

ay+ay b1+b2 a+o
Solution : |aj+ay b+b g+ =0

az b €3

at+ay b1+b2 qto at+ap b1+b2 aqtco

o e ay bl a + a bz Cy =0

as bs 3 as by 3
a b q a b o a b q @ b o
a b o|+|a b o Flay b o tlaa b o =0
a3 by a3 by o3 a by 3 a3 by 3
a b o a b ¢
a b q|l=—laa b o
a by 3 a3 by c3
Exercise 3
x+5 x
1. Solve =0

x+9 x-2

3x+4 x+2 2x+3
2. Solve| 4x+5 2x+3 3x+4| =0
10x+17 3x+5 5x+8
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10.

x 2 2 7 -2 -6 5 3 7
Solve |7 2 6|+ |5 4 3|=|4 7 =2
S 4 3 1 5 6 3 8 -6
5 4 8
If | x—3 -8 -16] = 0, determine the value of x.
3 9 4
a—-b-c 2a 2a
Prove that 2b b—c—a 2b =@+ b+l
2¢c 2c c—a-b
y+2z x x
Prove that | y Z+x y | = 4xyz.
b4 z x+y

Show that

Prove that

Prove that

(y-22-x* »

¥ (=2 -y m| === -2z — D& +y+ )@+ 32+ 22).

2 (x-y*-2 w

1 1 1

a’> v® 3| =(a— b)b — c)c — a)ab + bc + ca).
b3 3

x2 y2 Z2
(x+D? (y+1)? @+D?| = =4 — y)0 — 2)(z — »).

(x-12 (y-1? (z-1)?

Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

2 3

Section A (1 Mark)
4

(1) [4x 6x 8x| = ......

5 7

(a) 18x

(2) The value of

(@ —1
x 1
3 [y 1

8

(b0 @1

2008 2009
2010 2011

(b) 1 () =2

y+z
zZ+x| = ...

z 1 x+y

(a) x +
(c) 3

y+z () x + )y + 2}z + x)

d 0

94
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@) sind0°  —cos40°| _ =
sin50°  cos50° |
(ao (b) 1 (c) —1 (d) not exist.
2 3 1
(5) fD=|5 -1 2|, performing R;,(—1) on D; then D will become ...... 1
7 4 -1
-1 3 1 2 1 1 -3 4 -1 2 3 1
@l|6 -1 2| w5 -6 2 ©@l|5 -1 2| @[3 4 1
3 4 - 7 -3 -1 7 4 -1 7 4 -1
Section B (2 Marks)
5 5 5t
@) |5 5% 5P| = ... ]
5 5 5
(a) 5° (b) 512 (c) 5° (d)o
1 yz x 1 1 1
(7)) fD;=|1 zx ylandD,=|x y z|, then ... -
1 xy z x? y2 2

(@D, +2D,=0 (b)2D,+D,=0 (c)D,;+D,=0 (d) D, =D,

0 2 +a x*+b
8) fa#0,b#0,c#0,|x*>~a 0 x—c|=0,thenx=... |
©-b P+c 0

(a1 (b0 a+b+c d) —(@a+b+c)
(x+D? (y+1D? (z+1)?
9 Ifx,y,z€ R,x>y>zand D = x y z |, then D is ...... =]
1 1 1
(a) negative (b) positive (c) zero (d) not real

1 cosO 1

(10)If D = |—cos© 1 cosO|, then value of D lies in the interval ...... . ]
-1 —cosB 1
(@ (2, o) (b) 2, 4) ©) [2, 4] @ [-2, 2]
Section C (3 Marks)
a b ax+ by
() If] b c bx+cy| = 0 and ax? + 2bxy + cy*> # 0, then ...... ]
ax+by bx+cy 0
(@) a b, c are in AP. (b) a, b, c are in GP.

(c) a, b, c are in A.P. and GP. both (d) a, b, ¢ are neither in A.P. nor in GP.
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(12) If[1 x 5|=0,thenx = ... 1
3 -1 2
(@) 2 (b) =2 )5 d) -5
1+x 1-x 1—-x
(13) The roots of |[1—x 1+x 1—x| =0 are ...... . ]
1-x 1-x 1+x
(@0, 1 (b) 0, -1 (c) 0,3 (do,3
Section D (4 Marks)
x -6 -1
(14)1f |2 -3x x-3| =0, then x = ...... . [
-3 2x x+2
(a) =3, 2,1 (b) 3,2, -1 () —3,2,1 3,2, 1
Via+43 J20 5
(15) [V15+428 25 10| = _ ]
34470 V15 V25
(@) 2543 — 1542 (b) 152 + 2543 (c) =253 — 152 (d) 15v2 —254/3
a b ax+b
(16) If | b ¢ bx+c| =0, then a b, c are in ...... . 1
ax+b bx+c 0
(a) AP (b) GP.
(c) an increasing sequence (d) a decreasing sequence

We have studied the following points in this chapter :

a

1. Second order determinant : b and its value is ad — bc.

d
a b ¢q
a b o
a by

2. Third order determinant D
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Some symbols :

€)) Rij (Cij) (i #J) : Process to interchange ith and jth row (column).

(2) R; = C; : Process of converting every row into respective column.

(B) Ry k) [C(A)] : Operation of multiplying ith row (column) by &.

(C)) R,-j(k) [Ci](k)] (i # j) : Operation of multiplying ith row (column) by k¥ and adding its

elements to the corresponding elements of jth row (column).
Properties of determinant :

(1) If we interchange rows to respective columns, then value of determinant remains same.

(2) If we interchange any two rows (columns), then we get the value of new determinant as
additive inverse of the given determinant.

(3) If we multiply every entry of a row (column) by k& (# 0), then the value of determinant
so obtained is & times the value of original determinant.

a+d, b+e aq+fi a b q d e fi
@ | = by @ |=2 b o+ b o
a3 by 3 a by a by ¢

(5) If the corresponding elements in any two rows (columns) are identical, the value of the
determinant is zero.

(6) If any row (column) is multiplied by k£ and added to another row (column), the value
of determinant remains same.

Minor : Minor of an element is the determinant obtained by removing the elements of the

column and row containing that element.

Cofactor : If the value of a minor is multiplied by (—1)’ */, we get the cofactor of that element,

where i is the number of the row and j is the number of the column containing that element.

On adding the products of the elements of any of its rows (columns) by their corresponding

cofactors gives the value of the determinant.

If all the elements of any row (column) are multiplied by the cofactors of the corresponding

elements of other row (column) and added, then the sum will be zero.

System of two simultaneous linear equations in two unknown can be solved by using
Cramer's Rule.

10. Area of a triangle whose vertices are (x;, y1), (x5, ¥5), (x3, y3) is

x »n 1
1ID| where D = |5, ¥, 1f.
x y3 1

11. On shifting of origin, the area of a triangle remains same.

12. Cartesian equation of a line passing through two distinct points (x;, y;), (x5, ¥5) is

x y 1
X1 N 1l =0.
x» y 1
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IDeterminant as a functionl

We have studied about vectors in standard XI.
X = (x;, x,) is a vector in R? and X = (x;, x,, x3) is a vector in R3.
Now we shall define one function D : R3 X R3 X R3 -5 R

Let X = (a), by, ¢1), ¥ = (@, by, ¢)) and T = (a3, b3, ¢3)

aq b q
Let D, ¥y, z)=|aa b
a3 by o3

Similarly if ¥ = (al, bl), y = (az, b2), then we can define

D : RZXR? >R, D%, 5) = |

bz|'

Thus, a determinant is a real function, whose domain is an ordered triplet of vectors in R3
or an ordered pair of vectors in R2.

Thus, if £ € R, then D(kx, ¥, 7) = k-D(X, ¥, 7)

We can write this for all variables X, ? T

If @ = (uy, uy, u3), then D(x + %, ¥, 7)=D(X, ¥, Z) + D(@. ¥, 7)

This result is true for all variables.

Thus, determinant is a linear function in every variable. (Other variables being kept constant.)
Thus, determinant is a multi-variable linear function.

Also, D(¥, ¥, z) = —D(¥, %, )

This function is called an alternating function.

From this, we can get D(x, X, z) =0

We can explain the example 25 like this,
Dx+y,x+y,z)=0

% DGEN Ty = tE) LG tew i a) =10

< DG, X, Z) +D(y,x,z2)+ D, Y, z2)+ Dy, y,z)=0

S DY zZ)=-D(x, ¥, 7)
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MATRICES 4

It is easier to square the circle than to get round a mathematician.
— Augustus De Morgan

Our notion of symmetry is derived from the human face.
Hence we demand symmetry horizontally and in breadth only not vertically nor in depth.
— Blaise Pascal

4.1 Introduction

If you are asked about your weight in kg, you can use a real number such as 55 to answer the
question. Again if you are asked for your height in cm, your answer is another real number say 135.
One way to organise these data is to use an order pair. You can represent your weight and height with
the order pair (55, 135). The elements of this order pair indicate the information such as weight and height
respectively. If we want to include your age in years say 16, then we have order triplet (55, 135, 16).
The elements of this triple indicate the information such as weight, height and age in the sequence
for an individual. We can write them in a row, like [55 135 16] or in a column, like | 55

135
16

If the above questions are asked to three or four individuals named Rita, Raman, Rahim and John,
then the informations can be collected in the order triples as (55, 135, 16), (58.5, 140, 18), (59, 138, 17)
and (60.5, 155, 20) respectively. However, it will be nice if we can combine all these triples together
in one set of data. If we consider each triple as one column, then we will have all our data in one
arrangement. If we organise them in an array form as :

Rita Raman Rahim John

Weight | 55 585 59 60.5

Height | 135 140 138 155
Age 16 18 17 20

If there is a selection of soldiers for the Army wing, then they have to collect above data from so
many individuals. If the data so collected can be arranged in the precise form as shown above, then it
is easy to interpret them. Also, it is easy to make selection of individuals.

The above arrangement of real numbers in a rectangular array is known as a Matrix (Plural is
matrices). The real numbers are the elements or entries of the matrix.

Matrix is a latin word. The origin of matrices lie with the study of systems of simultaneous
linear equations. An important Chinese Text between 300 BC and 200 AD, nine chapters of
Mathematical art (Chiuz Chang Suan Shu), give the use of matrix methods to solve simultaneous
equations. Carl Friedrich Gauss (1777-1855) also gave the method to solve simultaneous linear
equations by matrix method.

Matrix operations are used in electronic physics. They are used in computers, budgeting, cost
estimation, analysis and experiments. They are also used in cryptography, modern psychology, genetics,
industrial management etc.
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4.2 Matrix

Any rectangular arrangement or an array of numbers enclosed in brackets such as [ ]
or ( ) is called a matrix. We shall consider omnly real matrices, i.e. elements or entries of
the matrices will be real numbers only.

a b c
The matrix, [ d e f] has two rows and three columns. So we say that it is a 2 X 3 matrix.

2 X 3 is also known the order of the matrix.
In general, an m X n matrix is a matrix having m rows and n columns. It can be

written as
a] ajg  eeeens ain
a1 ajyy ... Arn
Al A2 eveee- Qnn

2

Here ‘q;’ is the element of the matrix in ‘ith’ row and ‘jth’ column. In a compact form, we can

y
write this matrix as [a If there is no confusion, we write it as [a,-j] also. We denote matrices

] .
ijim X n
by A, B, C etc. In the notation of the order m X » of a matrix, m denotes the number of rows of
the matrix and » denotes the number of columns of the matrix. An m X » matrix is called a
rectangular matrix.

Example 1 : Construct 4 X 3 matrix A = [a;] whose elements are given by ag=1i—j

a1 912 43
a1 ap @3
a3y az as3
a41 Q42 G43

Solution : We have matrix A =

Here a; =i —j,sowe have a;; =1 —-1=0,ag,=1—-2=—l,a;3=1—-3=-2,

i
0 -1 -2
1 0 -1
ayy =2 —1=1cetc. Thus, we have A=, ,
3 2 1

Difference Between a Determinant and a Matrix :

(1) A determinant has a real value where as a matrix has no real value as it is an arragement
of real numbers only.
(2) In a determinant, number of rows is equal to the number of columns where as in a matrix,
number of rows may or may not be equal to the number of columns.
Equality of Matrices :

Two matrices A = [a;],,  , and B = [b;],, , , are equal if they have the same order and

a; = b,-j, for all i and j. We denote equal matrices A and B as A = B.
Here, A=B & [l 5 n = Bjlyxn S a=b; Vi=1,23,m j=123,..n
_ C[x-1 2y 3x-7 y*-3
Example 2 : Find x and y, if x+y 4|~ 6 4 |

Solution : Corresponding elements of two matrices must be equal.
S x—1=3x—7, 2y=3>—3andx+y=6and4=4

100 MATHEMATICS 12



a

s 2x =6, Y —-2y—3=0
S x =3, =3+ 1)=0
y=3ory=-1

Here, x = 3 and y = 3 satisfy the equation x + y = 6 and x = 3, y = —1 do not satisfy x + y = 6.
Hence, x = 3 and y = 3.
Types of Matrices :

Row Matrix : A 1 X n matrix [e;, a;, a3..a,,] is called a row matrix.

A row matrix has only one row (and any number of columns).

eg. A=[3 5 —1 4 0]isal X5 row matrix.

a1
an
Column Matrix : An m X 1 matrix | 431 | is called a column matrix.

L%m1 _
A column matrix has only one column (and any number of rows).
15
eg A= 170 is a 4 X 1 column matrix.
-8
Square Matrix : An 7 X 7 matrix is called a square matrix.
A square matrix has the number of columns equal to the number of rows.

5 -1 3
For instance | 11 2 9 |is 3 X 3 square matrix.
-4 0 -7

(Note : [aij]l « 1 Matrix is a row matrix, is a column matrix and a square matrix also.)

Diagonal Matrix : If in a square matrix A = [aﬁ_ n x n» W€ have a; = 0 whenever i # j, then

A is called a diagomal matrix. This is a square matrix in which all entries are zero except
possibly those on the diagonal from top left corner to bottom right corner (principal diagonal).

[¢sp 0 0 - 0
0 ap 0 - O
A=|0 0 a3 -~ 0 |isa diagonal matrix.
0 0 0 - @y
A diagonal matrix is also denoted as diag [a); a5, as;...a,]
500
eg. A=|(0 0 O] is a diagonal matrix, i.e. diag[5 0 3].
0 0 3

Here, 5, 0, 3 are the elements of the principal diagonal of the matrix A.
Zero Matrix : If all elements of a matrix are zero, then that matrix is known as zero
matrix. We denote zero matrix by [0],, , , or O, , ,. O, . ., is also written as O.

000

Thus,
0 00

:| is a zero matrix. It is a O, , ; zero matrix.
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4.3 Operations on Matrices

Sum of Two Matrices : If A = [a;] and B = [b;] are both m X n matrices, then their
sum is defined as A + B = [a,-} + bu]m x n -€. a matrix obtained by taking sum of the
corresponding elements of A and B.

For the sum of two matrices, they must have the same number of rows and the same
number of columns, otherwise it is not possible to add the matrices. If A and B are both

m X n they are called compatible for sum. In notation [ay] + [b,j = [aﬁ + b,j].
1 5 -3 2 1-3 5+2 -2 7
For instant, if A=|2 -3|and B=|1 2 |thenA+B=|2+1 3+2|-|3 —1]
4 -7 -5 4 4-5 —T7-4 -1 -11

Properties of Matrix Addition :
(1) Commutative Law for Addition :

If A= [a‘j] and B = [b,-j] are both m X n matrices, them A+ B =B + A.
Now, A + B = [a;] + [b;;
= [aij + b,-j]

= [bij + aij] (Commutativity of addition in R)
= [b;] + [ay
=B+ A

A+B=B+A
(2) Associative Law for Addition :
For m X n matrices A = [al.].], B= [b,.j] and C = [c,.}.],
A+B)+C=A+ B+ 0).
Now, (A + B) + C = ([g;] + [5;]) + [¢]
=[a; + b1 + [¢]
= [(a,-j + bij) + ¢y
= [a,-j + (bij + cl-j)] (Associative law of addition in R)
= [a;] + [b; + ¢l
= [a,] + ([by] + [c))
=A+ B +C)
A+B)+C =A+ @B+ 0)
(3) The Identity for Addition of Matrices :

Let A = [ay],, , , and O = [0],, , , be the zero matrix. Then A+ 0O =0+A=A
A+ O =gy +[0]
= [a; + 0]
= [aij] =A (0 is the additive identity in R)
A+ O =|ag;

y
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By commutative law A+ O =0 + A
A+0=0+A=A
Thus, O is the identity matrix for addition.
(4) Existence of Additive Inverse :

Let A = [al,j m x n De any matrix. Then we have another matrix [_"ijlm % n» SO that
A+ [-ay] = O, . 4
A+ [_aij] = [aij] + [_aij]

= lay = ayl

=[0]

= Om xn

We denote [—aij] as —A.
By commutative law A + (—A) = O = (—A) + A.
Thus, —A = [—"a,-jl is called the additive inverse of A = [a;].
Difference of Matrices : If A = [a;] and B = [b,}-i are both m X n matrices, then the

difference of A and B is defined as A— B=A + (—B) = [a,}-l + {—b,-j = |ab- = bijl'

2 3 4 54 2
ExampleS:IfA=[ ]andB=|: },thenﬁndA+BandA—B.

5 2 8 31 2
. 2 -3 4 5 4 =2
Solution : A+ B = +
5 2 8 31 2

2+5 —3+4 4-2 71 2
[543 2+1 8+2| |8 3 10

A_B=A+(_B)=[2 -3 4]+[-5 -4 2]

5 2 8 -3 -1 2
_[2-5 -3-4 4+2| -3 -7 6
5-3 2-1 8-2 2 1 6
1 2
_13 5 13 5 .
Example 4 : Can we add A = and B = s 3 ? Give reason.
4 1

Solution : Here A is a 3 X 2 matrix and B is a 2 X 2 matrix. They do not have same
number of rows. They are not compatible for addition. So we cannot add A and B.

Product of a Matrix with a Scalar and Properties :

If A= [a,-j] is an m X n matrix and & is any real number, then the matrix [kaq} is called
the product of the matrix A by the scalar £. It is denoted by kKA. Thus, for A = [ay], kA = [kaﬁi.

In kA every element of A gets multiplied by £. (Compare corresponding result for a determinant !)
Properties of Addition of Matrices and of Multiplication of a Matrix by a Scalar :

Suppose, A = [“;}] and B = [bijl are m X n matrices and &, / € R, then

(1) k(A + B) = kA + kB 2) (k+ DA =FKkA + IA (3) (kDA = k(IA)

4 1A= A 5) (DA =-A
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Proof : (1) k(A + B) = k[aij + bij] (2) (k+ DA = (k + l)[aij
= [k(a,_, + by)] = [(k + l)alj]
= [kaij + kbij = [ka,-j + laij
= [kaij] + [kb,.j] = [kaij] + [Ial.j]
= k[a,-j] + k[b,-j = k[ai]-] + I[aij]
= kA + kB =kA + IA
@) (DA = (kDlay] (4) 1A =[1-q;
= [(k]) ;] = [a;
= [k(lay)] - A
= k[laij]
= Ki(ay)]
= k(IA)
(5) (—DA = (—D[a,] = [(-Day] = [-a;] = —A
Thus, (1) A = —A
4 2 1 0 1 2 3 5
Example S : IfA=[(-3 1 -5 7|andB=(4 0 1 -6/, then obtain 3A — 2B.
2 -9 -8 5 -2 3 6 -7
Proof : 3A — 2B =3A + (-2)B
4 2 1 0 1 2 -3 5
=3-3 1 -5 7|+2)4 0 1 -6
2 -9 -8 5 -2 3 6 -7
12 6 3 0 -2 4 6 -10
=9 3 -15 21|+|-8 0O -2 12
| 6 27 24 15 4 -6 -12 14
[12-2 6-4 3+6 0-10
_|-9-8 3+0 -15-2 21+12
| 6+4 -27-6 -24-12 15+14
10 2 9 -10
=(-17 3 -17 33
| 10 -33 36 29
5 4 1 2
Example 6 : fA=|0 —2| and B =3 —4], then find the matrix X, such that 3A + 2X = 4B.
3 6 6 -5

Solution : We wish to find matrix X such that 3A 4+ 2X = 4B

(-3A) + (3A + 2X) = (—3A) + 4B
(=3A + 3A) + 2X = (=3A) + 4B
O +2X=4B —3A

2X = 4B — 3A

(adding additive inverse of 3A)

(O is the identity for addition)
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X =1@B - 34)

1 2 5 47
X =143 4|+(3]0 2
6 -5 3 6,
T4 8 -15 —12]]
=112 -16|+| 0 6
24 20| [-9 -18]
[4-15 8-12
=112+0 -16+6
|24-9 —20-18
[-11 —4 -2
=% 12 -10|=| 6 -5
| 15 -38 L9

Transpose of a Matrix and its Properties :

Transpose of a Matrix : If all the rows of matrix A = [g;],, , , are converted into
corresponding columns, the matrix so obtained is called the trampose of A.
If A = [ay],, « o is a matrix, then its transpose is [a;], , ,, is denoted by AT or A",
- T =
If A= [aij]m « n» then A% = [aﬁ]n < m*

3 V2

For example, if A = 3 V52 , then AT = 5 -1
V2 -1 0 , o

Symmetric Matrix : For a square matrix A, if AT = A, then A is called a symmetric

matrix. If A = [aﬁ]u % ns then AT = I“j,-],, < ns AS AT = A, so a; = ay for all i and j.
1 3 -5 1 3 -5
Thus, ifA=|3 0 2 |,then AT=|3 0 2|
-5 2 -7 -5 2 7

We have AT = A, so Ais a symmetric matrix.
Skew-Symmetric Matrix : For a square matrix A, if AT = —A, then A is called a

skew-symmetric matrix. In such a matrix AT = [ = —ay for all i and j.

aji]n x n? %

Now, when i = j, then we have a; = —a;;, for all i.
2a; =0
a; =0, Vi.
This means that all elements on the principal diagonal of a skew-symmetric matrix are
zero. Here, a;; = ayy =.~ a,, = 0.
0o 2 1
For example, the matrix A=| 2 0 -5, then
-1 5 O
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0 2 -1 0 2 1
AT=|—2 0 5|=-1/2 0 -5|=(=DA=-A
1 -5 0 -1 5 0

A is a skew-symmetric matrix.
Some properties of Addition and Multiplication Regarding Transpose of Matrix :
1) A+BI=AT+ BT, @2)@ADT=A, @) kAT =*sAT,k € R
Proof : (1) For m X n matrices A = [aij] and B = [bij],
AT = [aﬁ] and BT = [bﬁ], are n X m matrices.
Now, A + B = [a,-j + b,-j] = [cij] where ¢ = ay + bij
(A+B)T = [¢;]
= [aﬁ + bji]
= [aﬁ] + [bji]
(A+B)T=AT 4+ BT
(2) Let A= [a,-j
T = T\T = =
Al = [aﬁ] and hence (A')' = [aij] =A

(AT)T = A
(3) Suppose A = [aij]
kA = [kaij = [cl.j] where ¢y = kalj
kAT = [cﬁ]
= [ka_,,]
= kAT
(2 -1 57
Example 7: IfA=|3 2 —4/, obtain A + AT and A — AT.
|6 3 8 |
What can you say about the matrices A + AT and A — AT ?
[2 -1 5] 2 3 -6
Solution : A=|3 2 -4 Hence AT=|-1 2 3
|6 3 8| 5 -4 8
[2 -1 5 2 3 -6
NowA+AT =|3 2 —4|[+|-1 2 3
6 3 8 5 4 8
4 2 -1
=12 4 -1
-1 -1 16
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IfB=A+AT
4 2 -1
ThenBT=|2 4 -1|=B
-1 -1 16
Thus, (A + AT)T = A + AT. Hence A + AT is a symmetric matrix.
[2 -1 5 2 3 -6
Again A—AT =3 2 4|—-|-1 2 3
-6 3 8 5 -4 8
0 —4 11
=l 4 0 -7
-1 7 0
Let C = A — AT
0 4 -11 0 —4 11
cT=(4 0 7 |=¢Dl 4 0 -7
11 -7 0 -1 7 0

cT=—
(A — AT = —(A — AT). Hence A — AT is a skew-symmetric matrix.

cosec®  —cot® —cot®  cosecO
+ co.
—cosec®  cotO

Example 8 : Simplify cosec® |: cot®  —cosecO

& —cot® —cot® )
Solution : cosecO |:cosec €0 ] + cot9|: co cosec j|

cot® —cosecO —cosec®  cotO

_ I cosec®® —cosecO cot6i| 4 [ —cot?0 cot® cosec(-)]
| cosecBcot6 —cosec?® —cot0 cosecO cot?0

_ I cosec?® — cot?0 —cosecOcotB + cotd cosecG:|
| cotO cosecO — cotB cosecO —cosec?®+ cot %0
1 0

~ o —1]

Example 9 : Prove that if A is a square matrix, then A + AT is a symmetric matrix and A — AT is

a skew-symmetric matrix and every matrix A can be uniquely written as a sum A = B + C
where B is a symmetric matrix and C is a skew-symmetric matrix.

Solution : FB=A+ AT, then BT =(A+ ADT=AT+ (ATH)YT =AT+ A=A+AT=B
B = A + AT is a symmetric matrix.

Let C=A—AT

Then CT = (A - ADT = AT - (AT = AT —A=—~A - AT)=—CC
C = A — AT is a skew-symmetric matrix.

Also A=2A+AT+A-AD) = 2A+AD) + 2(A-A) = 1B + 1C.
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A is a sum of a symmetric matrix and a skew-symmetric matrix as %B and %C are
symmetric and skew symmetric matrices respectively.

Conversely let A = B + C where B is a symmetric matrix and C is a skew-symmetric matrix.
BT =B and CT = —C

Now AT=BT +cT=B-C
A+AT=2B A—-AT=2C

A—AT
2

T
B = , C=

The expression for A as a sum of a symmetric matrix and a skew-symmetric matrix is

unique.
Exercise 4.1
(2 —4 -3 1
1. IfA=|3 2 |andB=|0 5 |,then find A+ B, A— B, 2A + B, A — 2B.
-1 1 4 =2

[sin® —cos©
2. 1A=|" c:os , then obtain A + AT and A — AT.
| cos®  sin6

3. IfA=diag[l —1 2] and B =diag[3 2 1], find B — A, 2A + 3B.

: s 2x] _[-7
4. Solve the matrix equation | =, [ —4 = .

(i-2j)? .

5. If a;="3 obtain [aij]2><2'
1 2 5

6. IfA=|5 1 1], find A —2AT.
3 0 4

7 If[x+y xy]=[6 §i|,thenﬁndxandy.

-8 3 -8
) _|a=-2b c+d 2 0
8. Obtain g, b, ¢, 4, if 2a—b 3a—c| =17 10!
25 6 3
9. Find matrix A and B, if A+ B = and A— B = .
9 0 -1 0
8 O 2 =2
10. Find matrix X, if 5A —3X =2B, where A=(4 -2|andB=|4 2
3 6 -5 1
3 1 1 2 -1 0
11. Suppose A=|-12 -3 0 |andB=|3 2 —4]and3A+ 4B — X = 0, then find matrix X.
-9 -1 -12 5 1 9
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) ) 5 a 01 10 5
12. Fmdaandb,1f23 4 + 1 o117 ol

sk
Multiplication of Matrices :
The product AB of two matrices A and B is defined only if the number of columns of A is

equal to the number of rows of B.

Suppose, A = and B = [b are two matrices. Then their product

[aijlm X n ij!n X p

n

To obtain the entry in i th row and jth column of matrix AB, we multiply elements of the
ith row of the matrix A with corresponding elements of the jth column of the matrix B and

then we take the sum of all these products. Thus, for A = [a; and B = [bl,j]u xp? the

ifim x n
n
produet AB = Za,-k 'blg
k=1 iy

If A = [a,; and B = [b

ulm % we say A and B are compatible for multiplication.

::r"n x p

2 3 1 -2
Example 10 : If A = [ i|, B = [ :|, find AB and BA and also show that AB # BA.

-4 5 3 4
) (2 13 1 -2
Solution : AB = 4 5 ‘13 4

[2(1)+3(3)  2(-2)+3(4)
T[4 +5(3) —4(=2) +5(4)

1 8 .
~ 11 28 ®
1 2] [2 3
BA=13 4] |4 s
[1(2) +(-2)(—4) 1(3)+(-2)5
| 32)+4(—4)  3(3)+4(5)

10 -7 .
= |-10 29 (@)
Observing results (i) and (ii), we can say that AB # BA.
2 -1 1 1 1
Example 11 : fA=|-3 2 4 | and B= |4 -2|, then find AB. Is BA defined ? Why ?
0 3 5 2 3

Solution : AB

Il
|
w
)
o~
I
|
)
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Example 12 : If A = [

[2(D)+ (-D4+1(2) 2(1)+(-1)(=2)+1(-3)
3D +2(4)+4(2)  3(1)+2(-2)+4(-3)
LO(D) +3(4) +(-5)2 0(1) +3(2)+(-5)(-3)

0 1
13 -19
2 9
BA is not defined because, B has two columns and A has three rows.
cos’o cosq. sino. cos2B cosP sinf3
cosQL sin o sina "0 cosP sinp sin’p an

o — B =(2n — 1)%, n € Z, then prove that AB is zero matrix.

Solution : AB

cos®0.  cosasin a] [ coszﬁ cosP sin B:|

| cosausina sin’o. cosPsinB  sin’B

cos?0cos®B + coso sinacosP sinP  cos?ocosP sinP + cosa sinow sin ZB]

| cosal sino cos?B+ sin’o.cosP sinp  cosa sino cosP sinP + sin 2o sin*B

[ cos o cos B (cos o cos B+ sinci sinB)  cos o sinP (cos o cos B + sin o, sin B)
| cos P sino(cos aucos B+ sinasinB)  sinasinB (cosocos B + sina sinB)

[ cos o cos B cos (. —B)  cos o sin cos (0. —B)
| cosPB sina.cos (.—B) sinc. sinf cos (o —B)

[0 O ™
0 0 (cos(a — B) = cos2n — B = 0)

1 -3 -1 4
Example 13 : If A = [ } B= { ] prove that (A + B)2 # A2 + 2AB + B2

2 4 5 =2

1 -3
Solution : We have, A = [2 4:|

A? = AA

B2 = BB

i

[1-6 -3-12

[2+8 —6+16

-5 -15

|10 10

(-1 47[-1 4
|5 2|5 -2
(1420 —4-8
_—5—10 20+ 4

[21 -12

|-15 24

110
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1 —37[-1 4 “1-15 4+6] [-16 10
AB=15 41l|ls —2|T|-2+20 8-8|"|18 o

32 20
2B = | 46 o
; , [ -15] [-32 20 21 -12
AT+2AB+B =1, 19|t |36 o|t|-15 2
, , [-16 -7 _
A +2AB+B>=| 5 44 6]

1 -3 -1 4 0 1
ATB=1r 4|5 2|7 |7 2
(A+B)> =(A+ B)A +B)
0 11|10 1 0+7 0+2
|7 2|7 2| |0+14 7+4
, 7 2 )
(A+B)Y =114 n (i)
From (i) and (ii), we can see that (A + B)?2 # A2 + 2AB + B2
[Note : For the matrix A, A2 = AA and we do not take simply squares of entries of A.]

Properties of Matrix Multiplication :

Matrix multiplication has the following properties. We shall assume them without proof.
(1) Distributive Laws :

(i) For A = [al}'lmxn , B= [bﬁ]"xp y C= {c,j]”xp
AB + C) = AB + AC
(ii) For matrices A = [a,?]m xns BT lb,ﬂm gt B= [cl}-]” i
(A + B)C = AC + BC
(2) Associative Laws :
(ii) For matrices A = [a,],, ., B=1[byl, ,,, C= [r:,.j]p % q

A(BC) = (AB)C
Identity Matrix (Unit Matrix) : A square matrix in which all elements on principal
diagonal are 1 and the rest of them are 0 is called an identity or a unit matrix. Identity
matrix is denoted by L
Thus, I = [aijnxn where a; = { 1, ifi=j
0, ifi#j
I is also represented as I, or I, .
1 00

ie.1=]0 1 0] jsa3 x 3 identity matrix.
0 01

n

As this identity matrix is a 3 X 3 matrix, it is denoted by I3 , 3 or simply by I;.

MATRICES 111



“

If A = [a], « ,» then for the identity matrix I, we have AL, = LA = A.
(Note : A symbol 81-1- called Kronecker delta is used to define I.
;= { 1 if i=j
0 if i#j
Thus, T = [8;])
Scalar Matrix : If ¥ € R, then kI, is called a scalar matrix.
4 00

Thus, A = 0 4 0] is a scalar matrix.
0 0 4

Here k = 4 and A = 4I,.

8 X
Example 14 : IfA=[x y z], B= S | and C = ||, then find (AB)C.
C Z

o S Q

h
b
f

I |

a

h
Solution : Now, AB =[x y Z] h b
g f

o %,

=Jlax +hy+gz hx+by+jfz gx+fy+ cz]
x

(AB)C =[ax+hy+gz hx+by+fz gx+fy+ecz]|?
z

=[(ax + hy+gz)x+ (hx + by + )y + (gx + fy + ¢cz)z]
= [ax® + hxy + gzx + hxy + by? + foy + gxz + fz + cz?]
= [ax? + by? + cz2 + 2hxy + 2gzx + 2fz]

1 -2 -2 5 5 2
Example 15 : If A = 3 4 , B = 6 1,C= 7 4,f'mda2><2matristuchthat

BX -AC=0

a b
Solution : Let X =
c d

Now, BX —AC =0
2 5][a b 1 —27[5 2] [o o
| 6 1f|lc d| |3 4|7 4] |0 0O

—2a+5c —2b+5d -9 -6] [0 0
| 6a+c  6b+d | |43 22|70 O

(2a+5c+9 —2b+5d+6] [0 0
| 6a+c—43 6b+d-22 | |0 O
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—2a+5¢+9=0, —2b+5d+ 6=0
6a+c—43=0 6b+ d—22=0

—6a + 15¢ = =217, @) —6b + 15d = —18 (iii)
6a+ c=43 (i) 6b+ d =22 (iv)
Adding (i) and (ii), - Adding (iii) and (iv),
l6c=16=>c=1anda=7 16d=4=d=,andb=2

a b 7 _289
Hence X = = .
C d 1 l
4

Example 16 : Prove that if A(x) = |iC¢?sx —sinx
sinx  cosx

], then A(0) A(B) = A(0t + ) and deduce that

A(0) A(B) is the identity matrix I,, where Ot + B=2nm,ne Z

[ cos o —sin a] |:cos B —sin B]

| sinat cosa || sinB cosB

Solution : A(0) A(B)

[cos oucos B—sinosinB  —cos o sin B — sin o cos B
| sino.cos B+cosasin  —sin o sin B+ cos o cos B

B [cos (0L+B) —sin(o.+ B)]

| sin(oe+B) cos (a+P)

=A@+ B)
10
If o0 + B = 2am, A() AB) = [0 J (cos2nTt = 1 and sin2n® = 0)

Exercise 4.2

1o1wa=|! _1,B=
0 2 2 -1

a+b 4 6 a 3b 3a
2. Find q, b, ¢, d, if + = .

-1 1
[ (1)i| and C = |:(1) i|, then prove that A(B + C) = AB + AC.

3 c+d 2d -1 3d 3c
1 0 =2 0 5 4 1 5 2
3. A=|3 -1 0 ,B=|-2 1 3 |andC=]|-1 1 O], then prove that
-2 1 1 -1 0 2 0 -1 1
AB — C) = AB — AC.
2
4. IfA=[1 -1 2], B=|3], obtain AB and BA, if possible.
1
2 0 1
5. IfA=|2 1 3/, find A2 — 5A.
1 -1 0
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31
6. IfA= , find A2 — 5A.
-1 2
[ o —tan% cos® —sin®
7. IfA= an8 o I then prove that (I, — A) sin® cos® | = I, + A.
i 2
5. wa=|* ° ] then obtain AZ2.
| —a” —ab

9. Obtain XandYifX+Y=A= , Where X is a symmetric and Y is a skew-symmetric

W N =
EENY e )
0 O N

matrix.

) ) 5 7 -16 —6
10. Find a 2 X 2 matrix X such that | , 5 |X=| 5 , |

0 1
11. Find real numbers x and y such that (xI + yA)?2 = A where A = [ ]

-1 0
1 3 2 1
12. Findx if [1 x 1]|2 5 1{|[2]|=0
15 3 2||x

3 4
13. IfA= [1 _1:|, then prove by the principle of mathematical induction that

2n+1 —4n
AT = I: n 1-2n
4.4 The Determinant of a Square Matrix :
If all the entries of a square matrix are kept in their respective places and the determinant of
this array is taken, then the determinant so obtained is called the determinant of the given square
matrix. If A is a square matrix, then determinant of A is denoted by | A | or detA.

a1 4q2 93 a1 912 413
For instant, if A = | ay; apy ap3 |, then its determinant is | A| = | ap; axy ax; |.
az) a4z asj az)] a3y as3
1 5 1 5
IfA= 3 2,then|A|= ) =2 —15=-13.

Theorem 4.1 : For square matrices A and B, |AB| = |A||B|.
We will accept this theorem without proof.
1 0 0
Example 17 : Find |[A|, if A=[0 sin® —cosH|.
O cos©® sin®

1 0 0
Solution : |[A|=]0 sin® —cos®| = sin%0 + cos?0 = 1.
0 cos® sin®
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Adjoint of a Maftrix : For a given square matrix A, if we replace every entry in A by its
cofactor as in | A | and then the transpose of this matrix is taken, then the matrix so obtained is called
the adjoint of A and is denoted by adjA.

If A= [aij]n « n» then adjA = [Aji]n « n Where Aﬁ is the cofactor of the element a;.
M1 a3 &3 Al Az Aj;
If A=|ay axy ay|, then adjA = [Ajp Ay Az .
az; azp ass Az Ax Az
4 2
Example 18 : For A = | ; 51 find adjA.
4 2 al a;n
Solution : We take A = =
1 5 021 022

Ay Ag 5 2
ad]A=|:A12 Ap | =1 4|

[Note : To obtain the adjoint of 2 X 2 matrix, interchange the elements on the principlal

b
diagonal and change the sign of the elements on the secondary diagonal. e.g. if A = |:a di|, then
c
d -b
adjA = [ i|.]
-c a
3 2 3
Example 19 : Find adjA for A= |2 1 -1|.
4 -3 2
3 2 3 a1 a1 a3
Solution : Let A= |2 1 =1|=|ay ayp ay;
4 -3 2 a3l a3y ass
Ay =5 Ayy =—6 Ay =1
Az =1 Az =9 Agy =7
-1 -5 -1
adjA =| -8 -6 9
-10 1 7

4.5 Inverse of a Matrix :

For an n X n square matrix A, if there exists another » X n square matrix B, such that
AB =1, = BA (I is an identity matrix), then B is called an inverse matrix of A. Inverse of A is
denoted by A™1,

It is clear that if B is an inverse of A, then A is an inverse of B.
Theorem 4.2 : If inverse of matrix A exists, then it is unique.

Prool : If possible suppose B and C both are inverses of A.

AB =1=BA and AC =1 = CA.
Now AB =1
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.. C(AB) = CI

.. (CAB=C

s IB=C

s B=C

This shows that A has a unique inverse matrix.

Note : Remember in chapter 1, we had seen that for an associative binary operation with
identity, inverse is unique. Matrix multiplication of » X n matrices is associative and has identity I, .

Theorem 4.3 : For a square matrix A, A(adjA) = (adiA)A = |A|L
Proof : We will prove this result for a 3 X 3 square matrix A.
a1 arp a3 A Ayl Az
Suppose A= ap) a4z azs|. Then ad_]A = A12 A22 A32 .
az| azy 433 A3 Axz Ajz;
al a2 93 A;r Ay Ajgg
a1 ap a3 |-|Aix Axp Az .
az; azp a3z | [A;z Ay Aszs

Now, A(adjA)

ajArg HapAgp ta3A1z a1 tappAg +aizArz a1z HapAsy +ajzAsg
— | @1A11 HaxnAip +axA1z axAsg taxpnArn HaxAx arAsg +axpAszp +axAss
| a31A11 HazpAp tagzAz  a31Ag) +a3Ann tajzArs a31Azg +azAszp +az3Ass

[IA1 © 0
=] 0 IAlI O (by the theorems on determinant)
| O 0 IAl
1 00
=]A||0 1 O
0 01
= AL

Similarly, we can prove that (adjA)A = | A|L;.
Non-singular Matrix : A square matrix is said to be non-singular, if it has an inverse matrix.
[Note : If A is a non-singular matrix, then A~1 is also non-singular matrix and (A™1)™1 = A ]
Singular Matrix : A matrix which is not non-singular is called a singular matrix.
Theorem 4.4 : A square matrix A is non-singular if and only if |A| # 0.

Proof : Suppose A is a non-singular matrix and let B be the inverse of A.

s AB=1
s |AB]| = |1]

s |A[|B|=1#0
S A2 0

Conversely, let | A| # 0. So ﬁ exists.
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a

Let B = 1 adjA
1 . 1 . 1
Then AB = A(madJA) = Taj(AadjA) = T |A|L
AB =1
Similarly, we can prove that BA = 1.

B is the inverse of A.
A is a non-singular matrix.
(Note : Inverse of matrix A is A~ = 757 adjA, if it exists.)
2 3
Example 20 : Find the inverse of A = 4 | if it exists.
2 3

5 4 =84+ 15=23 #0.

Solution : Here |A| =

A1 exists.

) 4 3
Now, adjA = _5 2

— 1 .
So, A™! = 127 adjA

. [4 3
2B 5 2
4 3
23 23
-5 2
23 23

ATl =

1

5 8
Example 21 : Find A7, if A= |0 2 1|
4 3 -1

58 1
Solution : [A|=|0 2 1| =5-=2—-3)—80—4)+ 100 — 8)
4 3 -1
= —25+32—8
=—1#0
A~1 exists.
5 11 6
adih = | 4 9 =5
-8 17 10
A7l = = adjA
-5 11 6
_ 1|4 -9 -5
8 17 10
5 -11 -6
|4 9 5
8 -17 -10
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Some Important Results :

(1)

So,
So,

2)

Again, (ABYB1A™])

For a square non-singular matrix A, the value of the reciprocal of the determinant
of A is the same as the value of the determinant of the inverse of A.

This means |[A71| = |A|™L

Proof : A is a non-singular matrix. Hence | A| # 0 and A™! exists.

AATl =1
|AATH] = |T|
|AlAT ] =1
— 1
|ATH = a7 (A #0)
AT = AT

If A and B are non-singular matrices, then AB is also non-singular and
(AB)"l = BT1A7],

Proof : A and B are non-singular, so A™! and B! exist and |A| # 0, |B| # 0.
|A]|B| # 0

|AB| # 0

AB is a non-singular matrix.

ABB AT

A(®BBHA™

= A(A™
= AA™!
=1

Similarly, we can prove (B"!A™1)(AB) =1

Hence, (AB)"! = B71A™]

3)

4)

For m X n matrices A and B, (AB)T = BTAT,

We shall accept this result without giving proof.

AT is non-singular if and only if A is non-singular and A1 = (A~HT,

Proof : A is a non-singular matrix < |A| # 0
& [AT[#0 (1A] = |AT)
<> AT is non-singular.

Again, AA™1 = ATIA = |

So, (AATHT = (A71A)T = 1T

(A—I)T AT — AT (A—I)T =1 (1'!' = I)

(AT)—I = (A—I)T

118
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(5) adjA" = (adjA)"
Proof : Let A = [a

i
s AT =[ay]

s adiAT = [A,] @
But adjA = [A;]
s (adid)T = [A (ii)

i
From (i) and (ii), we get adjAT = (adjA)T

4.6 Row Reduced Echelon Form

We have seen some operations like R,

i R(k) and R,-j(k) as applied to a determinant. Similar
operations for columns also can be applied.
The application being similar, we will consider row operations.

(1) If the operation R,-j is applied to identity matrix I,, the resulting matrix is called
an elementary matrix EU

(2) If the operation R(k) is applied to identity matrix I,, the resulting matrix is called
an elementary matrix E (k).

(3) If the operation Rij(k) is applied to identity matrix I,, the resulting matrix is called
an elementary matrix E,.j(k).
Applying R, to matrix A is the same as finding product E,, A for any matrix A.

1 2 3
LetA=|2 1 4
2 16

] @
0
0
1

123 2 1 4
2 1 4|={1 2 3 (i)
00 1][2 16 216

(i) and (ii) prove our assertion.

Similarly any elementary operation Rij,
A by Eij’ Efk) or Eij(k) respectively.

For column operations post-multiplication has to be carried out.

R/(k) or Rij(k) on matrix A is equivalent to premultiplying

Now we define a reduced row echelon matrix. A matrix is in reduced row echelon form if
(1) The first non-zero entry of each row called the leading entry is 1.
(2) Each leading entry is in a column to the right of the leading entry of the previous row.

(3) A row with all entries zero is called a zero row. All zero rows occur below rows
with at least one entry nomn-zero (called a non-zero row).
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(4) The leading entry is the only mom-zero entry in its column
1 i@ 0 0! 1 @& @
01 0,]|]0 0 1 O] are in reduced row echelon form.
0 01 00 9 0

A result : The row reduced form of a non singular matrix is I,.

We can obtain inverse of a non-singular matrix as follows :

Write A = [A.

Apply elementary row operations on A and I so that A on left-hand side is converted to its
reduced row echelon form namely 1, (being non-singular).

Then, we will have an equation like this I = PA.
where 1 gets converted to P by clementary row operations same as on left-hand side matrix A.
Then P = A1,

How to get row reduced echelon form of a matrix A ?

(1) (a) Find the pivot, the first non-zero entry in the first column.

1 2 3
For, |0 6 2|.1 is the pivot.
3 45
(b) If necessary interchange rows so that the leading entry in the first row is non-zero.
01 2
2 1 2|. To have pivot in the first row, we will apply Ry, or Rys.
1 3 3
1 3 3
For instant, if we apply R, thenin |2 1 2|, we will get 1 3 3 as a first row with
01 2

1 as a pivot.

(c) Multiply each element in the pivot row by inverse (reciprocal) of the leading entry,
so that leading entry becomes 1.

351
In|2 1 3| leading entry is 3. So we multiply each element of the first row by % to
4 1 2
get 1 % % as the first row.
1 3 1
3 3
So the matrix willbe |2 1 3
4 1 2

(d) Add multiples of the pivot row to each of lower rows so that every element in the
pivot column of lower rows becomes 0.

We apply R ,(—2), Rj3(—4) to the matrix which we have at the end of (c). The

3 1

13 3 1

matrix will become | 0 —% % with first column 0.
=17 2

0= 3 0
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(2) (a)
(b)
©

3 @
(b)

©

Repeat the above procedure from step (1) ignoring previous pivot row.

Continue till there are no more leading entries to be processed.

Now the matrix becomes a triangular matrix having zeroes below principal diagonal.
After performing some operations on the matrix obtained in (1)(d), we have matrix

5 1

13 3
01 -1
as .
0 0 1

Identify the last row having leading entry equal to 1. Call it the pivot row now.

Add multiples of this pivot row to each of the upper rows untill every element above
the pivot becomes 0.

Moving up the matrix repeat this process for each row.

Now performing R31(—%) and Rj3,(1) we have,

120

010

0 01
1 00

Now applying R21(—%), we have [0 1 O] ie., we get Is.
0 01

Thus performing operations on A = IA, we get I = PA. Here P = A™L,

Let us understand by an example.

0 -1 1
Example 22 : Find inverse of |3 -3 4| by elementary row operations.
2 3 4
0 -1 1 [1 0 o|[0 -1 1
Solution : |3 -3 4(=]10 1 0|3 -3 4
2 3 4] |00 1]|2 -3 4
(2 -3 4 0 01
3 3 4(=]101 0(A (R3;) (To bring leading entry non-zero)
0 -1 1 100
(1 -2 2] oo 1
3 3 4,=(01 0fA Rl(%) (To make leading entry 1)
0 -1 1 1 00
- 3 .
1 -3 2 00 >
3
0 % —2(=10 1 3| A Ry,(—3)
0 -1 1 1.0 0
_ 5 .
1 -5 2 00 >
0 1 —% =10 % -11A Rz(%) (Leading element of second row is made 1)
0 -1 1 10 0
MATRICES
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3 1
1 -3 2 oo 1
4 2
0 1 —-3|=]|0 %5 -1|A R,;(1)
1 2
0 0o 1| [12 4
. T g
1 -3 2 o o 1
0 1 -%/=|0 % -1|A Ry(-3) (Leading element of third row is made 1)
0 0 1 3 2 3
i 3 117]
1 -3 0 6 4 -
0 1 0|=|-4 2 3 |a Ry (%) Ry (-2)
0 0 1 3 2 3
10 0 0 1 -1
01 0[_|4 =2 3]|a Ry, (2)
001 |3 =2 3
0 1 -1
3 2 3

1 4
Example 23 : By using elementary operations, find the inverse of A = |:3 2:|.

Solution : We take A = TA.

We shall use elementary row operations on this matrix equation.

(1 4 10
3 2] "o 1]A
1 4 1 0
0 —10] = [-3 1|4 R12(=3)
(1 4] 1 0
_0 1_ | 10 10:| 2( iO)
- 4 T_2 4
1 0 0 10
0o1] |32 _a|A Ry (—4)
- - 10 10
-1 2
4_175 5
Thus, A~ = 3 1
10 10
5 8 1
Example 24 : Obtain the inverse of matrix A=|0 2 1 | by reduced row echelon method.
4 3 -1
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5 8 1 1 00
02 1|=]|010|A
4 3 -1] |0 0 1
1 5 2] [1 0 -1
02 1|=]01 0|A
4 3 -1] |0 0 1
1 5 2 1 0 -1
0 2 1|=]l0 1 ofA
0 -17 -9 4 0 5
- AT s -
1 0 -3 1 -3 -
0o 2 1|{=l0 1 o]A
0 -17 -9 -4 0 5
17 [ _5 _1]
0 -17 -9 -4 0 5
- - [ 5 _
10 —5 L= -1
1| _ 1
01 7|~ 0 5 0]A
00 -1 4 11
i 2] |45 5
(10 0] [5 -11 -6]
1 1
01 5 |_|0 5 0 A
1 17
0 0 —5] 4 5 5
(10 o] [5 -1 —6]
01 0|=|4 9 5|A
1 17
00 —5| |4 ¥ 5]
1 00 5 -11 -6
1 o|l=|-4 9 5 |A
0 01 8 -17 -10
5 -11 -6
I=A"1A, where Al = |4 09 5
8 -17 -10

1 5 2 1 0
Solution : Wewrite |1 1 7= |0 0| A
0 4 0 1

a

Solution : We write, A = 1A

(Ry; (1))

(Ry3(—49)

(Ra(-3))

(R,3(17))

(Rst —D)
R;,(1)

(R3(-2))
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0 O
1
-7 O
0 1
.-
vy 0
1
vy 0
3
T 1]
. -
vy 0
1
x 0
3 4
-33
5

1
0
0 0
1 5 2 1
51 11
0 1 -7/ |7
0 -3 4 0
[ 33 ] M1
1o 7 r
50| 1
01 -2 1
1 3
00 71 [7
[~ 33 ] 1
1o ~7
51| 4
01 -2 y
00 1 3
1 0 0 25 26
01 0|=|4 -4
0 0 1 3 -3
I, = PA
25 26 -33
Al=|4 -4 5
3 -3 4

Rz1 =5), Rz3 &)

R;(4)

& |un

) Ryt ()

Rjp (

Unique Solution of a System of Linear Equations Using Inverse of a Matrix :

ayx + ayy + ay;z = b,

ayx + aspy + azyz = by

Suppose, ay;x + apy + a3z = by

a1 412 943

Ifwetake,A= azy a3 a3 ;X=

a3y dsp 4asg

ATI(AX) = A7IB
(AT1A)X = A7IB
IX=A"1B
X=A"1B

is a system of three linear equations in x, y, z.

X
y| and B =
z

If A is a non-singular matrix, then A™! exists.
Now, AX =B

b
h 2
bs

then the system of equations can be written as, AX = B.

124

MATHEMATICS 12



D x P
Suppose, ATIB = py |, then |y | = | p» |.
P3 z P3

Thus, x = p;, y = p,, z = p3, is the unique solution of the given system of linear
equations.

[Note : This result is also true for a system of two linear equations in two unknowns.]

Example 26 : Using matrix method, solve : x — 2y = 4 and —3x + S5y = —7.

1 2] (x 4
Solution : The system can be expressed as =

-3 5 y -7
1 2 x 4
or AX = B, where A = 3 5| X< y and B = 7
1 -2
Now, [A|=| 5 5|[=5—6=—1#0

A1 exists.

Hence, the system has a unique solution given by A™1B = X.

5 2
Now, adjA =

31

-1 - L .
_ 1 5 2
-113 1

__5 27
3 4

NE HME
HEM

x = —6, y = —5 is the required solution.

Example 27 : If the system of equations x + y+z=3,2x —y —z =3, x — y + z = 9 has unique
solution, then find it.
Solution : The system of equations can be expressed in the matrix form as,
1 1 1{(|x 3
2 -1 -1||ly[=13
1 -1 1|z 9

1 1 1 x 3
LetA=|2 -1 -1|,X=|y|, B=|3]|, then the system of equations is AX = B.
1 -1 1 z 9
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3.

Now |A| =

1 1
2 -1

1
-1

=2—-3—-1=—6#0
A™1 exists and hence the given system has a unique solution.

-2 2 0
Now, adiA=]-3 0 3
-1 2 -3
_ 1 .
Al=made
[—2 —2 0]
_ 1
=—=<|3 0 3
-1 2 -3]
Now, X = A™IB
[—2 -2 0]
=L —
y —<|-3 0 3
4 -1 2 3]
[—6+(—6) +0
=L | -9+0+27
| —3+6-27
12
_ 1
=—| 18
| 24
2
=|-3
z 4

So,x=2,y=-3and z = 4.

=1-1-D—-1Q+ D+ 1(=2+1)

Exercise 4.3

Find the adjoint for the following matrices :

5 =2
@ 11 3
(1 1
IfA=|1 0
(3 1
sin® cos©
IfA:_—cose sin 0

2) [

1
2 |, find A7! if it exists.
1

a c
b d

3

], prove that A7l = AT,

2 -1 3
4 2 S5
0 4 -1

@

5 8
0 2
4 3

—

1
-1
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a

10 3 2 ] . e
4, IfA=53,B= _14,ver1fy(AB) =B AT
P q
5. For A= |:r s:|’ show that adj(adjA) = A.
35 6 9 ) . A1
6. IfA= 27,B= 7 8,thenverlfy(AB) =B 'A™L
5x 10
7. Findxe€ RifA= 8 7 and |A| = 25.
8. By using reduced row echelon method, find the inverse of the following matrices :
1 2 1 3 01 2 1 2 =2
O PR @y 7 @ |12 3 @1 3 o
311 0o 2 1
9. Solve the system of equations by matrix method :
(1) 3x+4y+5=0 (2) Sx—Ty=2
1Ix—2y =15 Tx — 5y =3
10. Use matrix method to solve the following system of equations :

(1) 4x—3y+2z=4
3x—2y+3z=28
dx + 2y —2z=2

2) x+2y+z=4
x—y—z=0
—x+3y—z=-2

Miscellaneous Examples :

2

Example 28 : For A = |:_1

Solution : Now, A = [

A? — 4A + 71,

3
2:|, prove that AZ — 4A + 71, = O and hence obtain AL

N
| R P

(1 12] [-8 -12] [7 0
4 1T 4 8]0 7

[ 1-8+7 12-12+0
T[4+4+0 1-8+7
[0 0

oo

=0

2 3
Here, |A| = -1 2 =4+3=7#0
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A is a non-singular matrix. Hence A™! exists.

“

Now, multiplying A2 — 4A + 71, = O by A™! on both the sides, we get,

AT1(AZ-4A+TL)=AT10
AT1(AY) —4ATTA) +7(ATIL) = O
(ATIA)A — 41+ 7471 =0
IA—41+7A71=0

TATl =41 - A

-1

%(41 — A)

o ¥ 21
(I

N =

=; N
o P el
2 _3
_[7 7
Sl o2
7 7
1 2 2
Example 29 : If A = 2 1 2| then prove that A2 — 4A — 513 = O and hence obtain AL
2 21
1 2 2
Solution : A=[2 1 2
2 21
(1 2 271 2 2 1 2 2 1 00
A2—4A—513=212 2 1 2|42 1 2(—-5{(0 10
(2 2 1][2 2 1 2 21 0 01
[0 8 8] -4 -8 -8 -5 0 O
=!8 9 8(+|-8 4 -8|+ -5 0
|8 8 9] -8 -8 —4 0 0 -5
[0 0 0]
_{0 0 0
[0 0 0]
=0
1 2 2
Now, |2 1 2|=1(-3)—2(—2)+2(2)
2 21
=—3+4+4+4+4
=5#0
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Now, multiplying A2 — 4A — 5I; = O by A7 on both the sides,

we have,
AT1(AY) —4ATTA) - 5(ATIT) = AT1O
(AT1A)A —4; - 5A71=0
I; A —41; = 5A7!
A — 41, = 5A71

-1 -1
ATl =LA -4

=

W=

I
=

N
+
o
[a—y
|
i
[\®]
+
o

1 0 0

Example 30 : Find the inverse of |0 cosa sina
0 sinaa —coso

1 0 0 allp a2 a3
Solution : Let A= |0 coso sina | =|ap; ax ap;
0 sina —coso az1 azpy asj
1 0 0
|A|=|0 coso sino | =—cos?0L — sinP0L = —1 # 0

0 sina —coso
A7l exists.
Cofactors of the elements of A are,

coso  sino

= (—1)1+1 = — 20y — ¢in2(y = —
Ay =ED SO —cos o cos“OL — sin“0OL 1
142 0 sina
Ap =D 0 —cosa =0

—

A1 exists.
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1+3 0 cosa
Ap =D 0 sina =0

Similarly, A5, = 0, Ay; = —cosQ, A,z = —sinQ

-1 0 0
adjiA = [ 0 —cosa —sina
0 —-sina cosa

A7l = 5 adjA

-1 0 0
= —Ll 0 —coso —sino
0 —sina cosa
1 0 0

0 cosa sina
0 sina —coso
[Note : If A7l = A, then such a matrix said to be an idempotent matrix.]

Example 31 : Find the equations of lines passing through (2, —1) (4, 0) and (—1, —2), (4, 1) using
determinant method. Find the point of intersection (if it exists) using matrix method.

x y 1
Solution : The equation of the line passing through (2, —1) and (4, 0)is |2 -1 1| =0.
4 0 1
D) —y(—2)+4=0
—x+2y+4=0
x—2y=4
x y 1
The equation of the line passing through (—1, —2) and (4, 1) is [ -1 2 1| =0
4 1 1

x(=3)—y(—5)+7=0

—3x + 5y =-7

3x — 5y =7

The equations of lines are x — 2y = 4
3x—5y=17

The system of equations can be written in the matrix form as,
1 2]|=x 4
3 5|yl |7
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1 -2 X 4
or AX = B, where A = 3 _5,X= y and B = 71

1 =2
Now, [A]| = |, _5|=—5+6=1¢0
A1 exists.
-5 2 1 -5 2
adiA = 3 1 .HenceA_1=made= 31

Now, X = A”IB

HEE
-2

-[=]

x =—6 and y = —5.

The point of intersection of the two lines is (—6, —5).
Example 32 : Does the system of simultaneous linear equations,

x+3y+4z=8,2x+y+2z=5, 5x + y + z = 7 have unique solution ?
If so, find it using matrix method.

Solution : Writing x + 3y + 4z =8
2x+y+2z=5

5x +y+ z =7 in the matrix form as

1 3 4||x 8
21 2||y|=15
51 1||z| |7
13 4 x 8
LetA=(2 1 2|, X=|y|land B=|5
51 1 z 7
The system is AX = B.
13 4
Now, [Al =2 1 2| = 1(=1) — 3(=8) + 4(=3)
51 1
——1+24—12
=11 #0
A~1 exists.

The system has a unique solution.
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[a,-j]3 % 3» We have cofactors of the entries of A as,

—

Now, taking the matrix A =

Ap=—LAp=8A;53="3
-1 1 2
adiA=|8 -19 6
-3 14 -5
Now, A7l = =5 adjA
11 19 6
As, X =ATB
x -1 1 27[8
y| = ﬁ 8 -19 6|5
z -3 14 -5]|7
[ —8+5+14 ]
= | 64-95+42
| —24+70-35 |
11
|
=17 11
11
1
=|1
1
x=1Ly=12z=1
[ sin® cos©
1. IfA= —cos® sin@ |» Prove that A™1 = AT, Also find AAT.
[2 3 1
2. IfA=|g5 _, |, prove that ATl = oA
[6 7 5 =2
3. fA=|g glandB'=| . 4| find (AB)"\.
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10.

13

12.

13.
14.

15.

7 -3 =3 5 8 1
IfAl=|-1 1 0|andB=|0 2 1 [, find (AB)"L
-1 0 1 4 3 -1
2 2 2 1 .
IfA=25 and B = _12,fmdB AB.
2 -3
Prove that If A2 — 6A + 171, = O, where A = 3 4 and hence find A™L.
-1 2 0
IfA=|-1 1 1], prove that A™1 = A2,
0 1 0
1 1 1
For A=|1 2 -3/, prove that If A3 — 6A2 + 5A + 111I; = O. Using this matrix relation,
2 -1 3
obtain A1,

30 30
If A= |: 4 3:| and B = |: 4 3:|, then obtain A2 + AB + 6B without multiplying the given

matrices.
Solve the system of equations by matrix method (if unique solution exists).
1 3x—5vy=1,x+2y=4 (2)3x+4y—-5=0,y—x—3=0

If the following system of equations has unique solution, then find the solution set :

_ 2 3,3 _
(1) 2x+y+z=2 2) " y+z 10
— = S I NS R
x+3y—z=5 x+}’+z 10
Y, Y 3_1,2_
3x+y—2z=6 - y+z 13 (xyz # 0)

a b

For A = [c 1+bc:|, find (@ + bc + I, — aA™L.
a

Two intersecting lines have slopes m; and m, and their y-intercepts are c¢; and ¢, (m; # m,)

respectively. Using matrix, find their point of intersection.

2
Find x € R,ifA=|: ’3‘ 92} and |A| = 3.

2
Findx € R, if [x =5 —1] 1
3

N O ==
o N O

x
4| =0.
1
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16.

17:

18.

19.

20.

21.

22.

23.

24.

1 -1 2
Express |2 1 3| as a sum of a symmetric matrix and a skew-symmetric matrix.
4 -1 5

cos O sino

If A= |: ], prove AAT = 1. Deduce A™1 = AT,

—sin o cos O,

If for square matrices A and B, AB = A and BA = B, prove AZ = A and B2 = B.

If B is a square matrix and B2 = B, then prove that A = I — B satisfies A2 = A and
AB = BA = O.

1 1 3
IfA=|5 2 6 |, prove A3 = O. (See that A3 = O, even though A # O)
-2 -1 3

A is a 3 X 3 square matrix, prove that, | adjA | = | A 2.
Find matrix A and B such that A # O, B # O but AB = O.

coso  sino

If A(Q) = |: ], prove A(QY) A(—Q) = 1.

—sino.  cos o

Select a proper option (a), (b), (¢) or (d) from given options and write in the box given

on the right so that the statement becomes correct :

Section A (1 Mark)

(1) A is a 3 X 3 matrix, then |3A| = ...... |A| -
() 3 (b) 6 © 9 (d) 27
(2) If A = [ayl, « , such that a; = 0 for i #j then A is ...... (a; # ap) (n > 1) 3

(a) a column matrix (b) a row matrix (c) a diagonal matrix (d) a scalar matrix

0o 0 -1
(3) A= 0 -1 0|, the correct statement is ...... ) 1
-1 0 O
(a) A™! does not exist b)A=(-DI4
(© A2 =1 (d) A is a diagonal matrix
(4) Ais 3 X 4 matrix, if ATB and BAT are defined then, B is a ...... matrix. -
(@) 4 X3 (b)3 X3 ()4 x4 d3x4
(5) If A is skew-symmetric 3 X 3 matrix, |A| = ...... . 1
(@1 ) o (c) —1 3
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Section B (2 Marks)

(6) The system of equations ax + y+z=a—1l,x+aytz=a—landx+y+az=a—1

does not have unique solution if a = ...... -
(@ 1 or —2 (b) 3 (c) 2 ) —1
a b Xy
(T)IfA=[b a}andA2=|:y x:|,thenx= ...... a V= ]
@x=a2+b2 y=0a>—bp (b) x = 2ab, y = a® + b>
©)x=a>+b% y=ab dx=a%+ b2 y=2ab

(8) If o and [3 are not the multiple of % and

[ cosfo. cosa. sinoc] x [ COSZB sinBcosBi| — |:0 0:|’ then o — B is ...... g =

coso. sino sinfaL sinBcosp  sin’B 00
(a) any multiple of 7T (b) odd multiple of %
(0 (d) odd multiple of T
x 0 2 4 35 21
O If | vyl 7123 == |6 3] |2 1,thenx= ...... sV = e ]
@x=3,y=2 b)yx=3,y=—2 (@©@x=-3,y=—2 dDx=-3,y=2
1 -1 1 4 2 2
(10) If inverse of A= |2 1 =3|is % -5 0 o, then o0 = ...... ]
1 1 1 1 -2 3
(@5 (b) =5 © 2 (d—2

Section C (3 Marks)

(11) IfAB=BAandA=|:(1) i:|,thenB= ...... . —
X x y y X X
@ y 0 ® o » © y @ 4
(12)IfA=|:; :]and A2 — kA — 51 = O, then k = ...... . ]
(@3 (b) 7 ©5 @9
1 3 2|1
(I3)If[1 x 11|0 5 1||1]| =0, then x = ...... [
0 3 2||x
@ —9+J— (b) —712J5_3 © -912\/5 ) —7+J_
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0 2y z
(14)Matrix A=|x y —z|if AAT =1, then (x, 3 2) = (eorry very ..). (% 3, 2 > 0)
x -y z
A1 1 L1 1 L1 1 L1 1
@) [JE’JS’JEJ ® (JE’JE’JEJ © (./5’5’ J @ (JE’JE’JE)

Section D (4 Marks)

| - s -1 -8 -10
(IS)IfA[3 _4 _0} =|1 —2 5| thenA=...
9 22 15
2 1 1 5 =2 2 -1 141 0
@ o 3 4 ®|1 0 ©[1 0 (d) [2 5 4]
-3 4 -3 4
cos2T7t —sin%t-
16)If A = , then A3 = ...
s sin2k  cosZk en
3 3
01 1 0 11 0 0
b d
(@) [1 0] (b) 0 J ©) [0 0] @ [1 J
-1 8 o 1 2 5
(17)Check, whether 11—1 1 -19 14| isaninverseof A=(3 1 1|, if so, then O =
2 6 -5 4 2 1
(a) =3 (b) 2 (c) =5 (d) not exists.

“

We have studied the following points in this chapter :

number of columns, otherwise it is not possible to add the matrices.

la ] + [b;] = lay + byl

1. Matrix : Any rectangular arrangement or an array of numbers enclosed in brackets such
as [ ] or ( ) is called a matrix. The numbers are the elements of the matrix.

2. If two matrices have same order and corresponding elements are same in both the matrices,
then they are equal matrices. A = B = [aij] = [bij] = a; = bij \riod

3. Types of maitrices : Row matrix, Column matrix, Square matrix, Diagonal matrix, Zero
matrix.

4. Sum of two matrices : Two matrices must have the same number of rows and the same
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10.
11.

12,

13.
14.
15.

16.

17

18.

19.

20.

21.

Properties of Matrix Addition :

(1) Commutative Law for Addition

(2) Associative Law for Addition

(3) The Identity for Addition of Matrices

(4) Existence of Additive Inverse

Product of a Matrix with a Scalar and Properties :

(DIfA= [aij],an and £ € R, then for £ € R, kA = [kal.jmx,l.
(2) k(A + B) = kA + kB where A, B are matrices and £, / € R
() (kDA = K(IA)

@ 1A=A
3) CDA=-A
Transpose of a Matrix : A = [a;],, , , then transpose of A is AT = A' = (915 x m:

Symmetric Matrix : For a square matrix A, if AT = A, then A is called a symmetric matrix.

Skew-Symmetric Matrix : For a square matrix A, if AT = —A, then A is called a
skew-symmetric matrix.

MA+BT=AT+BT, @ @ANHI=A, @) #A)T = AT

Multiplication of two matrics : If the number of columns of A = the number of rows of B,
then the product AB is possible.

Identity (umnit) matrix : In a square matrix, if all elements on principal diagonal are 1
and the rest are 0, then the matrix is called an identity matrix, denoted by L.

Determinant of a square matrix A is deonted by | A |.
|AB| =|A||B| where A and B are square matrices.

Adjoint of a matrix : If we replace every entry of a square matrix A by its cofactor and then
tranpose of this is taken, then the matrix so obtained is the adjoint of A denoted by adjA.

Inverse of a matrix : For two square matrices A and B; if AB = BA = I, then they are
inverse of each other.

Non-singular matrix : If the inverse matrix of a square matrix exists, then that matrix is
called a non-singular matrix. Determinant of a non-singular matrix is a non-zero real number.

Inverse of A is A™1 = Tll (adjA); |A| # 0

A7 can be obtained by elementary rows (or column) operations on the matrix A. (Symbols of
the operations are as determinant.)

Echelon Method of finding inverse of a matrix : Take matrix equation A = IA, now
apply a sequence of elementary row (or column) operations on A on L.H.S. and same to I,
then A of L.H.S. will be converted into I and I on R.H.S. will become A™! as I = ATA.
This method of finding inverse of matrix is called reduced row echelon method.

Solution of a system of simultaneous linear equations can be obtained by matrix.
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CONTINUITY AND 5
DIFFERENTIABILITY

Do not worry about your difficulties in mathematics.
I assure you that mine are greater.
— Albert Einstein

The last thing one knows when writing a book is what to put first.
— Blaise Pascal

5.1 Introduction

We introduced the idea of limit in standard XI. An intuitive approach and graphical
understanding helped us to grasp the idea of limit. At several places, we mentioned the word
‘continuous’. What is a ‘continuous function’ ? We will now try to learn the concept of continuity
which is very useful to study limits and it links limits and differentiability. Look at the graph of

fx)=1[x], x € R.
‘We cannot draw the graph of the function Y
without lifting the pencil from the plane of the

3 F e
aper. At eve oint on the graph, with
pep o pom on e 8P 2 s
integer x-coordinate, this situation arises. The .
same is the situation with the graph of signum X
e ——— >
function 3 -2 .10/ 1 2 3
om0 -1
fx) = -1 x<0 >
0 x=0 La
1 x>0 ¥
Figure 5.1

At x = 0, the graph ‘jumps’.
Here lim f(x)=—1and lim f(x)=1.
x — 0+

x— 0

So, lim f(x) does not exist. In the
x—0

example of f(x) = [x] also, we infer from the
graph, lim [x] =0, lim [x] = 1.
x—=1- 1

x— 1+

lim [x] does not exist.
x—1

Figure 5.2
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5.2 Continuity

x2 -4

Consider the function f(x) = ) —— x#2
5 x=2
Hence, f(x) = |x + 2 x#2
5 x=2

o Here, the graph of the function consists of
(AB — {P}) L {Q}

-4
im f(x) = lm f(x)=4 2
x—=2— x— 2+
lim f(x)=4
*=2 Figure 5.3
But f(2) =5

lim f(x) # f(2)
x—2

Here also the graph of f(x) cannot be drawn without lifting the pencil from the plane of the
paper. This is the idea of continuity. The graph ‘breaks’ or is ‘not continuous’.

Let us now give a formal definition.

Continuity : Let f be a function defined on an interval (4@, b) containing ¢. ¢ € R.

If lm f(x) exists and is equal to f(c), then we say f is continuous at x = c.
xX—=>C

In other words, if lim f(x) and lim f(x) exist and are equal to f(c), we say f is
x—=Ct+ x—=C—

continuous at x = c.
fis continuous at x = ¢ < Ilim f(x) and lim f(x) exist and

x—=c+ X —5C—
im f(x) = lim f(x)=/f(c).
x—=ct x—=Cc—

If f is not continuous at x = ¢, we say f is discontinuous at x = c.
That f is discontinuous at x = ¢ in a domain may occur in one of the following situations.

(1) lim f(x) or lim f(x) does not exist.
x—ct+ x—>Cc—

(2)y lim f(x) and lim f(x) exist but are unequal.
x—=ct x—C—

(3) lm f(x) and Lm f(x) exist and are equal.
x—>ct x—C—
ie. lm f(x) = lm f(x) = lm f(x)

x—ct x—C— x—cC
but f is not defined for x = ¢ or limc F&x) #f(o)
X —>

If fis defined at an isolated point, we say it is continuous at that point. Consequently a function
defined on a finite set {x;, x,, x3,..., X,,} is continuous.

We say f is continuous in a domain, if it is continuous at all points of the domain.

If f is defined on [a, b], then f is continuous on [a, b] if

(1) fis continuous at every point of (a, b)

(2) lim f(x) = f(a) (f is not defined for x < a)
x—a+t
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3) hnll) fx) = f(®) (f is not defined for x > b)
x—>b—

Example 1 : Examine the continuity of f: R = R, f(x) = 2x — 4 at x = 3.

Solution : f(x) = 2x — 4 is a polynomial in x.

Y

lim f(x) = im (2x—4)=2-3-4=2

x—3 x—3
fG) =2-3—4=2
I f() = ()

f is continuous at x = 3.

The graph is a straight line and it is
‘unbroken’.

Example 2 : Examine continuity of f : R — R,

Y
f(x) = x% at x = 2. A
6..
Solution : lim x) = lim x2=4, 2) =4
x—>2f( ) x—2 7@ @2Hy 41 e
(f (x) = x? is a polynomial) 24
. — e i X
xllr_>n2 S =712 -6 -4 20 22 4 6
fx) = x2 is continuous at x = 2. 44
The graph is ‘continuous’. + 6
v
Figure 5.5

Example 3 : Is f: R = R, f(x) = | x| continuous on R?

Solution : Here, we have to examine
continuity of | x | on the domain.

f(x)=|x|={ x x20

—x x<0
E > X
Let ¢ > 0. For some O > 0,
we can have ¢ — 0 > 0 (let8=-g-) 4
f@)=|x|=xin(c— 0, c+ J) c— 98>0 P
lim f(x)= Lm x=c, f(c)=|c|=c(c>0)
r—oe x—oc Figure 5.6

lim f() = f()

fis continuous for all ¢ > 0
Let ¢ < 0. There exists some & > 0 such that ¢ + 0 < 0.
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f&x)=|x|=—xin(c — J, c + O) c+d<0
lim f(x) = lm (—x) = —¢, f(c) = |c| = —¢ (c<0
X—>C XxX—>cC

im f(x) = f(c)
x—>c

f is continuous for all ¢ < 0.

im f(x)= 1lim |x|]= lm x= x>0
x— 0+ x— 0+ x— 0+

im f(x)= lim |x|= lm —x = x < 0)
x—0- x—0- x— 0-
fO@=]0]|=0

Jim ) =f© =0

fis continuous at x = 0.

fis continuous for all x € R.

Example 4 : Discuss the continuity of constant function f(x) = k£ on R.

Solution : For ¢ € R, lim f(x) = lim k =k = f(c) (lim k = k)
X—>cC xX—>cC

Xr—=c

A constant function is continuous on its domain.

Example 5 : Discuss the continuity at x = 0.

fx) = B+x2+x+1 x#0
5 x=20

Solution : lm f(x)= lm B3 +x2+x+1)=1 (limit of a polynomial)
x—0 x—0

ORE
Jim fG) # £(O)

fis discontinuous at x = 0 Y

Example 6 : Examine the continuity of the identity

function on R. :
2
Solution : Here f(x) = x.
— 5 X
Let a € R. 6 -4 2 710 2 4 &6
23
xlill)laf(x)=limx=a=f(a) y=x o
XxX—>a
. . L . -6
The identity function is continuous on R.
Figure 5.7
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Example 7 : Discuss the continuity of f(¥) = &, x € R — {0}.

Solution : f(x) = % is a rational function.

Let ¢ # 0.

lim 1 .
lim === =41
x—)cf(X) lim x c

xX—>c

@ =1
lim fx) =1 =1()
X—=>cC
fis continuous for all ¢ € R — {0}.

Note : For x =0, f(x) = % is not defined. Let us study behaviour of f(x) near 0.
Let x > 0.

x 0.1 0.01 0.001 10™
f® 10 100 = 102 | 1000 = 103| 107

As x = 0+, f(x) increases unboundedly.
In such a case we say f(x) —> oo as x — 0+. We do not write ]im0+ f(x) = oo,
x—

lim £(x) does not exit.
x>0+

Limit of a function is a real number, oo is not a real number or it is a member of extended real
number system.

Let x < 0.

x |—01| —0.01 —0.001 —10™
f(x)| —10 |—100 =—102|—1000 = —103| —10”

Here as x decreases f(x) decreases and
as x —> 0—, f(x) —> —oo.
Again lim f(x) = —oo is not to be written.
x—>0-

lim f(x) does not exist.
x— 0

Example 8 : f(x) = L, x # 0. Discuss continuity for x € R — {0}.

lim 1
: . T 1 _ x> e _ _1
Solution : Let ¢ # 0. xhi)nc fx) = xllEc 2 _h_x)n 2 -z
x c
fis continuous for x € R — {0}
. = lim - i
Note ¢ Forx = 0, Jm 2 does not exist. i . i
; 5 o 5
=7 > oo asx — 0.
x
x —0.1 0.1 —0.01 | 0.01 |*10™ 5
f(x) 100 100 10000 | 10000 | 10%* Figure 5.9
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f(x)={x+3 x<2

3 —x x=22 atx € R. T

Solution : Let a < 2. So f(x) =x + 3 in
some interval around a.

lm fG)= m (x+3)=a+3=/(a)

fis continuous for all x € R, with x < 2. 4

Let a > 2. So f(x) = 3 — x in some interval T
around a. 1

f@=3—a N
lim f(x) = lim 3 —x)=3 —a = f(a)
x—a x—a

fis continuous for all x € R, with x > 2.

Leta=2. lim f(x)= lm (x+3)=35
x—2- x—2—
i = lim — %) =
x]i)1112+f(x) x_)2+(3 x) =1
lim £ (x) does not exist.
x—>2

fis continuous for all x € R except at x = 2.

©3)

“

Example 9 : Examine the continuity of Y

x <2

[Note : Generally, f is continuous at all points where possibly formula for f(x) changes or its

graph is in transition stage.]
Example 10 : Find points of discontinuity of
fx)=(rx+1 x>2
0 x=2
1 —x x<2
Solution : As per above note and a look at
the graph of y = f(x), it is clear that f is continuous
at all x € R except at x = 2 possibly.

L f@= Im Q-x=1-2=-1

x—2-

lim fx)= lm x+1)=2+1=3
-2+ x—2+

13

lim  £(x) does not exist. Figure 5.11
x—2

f is discontinuous at x = 2.

Example 11 : Prove that f(x) = { x—1 x<1

1 —x x > 1 is continuous on R — {1}.

Solution : Let a < 1. So f(a) = a — 1.
For some O > 0, we can have a + & < 1.
Letx€ (a— 8,a+ 0). f) =x— 1

CONTINUITY AND DIFFERENTIABILITY
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im fx)= lm x—-1)=a—-1=f(a Y
XxX—>a xX—>a
f is continuous for @ € R with a < 1.

Leta>1.Sof(a)=1—a 2

For some & > 0, we can have a — & > 1

Let x € (@ — O, a + ). Hence x > 1. = —> X
L@ =1-x N 3
lim fx)= Im (Q1—-x)=1-—a=f(a)
xX—a+ xX—>a+

f is continuous for all a € R such that a > 1.
fis continuous on its domain.

Figure 5.12
Example 12 : If f(x) = x—1 x<1
0 x=1
1—x x> 1

Examine continuity of f.
Solution : As seen in example 11, fis continuous for all x € R, x # 1.
im f(x)= lim (x—1)=0, lim fGx)= lm (1—-x)=0
x—1- x— 1+ x—= 1+

x—1-
fM=0
fis continuous for x = 1.
f is continuous on R.
Note : Isnot f: R >R, f(x)=—x—1]|7?
Example 13 : If f(x) = ( x+ 2 x<0
2 —x x>0 Y
k x=0
determine & so that f is continuous on R.
Solution : Looking at the graph and since
fx)=2—xfor x > 0 and f(x) = x + 2 for
x < 0 are linear polynomials, f is continuous
for all x € R — {0}.
lim fG)= lm (x+2)=2
x— 0-

x—0- - -3
im f()= lm 2-x=2 v
x— 0+ x— 0+ Figure 5.13
lim f(x) = 2
x—0
In order that f is continuous at x = 0 also, ]imo f(x) =2 = f(0) is necessary.
x—
JO)=k=2

If k = 2, fis continuous for all x € R.

Example 14 : Prove that a polynomial function is continuous.

Solution : f(x) = ax"” + a, _ X"~ L+ + ay, a, € RE=0,1,2,.,na #0is a
polynomial.
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We know lim x" = g”

x—>a

lim a; = g; (limit of a constant function)
xXxX—a

Also lim (fi(x) + fo(x) +...+ f,(x)) = Lm fi(x) + lm f,(x) +...+ lim f(x)
x—a x—a x—>a x—>d

Now lim f(x) = lim (gx" +a, _;x"~ ! +.+ ap)
xX—a

xX—>a

= lim g, lim x"+ lm q, |, lim x»~ 1 4+ 4+ lim gq,

xoa "xoa xoa x>a x>a
_ -1
=a,a"+a,_a +.+ a,
= f(a)

A polynomial function is continuous for all x € R.

Example 15 : Prove f(x) = [x] is continuous at all x € R except at all integers.
Solution : f(x) = ( e e,

.........

-1 —-1<x<0
< 0 0<x<1
1<x<2

.........

o

fis a constant function in any interval (n, n + 1) where n € Z.

f is continuous in all intervals (n, n + 1) i.e. at all x € R — Z.
Nowf(x)={n—1 n—1<x<n

n n<x<n+1

Letx=nne Z

We can choose & > 0 such that n — 1 <n — & < n. (In fact 0 < & < 1)
xli)n:l_f(x)=x]i)n;_n—l=n—1 (x € (n — 9, n)
Choose & >0sothat n<nmn+ O <n+1 . 0<d<d
lim f(x)= lm n=mn (x € (n, n + d))
X —> n+ x = n+
lim f(x) does not exist. (See figure 5.1)
XxX—n

fis discontinuous for all integers.
f(x) = [x] is continuous on R — Z and discontinuous for all » € Z.
Example 16 : Find %, if the following function is continuous at x = 2
fx) = kx + 3 x<2
{ 7 x> 2
Solution : lim f(x) = lm (kx + 3)=2k+ 3
x—2—

x—2-

im fx)= lm 7=7

x— 2+ x— 2+
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lim f(x) exists if 2k +3 =7 ie. k=2

x—2
Fork=2,f2)=2-2+3=7

lim f(x) =7 =f(2)
x—2

fis continuous at x = 2, if £k = 2.

Example 17 : Find a and b so that the following function is continuous.

fx) = 3 x<1
ax+b 1<x<3
7 x=23

Solution : fis a constant function except for x € (1, 3)
fis a linear polynomial in (1, 3). So it is continuous function.
Hence, f is continuous for x € R — {1, 3} and in (1, 3) except for possibly x = 1 and 3.
im fx)= lm (ax+b)=a+b, 1lm f(x)= lim 3 =3
1 x— 1+ x—1-

x— 1+ x—1-
Since f is required to be continuous at x = 1, lim f(x) must exist.
x—1

lim f(x) = lm f(x)
x—1-

x— 1+

a+b=3 (i)
lim f(x)= lm (ax+ b)=3a+ b, lim f(x)= lim 7 =7

x—3— x— 3- x— 3+ x— 3+

Since f is required to be continuous at x = 3, lim f(x) must exist.
x—>3

xli)m3+f(x) N x]i)mS— J®)
S 3a+b=7 (ii)
Solving (i) and (ii), a =2, b= 1. Also lim f(x)=3, lim f(x)=7.
x—1 x—3
Now, (1) = 3, lim f@x)=3=/7(1)
x—1
SB)=7, lim f@x)=7=f(03)
x—3

If a=2 and b = 1, f is continuous on R.
Example 18 : Find a and b, if following function is continuous at x = 0 and 1.
fx) = x+ a x<0
2 0<x<1
bx—1 1<x<2

Solution : lm f(x)= lm (x +a)=a
x—0- x — 0-

lim f(x) = lm 2 =2,

x— 0+ x -0+

Since f is continuous at x = 0, lim f(x)= Im f(x)
x— 0- x— 0+

a=2. Also f(0) =2
lim f(x) =2 =7(0)
xX—-0
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Taking a = 2, f is continuous at x = 0.

im f(x)= lim 2 =2
x—1-

x—1-

im fx)= lm (bx—1)=5—1
- 1+ x =1+

Since, f is continuous at x = 1, lm f(x) = lm f(x)
x> 1+ x—1-

b—1=2
b=3

Also, f()=b—1=3—1=2
lim f(x) =2 =f(1)
x—1

Taking a = 2 and b = 3, f is continuous at x = 0 and x = 1.

5.3 Algebra of continuous functions
The concept of continuity is formulated in terms of limit. Hence, just like working rules of limit,

we can have working rules for continuity of f+ g, X g, %, etc.

Theorem 5.1 : Let f and g be continuous at x = ¢ and ¢ € (a, b) for some interval (a, b).
Then (1) f + g is continuous at x = c.
(2) Af is continuous at x =c. kK € R
(3) f — g is continuous at x = c.

(4) f X g is continuous at x = c.

(5) % is continuous at x = c if g(c) # 0. k € R

(6) {- is continuous at x = c if g(c) # 0

lim f(x) = f(c) and lim g(x) = g(c) as f, g are continuous at x = c.
xX—c xX—>cC

(1) lim (f+ g)x) = xﬁglc(f(X) +g) = xlill)lcf(X) + lim g(x)

XxX—>cC X—>C
= f@© + g©
= (f+ gXo)

f+ g is continuous at x = c.

(2) lim (AH(x) = xﬁgl kf (x)

X —>cC

= lim £ lLm f(x)

x—>c x—c
= k()
= (k' X©o)

kf is continuous at x = c.
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(3) If k=—1, —g is continuous at x = ¢ as g is continuous.

f+ (—g) = f— g is continuous at x = c.

(4) Im (fX g)x) = xlii)ncf (x)g(x)

X—>C

lim f(x) lim g(x)

x—>c x—>c
= f(o) gl
= (X g)¢)

f X g is continuous at x = c.
i lim k&
. X—>C
&) 1111)1 (;)(x) = Tm e &) # 0
X (4

lim g(x)
X—>C

k
g(c)

&) # 0)

k . .
? 1S continuous at x = c.

f
© (Ho - ()
Taking k£ =1 in (5), % is continuous at x = c.
1) _ L . _
f X~ ) = is continuous at x = c.
or

f)

lim <5,

xX—>cC

lim (%)(x)
x—>c
lim f(x)
X—-cC

lim g(x)
x->c

- L9 @) = 0)

(4o

is continuous at x = c.

L
]

Some Important Results :

(1) A rational function is continuous on its domain.
P(x)

h(x) = PTES) is a rational function, where p(x) and g(x) are polynomial functions and g(x) # 0
. p(x)
lim A =
x—a *) x—>a 9%
lim p(x)
xX—->a
= lim g(x)
xX-a
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h(a)

.. his a continuous on its domain.

(2) sine function is continuous on R.
We assume following results studied last year

lim sinx = 0, lim cosx = 1
x>0 x>0

leta€e R Letx=a+ h,sothatasx > a, h —> 0

lim sinx = lim sin(a + h)
x—a h—>0

= lim (sina cosh + cosa sinh)
h—0

= sina lim cosh + cosa lim sinh
h—>0 h—0

= sina-1+ cosa-0
= sina

lim sinx = sina
XxX—>a

.. sine function is continuous for all x € R.

(3) cosine function is continuous on R.

letae R-Letx=a+ h Asx > a, h —> 0

lim cosx = lim cos(a + h)
xX—a h—0

lim (cosa cosh — sina sinh)
h—>0

= cosa lim cosh — sina lim sinh
h—>0 h—>0

= cosa-1 — sina-0
= cosa

lim cosx= cosa
XxX—>a

.. cosine function is continuous for all x € R.

(4) tan function is continuous :

tanx=g2’;fc,xe R—{@k—DE |ke z}

sine is continuous for x € R.

cosine is continuous for x € R.

cosx =0 & x € R—{(2k—1)%|ke z}

(g(@ # 0)

.. By working rule of % for continuous functions fand g, zarn function is continuous on its domain.
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(5) Continuity of Composite Function :
Let f: (a b) = (¢, d)y and g : (¢, d) = (e, ) be two functions, so that gof is defined.
If f is continuous at x; € (a, b) and g is continuous at f(x;) € (c, d), then gof is
continuous at x; € (a, b).

According to the rule of limit of composite functions (std XI, semester II).

lim g(f(x)) = g(_im (f(x)) = g(f(x)))
x = x x = x
gof is continuous at x = x;.

Example 19 : Prove that x — [x] is discontinuous for all » € Z.
Solutionm : f(x) = ( ... ...

x 0<x<1
{ x—1 1<x<2
x—2 2<x<3

For any n € Z
lim f(x)= lim (x—[x])

X —>n— X —>n—

lim (x—(n—1) (For0<d<1,x€ (n— 8 n) Figures.14

X —>n—
=n—(m-—1)
=1
and f(n) =n—[n]=n—n=20

lim f(x)#f(n) Vne Z
x—n—

f(x) = x — [x] is not continuous for n € Z.
Note : On intervals (0, 1), (1, 2),... etc. f(x) = x — [x] is continuous. Let if possible, x — [x]
be continuous for » € Z. g(x) = x is continuous on R.
f(x) =x — [x] and g(x) = x both are continuous on R.
gx) — f(x) = x — (x —[x]) = [x] is also continuous on R. But [x] is discontinuous for
n € Z. So f(x) = x — [x] is not continuous for » € Z.
Example 20 : Prove sir | x| is continuous on R.
Solution : f: R = R, f(x) = | x| and g : R — R, g(x) = sinx are continuous.
gof : R = R, (gof }x) = g(f(x)) = g(| x|) = sin| x| is continuous for all x € R.
Example 21 : Prove f: R > R, f(x) =| 1 — x +|x]|| is continuous.
Solution : g(x) = 1 — x and A(x) = | x| are continuous on R.
g(x) + h(x) = 1 — x +| x| is continuous.
S &)= ho((g +h)x)) = h((g+ X)) =|1 —x+|x]|]| is continuous as A, g are continuous
on R.

150 MATHEMATICS 12

----l----..-IIl......-..........-.-.------.



“

Example 22 : Prove cos(x?) is continuous on R.
Solution : f: R > R, f(x) = x3, g : R > R, g(x) = cosx are continuous.

s gof : R = R, (gof)(x) = g(f (x)) = g(x3) = cosx? is continuous.

Example 23 : f(x) = % xz L
k? x = %

Can you find £ so that f is continuous at x = % ?

, . . kcosx . ksina k
Solution : lim f(x) = lim ———=< = =k a=E — x
x—)%f() x>Z 2(%—75) a—0 20 2 ( 2 )
T
/(3 =#
. . . _ T . _ 14
Since f is continuous at x = > lim f(x)_f(z)
x—)%
.k
S5 K2
. =1
S k= 5 or 0

[Note : For k=0, f(x) = 0 for all x € R.]

sinx

Example 24 : f(x) = x#0

k x=0
Can you find £ so that f is continuous at x = 0 ?

Solution :  lim f(x) = lim S{;‘r = fim SiX _ 4
x— 0+ x— 0+ x>0+ X

. _ i Sinx . sinx _
iy s = i = s -

. lim f(x) does not exist.
x—0

.« f cannot be continuous for x = 0, for any value of £ € R.

Example 25 : f(x) = si;z# x#0
k2 x=0

Find £, if f is continuous for x = 0.

Solution : lim f(x) = lim sindx
x—0

x—>0 9x

lim Sin4x 4

x>0 4x 9
= i

9
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o f(0) = &

2= % for f to be continuous at x = 0.

k= i% for f to be continuous at x = 0.

Exercise 5.1

1. Prove cot, cosec and sec are continuous on their domains.
2. Prove ceiling function f(x) = |_x-| is discontinuous for all n € Z.

Prove signum function is discontinuous at x = 0.
Discuss continunity of following functions : (4 to 12)

4. fx) = x+3 x22 5 f(x) = ( x2 x20
3—x x<2 x x<0
6. f) = (2x+3 x<1 7. f@) = % x#0
5 x=1 2 x =
3x + 2 x> 1
8. f(x) = ’“x"" x#0 9. f(» = [2x—3 x<0
1 x=0 2 x =
3x — 2 x>0
. 2x+3
10. f(x) = s;’;x x#0 1. f® = | 3373 x>0
2 = Sin3x
3 x=0 ox x<0
3 =
> x=0
3 x% -1
12. f(x) = 21 x>0
sinx
Il x<0
—1 x=0
Determine k, if following functions are continuous at given values of x : (13 to 16)
_ tan kx
13. f(x) = % x#0
1 x=0 (at x = 0)
— sin5x
14. f(x) x x#0
1 x=0 (at x = 0)
(x+1)tan(x-1)
15- f(.x) = sin(xz—l) X ¢ ].
k x=1 (atx=1)
16. f(x) = | 2x* + k x<0
x2 — 2k x20 (at x = 0)

Find a and 5 if fis continuous :
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17. f&x)= | 2x+ 3 I1<x<2

ax + b 2<x<3

3x +2 3<x<4 (atx=2 and x = 3)
18. Prove sin*x — cos’x is continuous on R.

19. Prove sin2x cos3x is continuous on R.
20. Prove sin|x| is continuous on R.
21. Prove | sinx| is continuous on R.

3x and sinx3

22. Prove sin are continuous on R.
23. Prove cosx" is continuous on R. (n € N)
24, Prove cos”x is continuous on R. (» € N)
25. f(x) = sinx — cosx x#*0
{ -1 x=0
Prove f is continuous at x = 0.
26. f(x) = {|sinx — cosx| x#0
{ -1 x=0
Is fis continuous at x = 0 ?

Sinx — cosx
27. f(x) = x—%

®
#*

N RN ]

k x =
If f is continuous at x = %, find k.

x —2n
x—2

80 x=2

28. f(x) = x # 2

If fis continuous at x = 2, find ».

5.4 Exponential and Logarithmic Functions

The function f(x) = x" is used in polynomial functions and rational functions.
Let £,(x) = x".

[ix) = x, fHr(x) = x2, Hx) = x3,..... etc.

Let us draw the graphs.

For f5(x), x 1 P 3 4 5 -1 ) 3
S(%) 1 4 9 16 25 1 4 9
For f3(x), x 1 ) 3 4 - 1 - 3
f3) 1 8 27 64 125 -1 =
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As x increasees, f,(x) increases. For a fixed increment in x, where x > 1, the increment in f (x)
increases as n increases. For example if x increases from 2 to 3, f{,(2) = 210, Sfi0B®) = 310,
o) = 220, £,,(3) = 320

Obviously 320 — 220 > 310 _ 310,

i

Figure 5.15
Now we consider ‘common exponential’ function f(x) = 10*. This function increases faster

than any f(x). Let x = 102.
2
Now, flOO(x) = x100 = (102)100 = 10200’ f(x) = 1010 = 10100

3
For x = 103’ floo(x) = %100 — 10300, f(x) = 1010" = 101000
4
For x = 104, floo(x) = (104)100 = 10400, fx) = 1010° = 1010000
Obviously, if x > 103, f(x) increases much faster than £, 5,(x).

le _ _{1 X
=¥ y=(3)
y=5 =)
1/ (3
©, 1)
<10 :5 [9) |5 1:0>X <10 (6] 5 1.0, X
e R 54
R Figure 5.16 a0
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Expenential Funetion : f(x) = a*, a € R", x € R is called an exponential function.

(1) If a > 1, f(x) increases as x increases.
If a < 1, f(x) decreases as x increases.
(2) The graph of f(x) passes through (0, 1) for any a € R,
(3) If a # 1, the function is one-one and onto.
(4) Its range is R,
(5) If a becomes larger, the graph of f(x) leans towards Y-axis for a > 1.

(6) As x becomes megative and decreases, the graph of f(x) approaches X-axis but does

not intersect X-axis.

Laws of indices for real numbers :

1) o =a"*Y @) L =gy
a”
3) (@Y =a¥ (4) (aby =a*b* a, be Rt x, ye R

(This content is only for link to the discussion that follows and this is not from examination
view point).

The constant e : Limit of a sequence : Just like functions, some sequences also approach a ‘limit’

11 11
> 2’ 3""’ l(x)’ n

The sequence 1 .... has terms nearing 0.

We say lim L-yp
n—eo

We do not formally define limit of a sequence. We accept following results.

(@)) ]imJ-=0.(n€N)Wealsoassume 1im-1-=0(x€R)
n—)oon x—)oox

2 lm =0 lr| <1
n— oo

1

fr o = AT e 03
For example if » , we have the sequence, 2 4 8 6 and ( 2) approaches 0 as n

1
I3
becomes larger and larger.

Consider the sequence

n
I — gL LR ("jL
(1+n) 1 +(1)n . (2) n? tot \n n"

nn-1) nn—-n-2) + nn —1...1

= b 21 n? 31n3 n'n"
—yg Y
R C N RS

1— %, 1— %, 1— % are all less than 1 and hence their products wherever occuring are less
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n
1 14 1 4 1 Sl
(1+n) <1t+1+++L+L 4+ 4+ L n>1

L @"-1<n))

141
&1+ Dbl &+ e

(Geometric Progression)

(1+2)’ <1+2(1—(%)"J =3 —2(4)" <3 @
Obviously (1+%)" %D (= > 1) (i)

n
We assume sequence (1+%) has a limit called e and by (i) and (ii) above 2 < e < 3.
Thus e is a definite constant satisfying 2 < e < 3. It is called Napier's constant.

Approximatly e =2.71828183

n
lim (1+l) =e
n— oo Il
X 1
We can prove but we will not prove lim (1 +L) = e or replacing L by x, lim (1 +x)* =e
X—> oo x 2 x>0

Logarithmic Function :

We know exponential function f : R — RY, f(x) = @ (@ € R* — {1}) is one-one

and onto.
Its inverse function g : Rt — R is called logarithmic function. So if y = f(x) = o*, then
x = g() = log,y
This function is denoted as g = log,
If y = o, then x = log,y
We know for inverse functions, f : A — B and g : B — A, (fog)() = y, y € B and
(go)iix) =x, x € A
Now f(g0)) = ¥
S(og,y) =y
alogqy = y
or in other words, @'°8a* = x for x € R"
If a = 10, we get what is called common logarithm. i.e. log,ox
Thus, £ : R — R¥, f(x) = 10" has inverse log, : Rt - R, gx) = log,ox

If a = ¢, we get natural logarithm and it is denoted by In_x. But unless otherwise stated,
we will write Inx as log x or simply logx.
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(1) log has domain R' and range R. Hence, logarithm of only positive number can be
obtained and log x is a real number if x € RT .

(2) @®=1. Hence log,1 =0
Hence log,1 = 0, log;,1 = 0
3) a

a. Hence log,a = 1
loge = 1, log,,10 = 1

e%%e* = x as gl%%e* = x for @ € RT — {1}

Y
1\

Figure 5.18
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We can see that graphs of f(x) = logx and f(x) = &* are mirror images of each other in the
line y = x.
(1) (1, 0) is on the graph of log function.

(2) For a > 1, it is increasing.

For 0 < a < 1, it is decreasing.

Figure 5.19

Some rules for logarithm :

(1) loggmn = log,m + log,n (m, n € RY, a € R" — {1})
Let log,m = x, log,n =y

S o m=d,n=d

o=@ ="V

o logmn=x+y=logm+ logn

) 1og,% = logm — log,n (m n € RY,a € R" — {1}
Proof is similar as in (1)

(3) logx" = mlogx xeR,neZaec R -1}
Let log,x =y

Soox=a

s XN = (@) = aY

s logx” = ny

<. logx" = nlogx
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iogcb
log.a

(4) Change of Basis Rule : logb = ®eRYaqceRt- )

Let log b = x, log.a =y

b=d,a=0¢
b = (cy)x =
log,b = xy = log,b X log.a
logcb 5
log b = Tog,a (since a # 1, loga # 0)
Also lim lECH®) lim Llog(l + x)
x>0 & x50 *
1
= lim log (1 +x)*
x—0
L
= log ( lim (1 +x)* ) (log is continuous)
x—0
= log,e
=1
log 1+ x) I
’ x—=0 X

5.5 Differentiation

We have learnt the concept of differentiation last year. Let us remember.

If f: (a, ) = R is a function and if ¢ € (a, b) and & is so small that ¢ + 2 € (a, b),

fle+h—f
h

or [-g; f(x)]x= c or (%]x

f is differentiable at x=c.

then hH—TO , if it exists, is called the derivative of f at ¢ and is denoted by f'(c)

Il

¢ Where y = f(x). If the derivative of f exists at x = ¢, we say

is also denoted by y,.

B&

If £ is differentiable for all x in a set A, (A # )), we say f is differentiable in A.

im JC€+M=F© 4 fim LEC+M=F© | i

fis differentiable at ¢ € (a, ) means e 7 pim 7

and are equal.
Let f be defined on [a, b]. f is differentiable in [a, 5] means
(1) f is differentiable in (a, b)

im f{a+h)-f(a)

Pt h exists.

(2)

We call this limit right-hand derivative of f at x = @ and write f'(a1).

lim fe+h—fd

(3) s 8 7 exists,

We call this left-hand derivative of f at x = b and denote it by f'(b—).
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We also assume following working rules and standard forms.
If f and g are differentiable at x,

(1) f * g is differentiable at x and %(f(x) + g(x)) = ﬁ’; feo) + -j—xg(x)

(2) fx g is differentiable at x and L £ () g() = £(x) = 209 + g() L f(x)

d d
3) {;‘ is differentiable at x if g(x)# 0 and % {;g; = S(X)a"f;:)(;_)f](zx)gx-g(x)
@ Lxn = -1 neR, xeR
(5) ﬁ;siux = cosx x €R
(6) —ad;casx = —sinx x € R
) %tanx=sec’2x xeR-{@k-DE |k e z)
(8) -f;secx=seax tanx xeR-{@k-1DE |k ez}
©) :id;com = —cosecx x€R— {kn |k € Z)
(10) —-%cosecx = —cosecx colx x € R— {kn | k € Z}

Now we prove a theorem.

Theorem 5.2 : If f is differentiable at x = ¢, it is continuous at x = c. ¢ € (a, b)
Proof : Let f be differentiable at x = c.

lim L@ - f©

ro>e  x—c exists.

Now f(x) — f(c) = [f"‘+f‘c’j (x— c) for x # .

- — ) . _
T () — f(ep - Jim FOZLE lim =0

lim Jf@®-f©

(because f is differentiable, ', “————— exists)
=f(©) -0 = 0
xliglcf (x) = xlii)nc(f x) —f(@© + f()
= lm (@) — /@) + Jm f() (both the limits exist)
=0+7(

=f()
f is continuous at x = c.

But a continuous function may not be differentiable.

160 MATHEMATICS 12



“

Consider f(x) = | x|

im |x|]= lim x=0, lim |x|= lm (—x)=0,f(0)=]|0]=0
x— 0+ x— 0+ x—0- x— 0

.. fis continuous at x = 0.

lim f®-fO Ix1

- 1 X _
x— 0+ x=0 _xll)m0+ x _x]i)n})+x :
lim f(x_)—f(0)= lim X! — lim =% =
x—0- Xx—0 x=>0- X x—>0- X
. (x)— f(@
. lim fo-fO does not exist.

x—0 x—=0
s f(x) =]|x]| is continuous at x = 0 but not differentiable at x = 0.
Can we explain the situation ? Y
We had seen that f'(c) is the slope of tangent
toy = f(x) at x = c.
See that the graph of f(x) = | x| consists of two
rays meeting at (0, 0) and does not have a tangent at é
(0, 0). It has a ‘corner’.

When can a function fail to have a derivative ?

42
(1) It is discontinuous at that point. (Fig. 5.21) 13
(2) The tangent is vertical at x = ¢. (Fig. 5.22) &
(3) There is no tangent at x = c. (Fig. 5.23) Figure 5.20
Y Y Y
F, N
3"/'0
] /
1 -
i +—t—+—>X € >X <€ > X
-3 -2 .10 1 2 3 o -3
T-1
+ 2 -2
+-3 -3
v v
Figure 5.21 Figure 5.22 Figure 5.23

Exercise 5.2

1. Prove that f(x) =|x — 1|+ |x — 2| + |x — 3| is continuous on R but not differentiable at
x =1, 2 and 3 only.

2. Prove f(x) = xsin% x#0

0 x =0 is continuous but not differentiable at x = 0.
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3. For f(x) = {x2sin% x#0
0 x = 0. Prove f'(0) = 0. Deduce f is continuous at x = 0.
4. Find f'(x) for (1) f(x) = sin®x, (2) f(x) = tan®x, (3) f(x) = x4, (4) f(x) = cos*x
#
5.6 Chain rule or Derivative of a Composite Function

We have seen how to find the derivative of sin®x or tan3x using product rule or the derivative of

sin2x or cos2x using formulae from trigonometry like sin2x = 2sinx cosx, cos2x = cos’x — sin’x
along with product rule.

But they were simple cases. Suppose we want to find the derivative of tan>(x2 — x + 1). It is not
SO easy.

Let us take an example.
Let f(x) = 2x + 1)*
16x* + 32x3 + 24x2 + 8x + 1
f'(x) = 64x3 + 96x2 + 48x + 8
=8B8x3 +12x2+6x + 1)
=8(2x + 1)3
=2.4(2x+ 1)}
Let g(f) = ¢ and ¢t = h(x) = 2x + 1. So, g(h(x)) = g(2x + 1) = @x + 1)* = f(x)
S (x) = gh(x))

Now g'(f) = 483 and % = Hx) =2

flx) =82x + 13 =4@x + 1)3-2

=482 = g% = 2(1) H(x)
So, 1) = £ gh(x) = g()) H(x) = Z(h(x)) H(x)

Here, we have expressed f(x) as a composite function of two functions g(f) = ¢* and
h(x) = 2x + 1 whose derivative can be found out in a very simple manner and f'(x) can be calculated
in a simple way.

Let us make it formal.

Chain rule : f: (&, 8) —> (¢, d) is differentiable at x and g : (¢, d) —> (e, J) is differentiable
at f(x) are two differentiable functions.

Now, (gof)(x) = g(f (x))
Then (gof)'(x) = g'(f (%) /')
In other words let h(x) = (gof)(x) = g(f (x)). Let f(x) = ¢
Then k'(x) = (gof)'x)= g'(f (x)) f'(x)
=20 f'Kx
4 =4 4 =
28 ®) = -8 5= (). where { = f(x)
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Thus, ﬁ;g{f x) = %?— % where u = g(f) and ¢ = f(x).

Hence 4% = dit 4L where 4 = g(r) and 1 = f(x) and u = g(f (x))

Thus if u is a function of 7 and ¢ is a function of x. Then u is a composite function of x and

du _ du dt
dx drt dx

This rule is called chain rule.

Continuing or vl r e o i 1

Here u is a function of ¢, ¢ is a function of s, s is a function of v and v is a function of x.
Example 26 : Find f'(x) if f(x) = sin(tan x)
Solution : We have g(f) = sint and ¢ = h(x) = tanx
S (x) = (goh)x) = g(h(x)) = sin(tanx)
S'x) = gh(x)) H(x)
=g® )
cost h'(x)

= cos(tanx) sec’x (t = tanx)
f'(x) = cos(tanx) sec*x
But we can make it simpler.

f(u) = sinu where u = tanx

f'x) = % % = cosu sec’x = cos(tanx) sec’x

Generally, we make calculations orally.
Go on differentiating functions selecting the outermost function first and then proceeding to
differentiate till we reach the variable and multiply all derivatives.

Let f(x) = sin(cos(2x + 3))

Sf'(x) = cos (cos(2x + 3)) (—sin(2x + 3)) . 2
Derivative of outer most (Proceed to (Derivative of last function
function at its variable. ‘inside’) 2x + 3)
= —2sin (2x + 3) cos(cos(2x + 3)) (rearrange)

Let f(x) = sin(tan (cos (x> — 3x + 51)))
f'(x) = cos(tan (cos (x2 — 3x + 51))) (sec? (cos (x* — 3x + 51))) (—sin (x2 — 3x + 51)) X

Stage 1 Stage 2 Stage 3

(2x = 3)

Stage 4
= —(2x + 3) sin(x2 — 3x + 51) sec? (cos (x2 — 3x + 51)) cos(tan(cos(x> — 3x + 51)))
(rearranging)
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Example 27 : Find Zx—y, if y = sin’x cos>x

dy d d

Solution : == = sin’x 2% cosx + cos’x 4= sin’x
dx dx dx

3, 4 5 5¢ A (cinx)3
X (cosx)’ + cos’x x (sinx)

sin
= sin3x - 5cos*x (—sinx) + cos’x - 3sin®x cosx
= —S5sin*x - cos*x + 3sin®x cosSx
[Note : In sin”x, sin"x = (sinx)"; power is ‘outermost’ function.]
Example 28 : Find <= sind(2 — x + 1)

on ¢ 4 Gind3(x2 — =4 [gin(x2 — 3
Solution : 25 Sin —x+1 ax [sin(x x + 1]

=3sin* (x> —x + ) cos(x2 —x+ 1) 2x — 1)
=3Q2x — 1) sin®(x? — x + 1) cos(x2 — x + 1)

Example 29 : Find d

dx sinx>
1
solution : 4 [ 3 = L (simx3)?
Solution : dx sinx3 = dx (sinx>)
1
= %(sinx-‘*")_2 “cosx3 - 3x2 (J_ is outermost function)
5 x? cosx?®
T2 Jsinx?
, d g
(Note : Remember ax Jx = 2\/;)
Example 30 : Find £ 43,
d d 32T _ d 3
i ! = £ ] 4 = A (oin)?
Solution : x sindx ix [(sinx)>] dr (sinx)
L
= %sin 4x - cosx
3cosx

- A% sinx

| Exercise 5.3|

Find the derivative of the following functions defined on proper domains :
1. sinP(2x + 3) 2. tanx 3. sin’x cos’x
4. cos(sin(sec(2x + 3)) 5. sec(cot(x® — x + 2))

6. Differentiate the identity sin3x = 3sinx — 4sin3x. What do you observe ?
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7. Find % 2x + 3y (3x + 2)" 8. Find % (sin"™x — cos"x)
9, Find 4 sin3x cos3x
dx

10. Find %sin3(4x — 1) cos¥@2x + 3)

5.7 Derivative of Inverse Functions

We have studied inverse trigonometric functions in chapter 2. Now we would like to find their
derivatives.

Derivative of Inverse Function : Let f : (@, b)) — (c, d) be a one-one and onto function,
so that its inverse fumction exists. Its inverse

g : (¢, d —> (a, b) satisfies x = g(y) = f1(y) if y = f (%)

Y R G I dx
We assume f'(x) = == = 7y = & (dy # 0]
dy
dy _ 1. ' —d
L=7a or f'®=75
dx & dyf »
We have some standard forms :
5 1
(1) - sin Ix = — |x] <1
Let y = sin"lx. y € (—%,%) So x = siny » # :!:%— as x # 11)
dx [ T T
dy = cosy = 1—sin2y (cosy >0 as y € (—-5,3-))
dy 1 _ 1
dx  dx 1-x?
Yy
%sin_lx = 1—1x2
d . |
2) —=—cos x = — x| <1
Let y = cos” x. y € (0, T). So x = cosy ( # 0, T as x = *1)
dx , .
dy = ~siny = _Jl—coszy (siny > 0 as y € (0, m))

.
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€))

sin x + cos 1x = %

2z 5 X + 1x COS X dx 2 0

— _ 1
%cos lx=—%sin 1x=—_m x| <1
i tan 'x ) x€E€ER

Let y =tan lx. y € (—%,%) So x = tany.

ax 2

dy = sec”y

dy _ _ 1 _ 1 _ 1

dx  sec’y 1+tan’y 1+ x>

d —1 1

=—tan 'x =

dx 1+ x2

d ~1 1

——cotf 'x = — x€eR
dx 1%

We can prove as in (3) or fan” x + cof x = % will give the result.

d — —
=—5ec x = x| >1
dx 1x1d2% =1 o

Let y = sec x. y € (0, T©) — {%} So, x = secy. (Why y#0,y# T ?)
dx
dy = secy tany
T
Now, secy =x, y € (0, T) — {7}
T T
There are two cases. y € (0,7) ory € (7,73).

W ye (0.3)

. x=wsecy > 0, tany = Jx2 _1 as tany > 0

. % = secy tany =x‘,x2_1 = |x|Jx%2—1. Since x > 0, so |x| = x
Loy 1

od xR -1

o) ye (£.7)

x =secy < 0. So |x|=—x

166

MATHEMATICS 12



—

tany = —Jx2 _1, since tany < 0
& _ 1 _ 1 - —
dx  seyltany — _x x> 1 ixiyfx® -1
b1y
- = x such that |x| > 1
dx Ix1yx? -1 ]
P d ) S A
(6) Similarly we can prove, —— cosec 'x = — =
dx Ixlyx® -1

or since sec lx + cosec lx = %

d

a_ —1 + i —1
dx sec 'Xx dx cosec

- dn _
* dx 2 0

4 cosec” lx = -4 sec” lx = —+
dx dx le‘/x -1

|x] > 1

[x| > 1

We have introduced e in this chapter. 2 < e < 3, e is the base of natural logarithm.

We assume lim -1

=1
r—>0 h

We know lim 2080*X _
x—>0 X

1

Let log,(1 + x) = h. Sox = " — 1.

] h
Using (i), Im "7~ =1 (Asx — 0, h = log(1 +x) = 0)

lim €' -1 =
h—0 h

®

) -g;e"=e“

h
d x_ lim € ¢ _ lim fim [E=L|_ .1 =
x5 h oo € nool TR el=e

d x = ox

o E
®) Lo = a loga
dx e
We know a = elo84
& = (elogea)x = gxlogea
a* = ¢'. Here t = x log,a
d d  dt

Bychainruleaa" =2 dx

=eé' . log,a
=a* log,a

d x-
dxa" a log,a

¥
dxkx k)
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Note : By using chain rule 5
It is like this e5"* = exp(sinx)

Lesinx — i

j eSinx = oSINX cogx.

Outermost function is exp. % (expx) = % & =" =expx

(exponential (sirnx))

d

= i exp(sin x) = exp(sin x) asinx = eSinx cos x
4 tan2x — Ltan2x d_
% ¢ e FE; tan2x
= 2elan 2x goc2)x
d - n
(9) rlogx = o x € R
Let, y = logx
x=¢
dx
dy &
dy _ 1 _ 1 _1
dx dx e X
dy
da -1
dx °8F =
3
. d — 3x—x 15
Example 31 : Find Etan 1 ax2 x| < N
Solution : Let x = tanB, 6 € (—%,%)
< = —F<x<F+
Ix1 <73 B <E<F
= tan(—%) < tan® < tan%
= —% <0< % (since O € (—%,%), tan is T)
_n r
= —5 < 30 < >
_ 3x =X . 3tan© — tan %0
Now, y = tfan" 75 = tan 1-3tan 20
= tan~ ! (tan30)

T N
= 30 (3 € (-3.3)
= 3tan"lx

-3

1+x

&l&
I
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T . d .. -1 2 L
Example 32 : Find 2z 5 Zx‘h_x , x| < 2

Solution : Let O = sin~lx, —% <0< % So x = sin.

L L L
|x|<‘5=> 5<x<ﬁ

Now, sz‘n(—%) < sinB < sin%
8<% (sin is 1 in (-Z, Z))
s —B<20< Z
Sy =sim12x 1 42
= sin"1 (25in® cosB) (Jl—xz = Jl_sg,ﬂg = cosO as O € [—*g-'%*))
= sin~1 (sin20)
-2 (0 « (-35)
y = 2sin” lx
dy _ __2
ax Ji-x?

1
Example 33 : Find %sec_1 221> 0<x< ﬁ
Solution : Let O = cos™x. © € (0, 7). So x = cosO. (Why © #0or mm ?)

1 1 1

o —t 1 1 _
Y T Sec " ox2 1 T Se€C " 500520 -1 T S€C 7 cos 20

y = sec ! (sec20)

Now, 0 < x < f = cos% < cos® < cosT

1
=Z<0<Z (cos is ¥)
=L<20<m

sy = sec 1 (sec20) = 20 = 2cos™x (29 S (%’-?‘C) c [0, n] - {.‘fi‘.})
dy _ __=2
dx 1- x2
Example 34 : Find 4 cos™ (4> — 3x) for ) $ <x <1 (D 0<x<3

Solution : Let © = cos x so that x = cos0, 0< O < T
y = cos 1 (4x3 — 3x) = cos™! (4cos30 — 3cos0)

y = cos ! (cos30)
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Q) % <x<1 = cos% < cosO < cos0

=>0<9<% (cos is V)
=0<30<T7
oy =cos ! (cos30) = 30 = 3cos Ix 36 € (0, n)
dy _ _3
dx 1- x2

) 0<x< % = cos% < cosO < cos%
=>Z<0<Z (cos is ¥)
= n<30<3
=0<30-n<Z
y = cos! (cos30) = cos (—cos(Tt — 30))
=T — cos cos(Tt — 30))
=T — cos (cos(30 — T))

=7 — (30 — m) (@0 - m e (0.3) < [o, n))
=21 — 30
=27 — 3cos x

dy _3

ax Ji-x?

5.8 Derivative of an Implicit Function

Sometimes we encounter equations of type f(x, y) = 0 from which we may or may not get y as
a function of x. Functions of type y = sin’x are called explicit functions of x. But 3y — sin2x = 0

»~

gives y = %sian.

This is an example of y being an implicit function of x. f\

Consider the circle x2 + y? = 1.

It is not a graph of a function. But y = J1— 42 and k_/

v

y = —J1—x2 two implicit functions can be defined from the Figure 5.24

relation x2 + 32 — 1 = 0.

So we get two implicit functions. See that any vertical line meets the circle in two points but
meets the semicircles in each semiplane of X-axis in only one point. So, each semicircle is a graph
of an implicit function.

But some equations are not easy to solve.

dy

x3 + 33 = 3axy is such a relation. How to find - for such implicit functions y ? We use the chain

rule and differentiate the relation assuming that y is an implicit function of x.

d 4 _ 4.3
For example prR 4x
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d .4 _ dy _ ,3dy
dx w = dy y4 =47 dx
So, when we differentiate a term involving variable y w.rt x, we follow usual rules of
differentiation and multiply the result by %

Let us solve some examples.
Example 35 : Fi L = si
ple 35 : Find p from x + y = sinxy

Solution : Differentiating the equation,

d ,d  _d

dx ky—amw
1+ o cos. ( ) (chain rule)
dx Xy = Xy
= cosxy (x %y +y-1) (product rule)
1+ z = X CcOoSXy % + ycosxy

(1 — xcos xy) % = ycosxy — 1

dy _ ycosxy —1
dx  1- xcosxy

Example 36 : Find % for x3 + 3 = 3axy

Solution : 3x2 + 3y2% = 3a(x% +y-1)

— ax) —=— Do ay — x2
dx
dy _ ay—x’
dx  y*—ax

Example 37 : Find == dy

= from ax? + 2hxy + by? = 100

1 . Q d_y =
Solution : 2ax + 2h(x =+ y) + 2by =0

(e + by) L = ~(ax + hy)
dy _ ax+hy
dx  \hx+by
Example 38 : Find Lol from sin’x + sin’y = 1.

dx
Do =0

Solution : 2sinx cosx + 2siny cosy —— T
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. ody —-sin 2x
*t dx  siny
or
sin?y = 1 — sin’x = cos’x
. siny = cosx {(Two functions)

Note : If sin’xc + sin’y = 2, then sin’x = sin’y = 1 as |sinx| < 1, |siny | < 1. No such

—sin 2x
dx  sin2y

function exists. If sin’x + sinzy = 3, then can we write ?

No. sin?x + sin?y < 2. No implict function exists if sin’x + sin’y = 3. We assume existence

of implict function and differentiate. But an implict function may not exist.

Exercise 5.4

Find 2. : (1 0 10)

dx
1. x2+3y2=1 2. x + sinx = siny Josinx+y)=x—y
2 2
4. 22+ 3xy+32 =1 5. sinx + siny = tanxy G'xT_yT=1
2
7. 32 =10x s.’f—;+;_5=1 9. x2+32 —4x — 6y — 25 =0

10. sinx = siny

Find the derivative : (11 to 16)

2x
11. y =sin"! Bx — 4x3), 0<x<% 12. y = tan™! 2> x#*1
_ll—x2 g —2x
13. y = cos T 22 4. y=sin" 7 2
_ _13x_—x3 L g 5 1
15. y = tan =32 > |x|>J§ 16. y = sin” " 2x1 - x*, ‘E<x<1

5.9 Parametric Differentiation
Sometimes x and y are given as functions of another variable, say ¢, called a parameter.
Let x =f() y = g®
Assuming that we can obtain # = f “1(x) and substituting in y = g(¢), we get y = g(f "1(x)).
So, y is a function of x.

But this type of solving and differentiating would be cumbersome. We have the following rule :
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Example 40 : If x

Example 41 : If x

e ¢ dx _
Solution : dt 2at
@
dy dr
=2 - =
d

= af?, y = 2at, find dy
dy = 2a

> dt

dy
& g'W :
%z & = o) where f'(f) # 0
dt
Example 39 : If x = acos0, y = bsin®, find %
Solution : % = —asin0, % = bcosO
= bcos ©
dy _ _d6  _ Dbcos©  _p
dy bcos® i _ bx
dx asin® g % T Ta?y
x? ¥
or directly poi e cos?0 + sin?0 =1
2x 2y d
T E O
& _ _bx
dx a’y

E.

—2a _ 1

2at ~ t (t#0)

= asin®0, y = bcos30, find Q
dx

T8 3bcos?0 (—sin0)

= =b .00
a

Solution : % = 3asin’0 cosO d_y
dy _ —3bcos*0sin®
dx  3asin?0cos
cos *0
co’® = “in 70 e

1
=% S6 co® = (ﬂja

= cos20 + sin?0 =1

“

Rule for differentiation of parametric functions :
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& __ By
dx a% x%
|Exercise 5.5 |
ind . : dx oy dx
Find 5= (wherever p is defined as a function of x and ar °F 4o # 0)
1. x = asecO, y = btan® 0 € R— [{k-DE |ke z} U {kn | k € Z}]

2. x=cosO — cos20  y = sin® — sin20 O R—{krn | k€ Z}, cosO # %

3. x=a(® — sin0), y = a(l — cos0)

4. x = a(cost + log tan%), y = asint
5. x = a(cos® + Osin0), y = a(sin® — Bcos0O)
6. x= t% y=bt
- — —y
7 Ifx=‘/asm1t, y="aws1t,prove%=7 1] <1

*

5.10 Logarithmic Differentiation
Sometimes we have to differentiate a product of several functions or a complicated product or
[f ()18® form.

In such a case, it is customary to find L) by taking logarithms.

dx
e dy o [ex+3)(Bx—4)
Example 42 : Find s if y = 4x+9)(x—8

Solution : logy = % [log (2x + 3) + log Bx — 4) — log (4x + 9) — log (x — 8)]

1dy 12, 3 __4__ _1

Y dx 2 [2x+3 3x-4  4x+9 x—8]
dy _y 2 _,_3 __4 __ _1

ax 2 [2x+3 3x-4  4x+9 x—S]

Example 43 : Find % if y = xSinx

Solution : logy = sinx log x

< =
&

= sinx-% + cosx log x

&&

= [si;zx + cosx log x] y
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Example44:1fxy+y"+a"+x“=l,ﬁnd%.

Solution : Let u = ¥, v=y", w=d" + x4
Now, logu =y log x

ldu _ Y &
u dx x+10gxdx
du _ (Y a
dx (x +l°gxdx)xy
Now, v = y*
. logv=xlogy
1dv _xdy
v dx J’dx+10gy
dv

X dy
dx (yE+logy)y"
Now, u +v+w=1

du , dv  dw _
dx+dx+dx 0

(%+logx%)xy+(%%+logy)y"+a"logea+axa‘l=0

(x)’ logx+%y")%=—(xyx'y +y"logy+a"loga+ax"‘1)

dy —x? '+ y*logy+aFloga+ax®!)

dx xy* 1+ xY log x

Example 45 : Find Zx_y if y = (sinx)* + sinx™

Solution : Let u = (sinx)¥ = ¢ logsinx

. I . ;
(since a = e %%, sinx = elo8 sinxy

du = log sinx d ;
dx e* Ix (x log sinx)

* log sinx (1 - log sinx + x;z;x)

(sinx)* (log sinx + xcot x)

d - d
Ix sinx* cosx* dxx"

cosx® &L ox log x
dx
= Lex 1 L
cosx* - * °gx(x T logx)
= x* cosx* (1 + log x)

— = (sinx)* (log sinx + xcot x) + x* cosx* (1 + log x)

&&

(Note : a = el°24 helps to avoid taking logarithms.)
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Exercise 5.6

Find 2 :
x i
1% y=(x+%) + (x+i)x 2. y = cosx* + sinx*
3 Cx+1)3 (4x +3)° cosx

3. y= Tx—1)0 4. y = (log x)
5. y=@x+12x+23x+3)* 6. y=(logx)* + logx*

, (x+$)
7. y=xS"X% 4+ (sinx)y 8. y=x x

cosx i

9. y=(sinxy + (%) 10. y = 357 + 4eoosx
11. y*=x» 12. xy = &7
13. ¥y*=1 14. y = (1 + x)(1 + x3)(1 + xH(1 + x8)

15. If y = (x* — 2x + 3)(x? — 3x + 15), find %

by (1) Product rule
(2) Multiply and using rule for polynomials.
(3) Logarithmic differentiation

and compare.

5.11 Second Order Derivative

If f is a differentiable function of x on (4, ) and if /'(x) is also a differentiable function
2

of x on (a, b), its derivative is called second derivative of f and is denoted by f'"(x) or -z—x%’-
or y, where y = f(x).

2
Thus f"(x) = % f'(x) or ZX—Z, or y,. Here y, denotes f'(x) or Zx_y

We can use chain rule as follows :
d _d ,dy _, dy _
V= dyyZE—2yE—2yy1
d _d d . _ ay _
ax = dy, 2% =N El = 2y,
Remember-d- 2 =g v =3
2=V =2y g5 = s

d%y

de

Example 46 : If y = acosx + bsinx, prove +y=0

Solution : y = acosx + bsinx
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¥y = —asinx + bcosx

Yy = —acosx — bsinx = —y
d%y

ez tr=o

Example 47 : y = ae* + be’*, prove Y, — 9%, +20y=0
Solution : y = ae®™ + be>*
Y 4ae®* + 5be>*
Yy = 16ae* + 25be>*
¥, — 9y, + 20y = (16ae® + 25be>*) — 9(4ae®* + 5be>*) + 20(ae®* + be ™)
= (16 — 36 + 20) ae®™ + (25 — 45 + 20) be* = 0

y2—9y1 + 20y =0
d*y
Example 48 : y = x* + sin3x. Find R

Solution : y = x* + sinx

dy _ . 3 )

7 4x° + 3sin“x cosx

Y _ 122 + 6si Zx + 3sin? '
= = + 6sinx cos“x + 3sin“x (—sinx)

12x2 + 6sinx cos’*x — 3sindx

d’y
de

Solution : y = log (logx)

Example 49 : Find for y = log (log x).

d S A —
ax log (log x) = logx x xlogx

(xlogx)O—l-(llogx+x-%)

d>
12 log (log x) o Tog 12

—(1+ log x)
(xlog x)2

Example 50 : If y = acos (log x) + bsin (log x), prove that x2y2 +xy +y=0.
Solution : y = acos (log x) + bsin (log x)

__ —asin (logx) " bcos (log x)

1 x x

xy, = —asin (log x) + bcos (log x)

—acos (log x) _ bsin (logx)
X x

L =
dx(xyl)

x(xy, + 1-y,) = —acos (log x) — bsin (log x) = —y
x2y2 +xy,+y=20
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Example 51 : If y = cos lx, prove (1 — x2)y2 —xy; = 0.

1

Solution : y = cos™ 'x

A -x2y?2=1

La-2p2=0

a- x2)2y1J’2 + (—2xy12) =0

A —=x2y, —xp; =0 o, = 0)

Example 52 : If y = tan” lx, prove (1 + x?)y, + 2xy, = 0.
1

Solution : y = fan 'x
_ 1
Y17 1522
(1 +x2)y1 =1

A+ x2y, +2xy, =0
Example 53 : If y = aeP* + be?*, prove that y, — (p + q)y; + pgy = 0.
Solution : y; = apeP* + bge?*
Yy = ap?eP* + bge?*
apeP* + bge?™ — y, = 0 @
ap?eP* + bg*e?* — y, = 0 (ii)
Solving (i) and (ii) for e#* and e9*,

_ —bgy, +bq *» __—apy, +ap*y,
e = 2 2 P = —— oy
abpq * —abp~q rq (4 - p)
x — Y2t ah x — Y2t PN
= p-p e bg(g—p)

Substituting in y = geP* + be?*

_ (—)’2 +qy1] _ (—yz+pylj
Y=\rl@-pm q(q-p)
palg — py = —qv, + ¢*»; + py, — P*;
=@ — 9y, — ©* —
Yy~ @+ qQy +pgy =0

5.12 Mean Value Theorems

There are some important theorems in differential calculus called mean value theorems.

Rolle's Theorem : If f is continuous in [g, b] and differentiable in (a, b) and if f (@) = f(b),
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then there exists some ¢ € (a, ) for which f'(c) = 0

>
>

Geometrical Interpretation : If the graph of

¥ = f(x) is continuous in [a, #] and if it has a non-vertical
tangent at all points (x, f(x)) where x € (a, b) and if f

(a) = f(b), there is some ¢ € (a, b) such that tangent at o

(¢, f(c)) to thecurve y = f(x) is horizontal or we can say

it is X-axis or parallel to X-axis.

Mean-value Theorem (Lagrange) : If f is v
continuous in [a, 5] and differentiable in (a, b), then Figure 5.25

(b — f(a)
T = FBY _ pocey ot anivs & & (o B Y aws@

Geometric Interpretation : If the graph of y = f(x) B, /()
Clef@)

is continuous in [aq, b] and if y = f(x) has a non-vertical

tangent at all points, (x, f(x)) where x € (a, b), then

A
v
b

dc € (a, b) such that tangent at (c, £(c)) is parallel to the
secant line joining A(a, f(a)) and B(d, f(b)).

_ b) —
We know slope ofA(;_)B = i;_ii = f(;—z(a)

Slope of tangent at (c, f(c)) = f'(c). Figure 5.26

Hence the result.
Example 54 : Verify Rolle's theorem for f(x) = x2 — 4x + 3 in [1, 3].
Solution : fis continuous in [1, 3] and differentiable in (1, 3) as it is a polynomial in x.
fH=0,f3)=9—-12+3=0
dc € (1, 3) such that f'(c) = 0
Now, fl(c) =2c —4=0=c=2and 2 € (1, 3)
c=2,ce (1, 3)
Example 55 : Verify Rolle's theorem for f(x) = x> — 6x2 + 11x — 6 in [1, 3].
Solution : fis continuous in [1, 3] and differentiable in (1, 3) and £ (1) = 0 = £(3)

f'(x):3x2—12x+11=0=>x:@
x=2% 77 € (13

The are two value of ¢ namely ¢ =2 & ﬁ c € (1, 3)

Example 56 : Verify Rolle's theorem for f(x) = sinx in [0, TC].
Solution : sine is continuous in [0, ] and differentiable in (0, 7t) and sin 0 = sinTT = 0

(X)) =cosx =0 = x = % in [0, TT].

c= % and %e (0, ) (c € (0, m))
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Example 57 : Apply the mean value theorem to f(x) = cosx over [0, Tt].

Solution : cos is continuous in [0, 7] and differentiable in (0, TC)

a=0,b=T
f) - fa . COS T« — cos 0 ]
LOS@D _ riey gives, o = —sinc
e

- = —sinc

.2 2
sznc—n.Als00< p < 1.

Since d ¢, 0 < ¢ < T such that sinc = %

[In fact, there will be two value of ¢ in each of (0,%) and (%,717) such that sinc = %

.12 . . 14
If we take ¢ = sin IE’ we will get only one value of ¢ in (0,7).]

Example 58 : Apply the mean value theorem to f(x) = ¢* in [0, 1].
Soloution : f(x) = ¢* is continuous in [0, 1] and differentiable in (0, 1). a =0, b = 1.

fO-f@ ., . . e-1
=g = S(o) gives, 75 = ¢°

e=e—1
c=log, (e —1)
Now, 2 < e <3
I<e—1<2
0<log(e—1)<log,2<log,e=1 (e > 2)
c€ (0, 1)and c =log (e — 1)
Example 59 : Apply the mean-value theorem to f(x) = log x in [1, e].

Solution : log function is continuous in [1, €] and differentiable in (1, e).
- - (x) = L
a=1b=efx)=7

loge —logl |
e-1

%=e_1 (log 1 =0, log ,e = 1)
c=e—1
Also 1 <e—1<e as e>2
c=e—1 c €, e)
Example 60 : Can you apply the mean-value theorem and Rolle's theorem to f(x) = [x] in [2, 2].

Solution : fis discontinuous at —1, 0, 1 and 2 (why not at —2 ?)

180 MATHEMATICS 12



“

f is not differentiable at —1, 0, 1 in (—2, 2). Y
M
f&=(-=2 -—2<x<-I 3l
1 —-1<x<0 5
1- _0
¢ 0 0<x<1 X
3 -2 -10 1 2 3
1 1<x<?2 -1
\ 2 x=2 p— 2
-3
But f'(x) = 0, x € (=2, —=1) U (=1, 0) U (0, 1) U (1, 2)
Figure 5.27

(Constant function)

Conditions of Rolle's theorem are sufficient but not necessary.

2)— f(-2 — (=
Also LEELE2 = 22D 2 1) for any ¢ in (-2, 2).

(Infact either f'(c) does not exist or f'(c) = 0 for ¢ € (-2, 2).)

In any interval [a, 4] not containing an integer, f is a constant function and Rolle's theorem and

mean-value theorem can be verified but not otherwise.)

Exercise 5.7

Verify Rolle's theorem : (1 to 8)

1. f@) =x(x — 3)? x € [0, 3]

2. f(x)=x3—6x2+11x—6 x € [1, 3]

3. f(x) = \/9__,62 x € [-3, 3]

4. f(x) = log (;‘(zat“,f)j x€[abl O0<a<b
5. f(x) = sinx + cosx — 1 x e [0, Z]

6. f(x) = & (sinx — cosx) xe [E, 3L

7. f(x) = ot x€ [0, ), a>0

8. f(x) = e*cosx x € [_% %]

Verify Mean Value Theorem : (9-10)
9. f(x)=x— 2sinx, x € [T, ]

10. f(x) = logx, x € [1, 2]
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11.

12.

13.

14.

Prove xy < log

" % < % 0 <y < x using Mean Value theorem and taking f(x) = logx.

Apply Mean Value theorem and find ¢ :
() f@=x++ xe[l3]
(2) f(x)=tarix x € [0, 1]

tanb — tana

Prove sec2a < ~b—a < sec?b 0<a<b<%

Find a point on the graph of y = (x — 4)? where tangent is parallel to the line joining A(4, 0),
B(, 1).

Miscellaneous Example :

Example 61 : Find % log; (log,x).

logx

Solution : y = log, (%) = log,(log x) — log,(log 7)

dy _d d -
I — dx log; (log x). ( P log,; (log7) = 0)
d log (logx)

E log7

1
Tog7 % log (log x)

111 _ 1
log7 logx x = Xlogxlog7

Example 62 : Find % tan~ ! (%j T <x<2N

4 . -1 Sinx
Solution : y = tan (1+cosx)

2sinx % cos 5
tan”! | ———5—
2cos 2%

= tan! (tan%) 3—;— <X <5

o X R X _
Now,2<2<1l2=> 2<2 n<o0

Now, y = tan™! (tan(%))= tan™! (tan(%—ﬂ:)) = % -7

P _1
dx 2
_, 1-9*
Example 63 : If f(x) = cos™! ST find f'(x), x € R

Solution : Let ¢ = 3%
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A

1- 12

|
= COoS
1+ 12

Let © = tan™ 1, —% <0< % So t = tan®

3* >

o.Sot=tane>o.So,0<e<§

s 0<20< .

sS. cos

S cos

-7 . (1—tan2e
= COoSs T 20

1

N—

1+12 1+ tan’0

= cos™! (cos20)

=20

= 2tan 1t
1-9* _
1o 2tan13%

X

S f(@) = cosT! 1r9% = 2tan~13%

2-3%log, 3 2-3%log,3

1) = -

Example 64 :

Solution :

dy
ds

dy

I'I dx

d*y

dxz

Example 65 :

Solution :

1+ (3%)? 1+ 3%%

d%y

dx*’

If x = a (cost + tsint), y = a(sint — tcost), find

% = a(—sint + tcost + sint) = at cost
= a(cost — cost + tsinf) = at sint
= lant
_d (ﬂj
dx \ dx
= % (tant)

- d dt
= (tant) x

seczt
= &
dt
2 3
_ sec’t  sec’t
atcost at

Ify = eaSi"_lx, |x| <1 prove that (1 — x2)y, — xy, — a%y

dy iy —a__ _ _ D
E_yl_easmx 2_ =

0 <20 < m

(Taking ¢ = 3%
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(1 - 2y =
a- x2)2y1Y2 + (—2x)y12 = ‘12230’1 “dd;yz = 2y '5}’)’12 = 2y,y, etc.)
(A=, —xyy —a’y =0 1 # 0)

Example 66 : Does there exists a function continuous everywhere but not differentiable at exactly

n real numbers ?
Solution : Let f(x) =|x— 1|+ |x—=2|+ |x—3|+..+ |x —n|

| x| is continuous on R. So |x — 1|, |x — 2|,..., |x — n| all are continuous on R,

because composite function of continuous functions is continuous.
So, f(x) is continuous on R, because it is a sum of continuous functions.
|x— 1|, |x — 2}|,..., |x — n| are differentiable except at x = 1, x = 2,...,, x =n respectively.
|x =21, |x — 3|,..., | x — n| are differentiable at x = 1.
S gx)=|x—2|+|x—3|+.. + |x — n| is differentiable at x = 1.
If fx)=|x—1|+|x—2]|+... + |x — n| is differentiable at x = 1, then
f(x) — g(x) = |x — 1] is differentiable at x = 1.
But |x — 1| is not differentiable at x = 1.
f@)=|x—1|+|x—2]| +.. + | x — n]| is not differentiable at x = 1.
Similarly |x — 1|+ |x — 2| +... + | x — n| is not differentiable at x = 2, 3,..., n.
.. fis continuous on R but not differentiable at x = 1, 2, 3,..., n.

;2
Example 67 : siny = xsin(a + y). Prove dy _ sin*a+y

dx sina
Solution : cosij—y = sin(a + y) + xcos(a + y) %

[cosy — xcos(a + y] Zx_y sin(a + y)

dy sin(@a+y)
** dx  cosy—xcos(a+y)

sin(a+y)
siny
sin(a + y)

cosy— cos(a+y)

B sinY(a+7y)
~ sin(a+y) cosy—cos(a+ y) siny
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_ sin*a+y)
sina

(sin(a + y) cosy — cos(a + y) siny = sin(a + y — y) = sina)

or
siny
X = oy
sin(a+y)
dx sin(a + y) cosy— sinycos(a + y) sina
dy = si? (a+ y) = sir’ (a+y)
dy _ sin 2a+y)
dx sina
’ 3
1 2
Example 68 : If (x — a)2 + (¥ — b)2 = r2, prove that %

Solution : 2(x —a) + 2(y — b)y; = 0

X—-a
Y177 y"b
__ 9-b-1-x-ay
Y2 T (y - b
(x-a)x-a)
_ y-b+=—"5—
(y -b)*
- a+-b)’
- (y-b)*
_ r2
(y-by*
) 3
(x-a)” |2
3 1+
a+y>2 | [ (y-b)?
ot 2 B -r2
y-by
3
_|x—a* + ¢y —b*12
= —
= —:—2 = |r| is a constant.
3
1+ y%)2
( Y2

a curve having ‘uniform’ radius of curvature at every point.)

is a constant.

is called the radius of curvature of curve y = f(x) at any point (x, f(x)). Circle is
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Example 69 : Find % (log x)'°8* wherever defined.
Solution : y = (log x)'°8*
.. logy = logx (log (log x))

. lady _ 1 log X
S Y4 T X log (log x) + ogx X
_ log(log x) +1
x
1+ 1 log x
. % =( og;og )j (log x)&*

Example 70 : Find [% sec‘lx]x — _, by definition. (First principle)

lim sec\x — sec™1(-2)
x— -2 x—-(-2)

Solution : [%sec‘lx]

t—(—sec! 2)

t = sec“lx)

t_)zT'n; sect +2
oy (-3
',E,sznW
_ L =
S Searva
-2

3

¢ — 2 2sect (cost — cos 27")

27
d 3

27 2
12 i PP s &
2sect | —28in > sin >

(t—ZT”)/z

2T f+28

3 —2sect - sin > 3

sin

2408
1
243

N U [ S — S
Verify : — = sec™'x Y il Y 7 e
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11.

13.

15.

17.

19.

21.

23.

| Exercise 5 |

Find points of discomtinuity, if any, for following functions (1 to 4)

o xB-27 | sinx-1
J&x) =) 5= x#3 2. f® =)= x #1
x=3 2 x=1
25 _ ot
fx) { x+1 x # —1 4. f(x) = 2 x #2
=-1 e? x=2
Find &, if following functions are continuous at given value of x : (5 to 8)
fx) = x# 3 6. fx) =1\ kx2 x<1
x=3 atx=3 x+ 1 x21, atx=1
fx)y=(2x+3 x<2 8. f(x) = cosx 0<x<%
- - — =X =X
x=2 atx=2 K — 4 x== atx =3
3x+ 1 x> 2 sinx — 1 x>%
Find a and b, if following functions are continuous (9 to 10) :
f&x) = asinx + b OSxS% 10. f(x) = ax + b 0<x<1
cosx %<x$7t 2x + 3 1€x<2
tanx + b Tl',<x<3Tn x+a x22
Fmd for following functions y where ever defined :
=1 2 4+ 1 12 _ 1 —2x +1
y=log,,x-+1) cy=cof T,z x#FX
y = sin (log (cosx)) 14. x‘h_yz +yJ1—x2 =a, |x|<1,|y|<1
y = (sinx)sn* 16. y = (sinx — cosx)sinx — cosx
x x+<+
_ 1 _ =3
y—x"+(x+x) 18. y=x
y = cos(x*) + (tanx)* 20. y =sin Ix+ sin_l‘h_x2 , | x] <1
y=tan x + cof Ix x € R 22. x = (cost)! y=(sint)) 0<t< %
L ax = = 2 l 7 = Q
Prove 4z ¢hcos (bx + ¢) = re*cos (bx + ¢ + ) where r Ja +b*, cosOL = sinQL ,

2
and % e®cos (bx + ¢) = r? e®cos (bx + ¢ + 20)
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24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37,
38.

39.

40.

41.

42.

43.

44,

2
Find 2= i 1¥* X =1 e R _ (0}

dx X
. d ,/1+x Jl—
Find atan J1+x+J1 oy x| <1
. d —1 1+ sinx n
Find 25 fan 1= simx O<x<7

If y = (cos %)%, prove (1 — x?)y, — xy; = 2
If y = sinpt, x = sint prove (1 — x2)y2 —xy; + Py =0

Ify= em’“”_]", prove (1 + x2)y2 +@x —m)y, =0
1

1 1
If2x=ym +y ™ (x = 1), prove (x2 — Dy, +xy, = 2

msy

If y = (x + x2 —1)" prove (x> — L)y, + xp; = m%y

logx

_ ox— dy _ __°8%
If xV=¢e* "7, provea— (logx + 1)

If y = e sinbx, prove y, — 2ay; + @+ by =0

/2_2
dy _ Na -b" o<x<Z

B — 2 _ 2 ay _
If (@ — bcosy)(a + bcosx) = a“ — b*, prove dx  a+bcosx’

If y = (tan"x)2, prove (1 + x2)2yz + 2x(1 + x2)yl =2

X
If y = xlog 4 px> pProve x3y2 = (xy, — )

If x = asint — bcost, y = acost + bsint, find y,.

If y = sin(sinx), prove y, + tanx -y, + ycos®x = 0

Ify= —1 3+5cosx d_y= 4
Yy = €oS " 5 3cosx » PIOVE dx S5+3cosx-

Find the derivative of zan™1 wrt sin”! 2xJ1-x2). 0<x< %

1-x?

1-x2 . _2x
1 wrt. sin”! 2
1+x> Wt 1+x%

Find the derivative of cos™

P -1 ] .
Find [ dx(cosec X) i by defination.

Find — [ m"'c"s ﬁ]

. i _1—4L
Find x tan”" 1 o152 > x>0

188

MATHEMATICS 12



45. Find < ran™!

. d
46. Find == tan~
dx J1+x

47. Find % tan (secx —

x| <1

—Jl x?

tanx).

48. Select a proper option (a), (b), (¢) or (d) from given options and write in the box given

on the right so that the statement becomes correct :

M) [Lsecx], - 5= .

@ Tz (b) ~5— © o5
) % = o (x> 0)

@ *! (b) © 0
@) %(sm x + cosIx)= . (x| < 1)

@0 (b) 12 22 © [ . )
@) % A= (@a>0)

@@ a?(1 + loga)  (b) 0 ©) @
(5) % e = .

(a) &> (b) 5¢5* (c) 5x e*— 1
(6)%10g|x|= ...... . (x # 0)

@ T OF- (c) does not exist
(7 % Sindx = ... .

(a) 3sin’x (b) 3cos’x (c) 3sin®x cosx
8) % tanx = ... .

(a) ntan” ~ x (b) ntan” ~ lx sec?x (¢) n sec?x

Section A (1 mark)

@ o5

) x¥*(1 + logx)

(d) does not exist

(d) does not exist

@ o

@) ¢

(d) —3cos?x sinx

(d) ntan” —

ly sec? — 1

-

X
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) Iffx)=(ax+ b 1<x<5 1]
Ix—5 55x<10
bx + 3a x 210

is continuous, (a, b) = ......

(@) 5, 10) (b) 5, 5) (©) (10, 5) (d) (0, 0)
(IMIf f(x) = x72—a x<a 1
0 x=a
a— X x>a then...
a
(@ lm f@x)=a (b) lim f(x) = —a
x—a+t x—a
(c) f is continuous at x = a (d) f is differentiable at x = a
(DI f&x) = ( x x€ (0, 1) JE
1 x21
(a) f is continuous at x = 1 only (b) f is discontinuous at x = 1 only
(c) f is continuous on R* (d) f is not defined for x = 1
d 1 _
(12)5 loglxl T eeeees . D
@ Tx7 ® Tomar © -t @
lx1 (log x)2 X(loglx |)2
(13)If y = asinx + bcosx, y* + (y))? = ... . (@ + b2 £ 0) 1]
(a) acosx — bsinx (b) (asinx — bcosx)? (c) a* + b? o
(14)% 2 + sin2x)? = .. ]
(a) 3(x2 + sin®x) (b) 3(x2 + sin®x)> (2x + sin2x)
(c) 2x + 2sinx cosx @ao
(15)% Josie = o 0<Xx< T ]
xsinx + cosx XCOSX xcosx + sinx 1
@ xsinx b) 2v/xsinx © 2 xsinx @ 2V xsinx
Section B (2 marks)
; 1 1-x
(l6)%tanll+x= ...... ) ]
1 1 1+x 2
@ =742 ®) 172 ©) =% (CYRrpp™

190 MATHEMATICS 12



—1 —_—1 1 1
@ 1+ cos %x (b) 1+ cos *x © 3 @ =3
y-x
(18) If x = efan' "2 | then % = e : -
(a) 2x (tan (logx) + 1) (b) 2x (tan (log x) + 1) + x2 sec (log x)
(c) 2x (tan (log x) + 1) + x%sec (logx)  (d) 0
(19) % sin~1 (%’W%Jl—xz] = ©O<x<2) 1
@it miT= © —T— @ =
5 ‘ll—x 5 Jl—x2 ,)l—x2 Jl—x
(20) % tan™! (lx_+x2) = e . (x, a€ R, xa>1) ]
1 1 1 1
(@ 7542 (®) 7542 @752 T i:a2 @722
(21) If f(x) = log, (logsx), then f'(x) = ...... . -
1 1 1 1
(@ xlog7 log 3 (®) log3 log x © X logx log 7 (@ xlogXx
22) L x|x| = .o (x < 0) ]
(a) 2x (b) —2x © Ix| (do
1-¢£2
) fx=T,72,y=7 tz,then%= ...... -
212 2t —2t
(@ 1_2 ®) 1172 (c) 2t @ 7-2
24) % exlogx = ]
(@) x* (1 + logx) (b) x* (©) 1 + logx (d) 71
tan~'x _
(25) % Tttty Wt tan lx = .. Tt
1 =1
@ Tizan'x (b) 1+ tan~'x)? © T+ 22 (C) Rrpnper)
Section C (3 marks)
2 d’y
(26) If x = at*, y = 2at, then gl ]
=1 L -1 1
(@ 2 (b) 12 © caf D af’
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@7) L cor? I+ -1 e R- {0} -
X X
1 1 2
@) T2 ®) 20+ %2 © 14+ x2 ()_1+x
2
(28) Zy’f = -
L L d’y
@ 7 ®) O © 5 @ ——5 2
- dx #) ()
(29) For the curve f(x) = (x — 3)2, applying mean value theorem on [2, 4] the tangent at ...... is
parallel to the chord joining A(2, 1) and B4, 1). ]
(@ (1, 0) (b) (4, 3) © @ 3) @ G, 0
(30) The value of ¢ for the mean-value theorem for f(x) = x3in [-1, 1] is ...... . 1
@+ ®) £ V3 (© %1 o
(31) If we apply the Rolle's theorem to f(x) = e*sinx x € [0, 7], then ¢ = ...... . ]
(a) 3L (b) & OF: @ IF
(32) If we apply the Rolle's theorem to f(x) = x3 — 4x, x € [0, 2], then ¢ = ...... . ]
@ V3 (b) 2 © % d) -2
Section D (4 marks)
(33) If x = sec® — cos0, y = sec™® — cos”0, then... 1]
@ 2
@ 62 + 4)[%] = n2 (0% +4) ® @ - o(Z] -2 -9
2
(©) 2+ 4)(%] =1 d) 2 + 4)(%) =y>+4
d .o J1+x2—J1—x2 _
(34) dx tan Jl—x2+J1+x2 ...... I)CI <1 I:I

— 1
@ Ji—x* (b) Ji —xx4 © 2 fi-x @ 1:r x*
%(% a2_x2+%sm12) ...... (a>0) 1

—1
(a) ‘/aZ —x? (®) Ja? - 52 © sz —a? ) 2% +a?

(36) Conditions of Mean Value Theorem are not applicable to ...... in [—1, 1]. 1
(@ f) = [x] ®) f(x) = (©) f(x) = sinx d) fx) =
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(37) For f(x) = x + i, x € [1, 3] the value of ¢ for mean-value theorem and for

f(x) = x> — 4x + 3 for Roll's theorem are ...... . 1
@ V3, 1 (®) 2,1 © ¥3,2 @2, V3

(38) If the tangent to the curve y = x log x at (¢, f(x)) is parallel to the line-segment joining
A(l, 0) and B(e, e), then ¢ = ...... . 1

1 1

(a) <= (b) log <+ © e e

(39) If we apply the mean value theorem to f(x) = 2sinx + sin 2x, then ¢ = ...... . 1
(@ m (®) % © % @ %

(40) If we apply the mean value theorem to f(x) = (2 +x3 x<1 ]

3x x>1 xe€ [-1,2]

then ¢ = ...... .
@ 2 (®) 0 © 1 @ %

We have studied the following points in this chapter :

1. Continuous functions 2. Algebra of continuous functions
3. Differentiation and continuity 4. Chain rule

5. Rules for derivative of inverse function 6. Derivative of Implicit function
7. Derivative of parametric function 8. Logarithmic differentiation

9. Second order Derivative 10. Mean value theorems

Prehistory

Excavations at Harappa, Mohenjo-daro and other sites of the Indus Valley Civilization have
uncovered evidence of the use of "practical mathematics". The people of the IVC manufactured bricks
whose dimensions were in the proportion 4:2:1, considered favourable for the stability of a brick structure.
They used a standardized system of weights based on the ratios: 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10, 20,
50, 100, 200, and 500, with the unit weight equal to approximately 28 grams (and approximately equal
to the English ounce or Greek uncia). They mass produced weights in regular geometrical shapes, which
included hexahedra, barrels, cones, and cylinders, thereby demonstrating knowledge of basic geometry.

The inhabitants of Indus civilization also tried to standardize measurement of length to a high degree
of accuracy. They designed a ruler—the Mohenjo-daro ruler—whose unit of length (approximately 1.32
inches or 3.4 centimetres) was divided into ten equal parts. Bricks manufactured in ancient
Mohenjo-daro often had dimensions that were integral multiples of this unit of length.

CONTINUITY AND DIFFERENTIABILITY 193



’———\_______

INDEFINITE INTEGRATION

What we know is not much, what we do not know is immense.
(Allegedly his last words)
— Laplace

A mathematics teacher is midwife to ideas.
— George Polya

6.1 Introduction

In the chapter on derivatives, we have already learnt about the differentiability of a function
on some interval 1. If a function is differentiable in an interval I, we know how to find its unique derivative
S" at each point on I. Now, we shall study an operation which is ‘inverse’ to differentiation. For example
we know that the derivative of x> with respect to x is 3x2. Now if we raise the question, derivative
of which function or functions is 3x%? Then, it is difficult to find the answer. It is a question of
an operation inverse to the operation of differentiation.

Let us frame a general question, “Is there a function whose derivative a given function can be and
if there is such a function, how to find it ?”” The process of finding answer to this question is called

‘antiderivation’. It is possible that this question has no answer or it may have more than one answer.

For example, (i) %(x-”) = 3x2, %(x3 — 15) = 3x2 and in general % @3 + ¢) = 3x2, where ¢ is any
. i . — i . — — i 7 =

constant. (ii) i (sinx) = cosx, dx(smx 3) = cosx. In general dx(smx + ¢) = cosx.

Thus, antiderivatives of the above functions are not unique. Actually, there exist infinitely
many antiderivatives of these functions which can be obtained by choosing ¢, from the set of real
numbers. For this reason, such a constant is called an arbitrary constant.

6.2 Definition

If we can find a function g defined on an interval I such that %(g(x)) = f(x), Vx € 1, then g(x)
is called a primitive or amntiderivative or indefinite integral of f(x). It is denoted by J J(x)dx.
I Sf(x)dx is called an indefinite integral of f(x) with respect to x. The process (operation) of finding
g(x), given f(x) is called indefinite integration. This ‘indefiniteness’ is upto arbitrary constant.

Thus, the question whether we can find primitive of f is not easy to answer. There are some

sinx

sufficient conditions such as continuous functions and monotonic functions have primitives. is
sinx
x

Similarly, I Jsecx dx and _[ Jx3 +1 dx cannot be expressed as a known function.

continuous, J. dx is defined, but cannot be expressed in terms of known elementary functions.

In If(x)dx, I «...dx indicates the process of integration with respect to x. jf(x)dx

denotes, integral of f(x) with respect to x and in If(x)d.!c, S (x) is called integrand.
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6.3 Some Theorems on Antiderivative :

Theorem 6.1 : If f and g are differentiable on (a, b) and if f'(x) = g'(x), Vx € (a, b), then
f(x) = g(x) + c, where ¢ is a constant.
Proof : Let A(x) = f(x) — g(x), x € (a, b).
f and g are differentiable on (a, ») and hence f and g are continuous on (a, b).

If x|, x, € (a, b), x; < x,, then A is continuous on [x;, x,].
Now, £ is differentiable on (x;, x,) as [x;, x,] C (a, b).
By mean value theorem,

h(xy) — hGy) = K@@, — ). N

Now ¢ € (x, x,) = ¢ € (a b)
But it is given that Vx € (a, b), f'(x) = g(x).

fe) = g

f©) —gk)=0

KH() =0 (h(x) = f(x) — gx) = A'(x) = f'(x) — g'(x)
h(xy) — h(x)) =0 Vx;, x, € (a b) (by (i)

h(x)) = h(xy)

fOxy) — 80y) = f(xy) — 8(xp),  Vxp, x, € (a, b)
f— g is a constant function on (a, b).

f(x) — g(x) = ¢, where ¢ € R is a constant.
f&x)=gx)+c, Vxe€ (a b)

General Antiderivative : If j—f; Fx) = —% (g(x)) = h(x), then fh(x)dx = f(x) and
[ heyax = g(x).

But f(x) = g(x) + c. So fh(x)dx = f(x) = g(x) + c. Here g(x) is a differentiable function
on (a, b) with ‘%:- (gx) = -g;f(x) = h(x). Hence if one integral of A(x) is g(x), any other integral
of h(x) is g(x) + c. Also if <L (g(x)) = h(x), then <L [g(x) + ] = L g(x) = h(w).

Thus g(x) + ¢ is also an integral of f(x).

Thus, if one primitive of h(x) is g(x), then all its primitives are given by g(x) + ¢,
where c is a constant. As ¢ is any constant, it is called an arbitrary constant.
Let us perform the operation of differentiation and integration successively in any order.

By definition of antiderivative, we know that,
%g(x) = f), Vx € 1 & [f(x)dx = g(x) + c.
Now, £ [[f()dx] = & [5() + €] = /).

If we first integrate f(x) and then differentiate the integral, we get the same function f(x)

as a result.
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But, J.[% g)| dx = [f(ydx = g0x) + c.
If we first differentiate the function g(x) and then integrate its derivative, we get g(x) + c.
Theorem 6.2 : If f and g are integrable on (@, b), then [ (f(x) + g(x)dx = [ f(x)dx + [ g(x)dx.

L [feyds + L [ gy
fG) + g

Using the definition of antiderivative,

J(Fo) + goax = [ f(x)dx + [ gx)dx

In general if £}, f,, f3,..., f, are integrable over an interval, then

J LA + £E) oot £,0] = [ ) + [ f()dx +...4 [ £ (x)dx.
Theorem 6.3 : If f is an integrable function on (a, b) and k € R, then [kf (x)dx = k [f(x)dx.

k <L [ f oo
- ¥

Using the definition of antiderivative,

[ )dx = k[f(x)dx.
Corollary 1 : If f and g are integrable functions in (a, /), then

[ — geax = [f)ax — [gx)dx
Proof : [(f(x) — gdx = [ (F(dx + (—1)g(x))dx
= [f@)ax + [ (—1)g(x)ax
= [f@dx + (1) [ g(x)ax
= [f@dx — [ glx)dx
Thus, [(f(x) — gx)dx = [f(x)dx — [ glx)dx
In general, I[kl &) + & fH(x) .+ k£ (x)]dx
=k [ dx + k[ () dx .o+ [ K, £ (x)dx

Theorem 6.2, 6.3 and corollary 1 are known as working rules for integration.

Proof : % [J.f(x)dx + _[g(x)dx]

Proof : % [k [ £ (o]

6.4 Standard Integrals
n+1

(1) [x"ax =477 +c,n € R - {1}, x € R*.
xn+1 . . 3 + d xn+l 1
nt1 is differentiable for all x € R™ and Ir\n¥1) = m+i [(n + 1)x"] = x"
. . £+ +
By the definition of antiderivative, _[x"dx =477 teo Vx € R™.

(Also let us remember that if g(x) is one primitive then g(x) + c is the general primitive.)

0+1
Thus,forn=0,fx°dx= J(CH_I +c=x+c¢

Id.‘xzx+c
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@ [Llac=log|x|+¢c x e R - {0

log | x | is a differentiable function, Vx € R — {0} and ifx>0,%(log|x|)=%logx=i.
4 =4 log(—x)==L =1
Ifx <0, dx log | x| ax log (—x) - e

da =1 -

o log| x| = — Vx € R — {0}

By the definition of antiderivative,
I%dx =log|x|+c, Vxe€ R— {0}.

We write %=log|x| +c,x#0.

(3) [cosxdx = sinx + ¢, Vx € R
sin is a differentiable function Vx € R and % (sinx) = cosx, Vx € R

By the definition of antiderivative,
[ cosx dx = sinx + ¢, VYx € R
In the same way, we can prove that
(4) [sinxdx = —cosx + ¢, Vx € R
(5) [sec’xdx=tanx + ¢, x# 2k — DT, k € Z

tan is differentiable on any interval not containing (2k — 1)%, k€ Z and % (tanx) = sec?x.

By the definition of antiderivative, fseczx dcx=tanx +c,x 2 QQk— )2 ke Z
In the same way, we can prove that

(6) Icaseczxdx =—colx +c,x #* knt, k € Z

(7) [secx tanxdx = secx + ¢, x # @k — DE, k € Z

(8) Icosear cotx dx = —cosecx + ¢, x # kn, k € 7

9 [a*dx = +caeR" — {1}, x eR

a
log,a

x - - . x 1
10‘;7 is differentiable Vx € R and % (10?58 a] = Tog,a (@*loga) = o, Vx e R

a

* +
Tog. a +c¢,ae R"— {1}.

e

By the definition of antiderivative, f at dx =

Now, for a = e

- e
Jeax = Toge ¢

fe*dx=¢ + ¢, Vx € R

I

1 L —1({X
(1o)fx2+azdx Lian (%) +¢, aeR- {0}, xR
1 = (]
=—Ecatl(§) + ¢, aeR—- {0}, x e R

tan™! (%) is differentiable for Vx € R and for any non-zero constant a.
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R tan_l(%) is differentiable for Va € R — {0} and

d 1,-1 -1 1 -1
[ tan ( )] x2 a x2 +a?
a2
R .. . . . dx _ l —1{X
.. By the definition of antiderivative, f 2+d® g tan (a) +¢, Vx e R

Thus, Lion 1L and —Lcor 1 both can be taken as integrals of .
a a a 2+a

Let us try to understand the reason behind this.

Let f(x) = —tarn_1 P and g(x) = —;cot

N1 a

Now, we know that tan™! % + cof™! % =

a a a a 2a

s S — g = K

L@ =gm + L

% Fx) = %g(x).

As antiderivative is not unique, Ih(x)dx = g(x) and _[h(x)dx = f(x) does not give f(x) = g(x).
We can say that there is a constant ¢ such that f(x) = g(x) + c.

X—-da

+ ¢, a € R — {0} (on any interval not containing —¢ and a)

(11)f d" 7 dx =5 log |3

is differentiable and

xXxX—-a
On any interval not containing —a and a, ﬁ log (x5 2

d (L x—a
dx (2a log xt+a

I | — -
) = 2= flog|x — a| — log|x + a|]

- L 1 1 ]
2a Lx—a x+a

1 r x+a—x+a

2a L(x—a)(x+a)

_ 1 (_2a
2a x2 —a?

T x*-a
. .. . .. X —

.. Using the definition of antiderivative, sz_ azdx= i log [+ +c,ae R— {0}
12) |2 =L 1og |2=2] + R— {0 i 1 ining —a and
(12) B =2a 102 |3= c,a € {0} (on any interval not containing —a and a)

1 B 1

We have, Jaz_xz dx = —1 Ixz_az dx

=—L o — I+c
a g x+a

_ 1 xX+a

= %a log [z—%| + ¢
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A | S
(]3)J-J;_—x2dstml-§+ ¢, X € (—a, a), a > 0,

= hcos_l-:f 4+ & %€ (m a)ya>0.

sin 1 (i) is a differentiable function for x € (—a, a), a > 0

£ (o () - 4
@

lal

1
Jaz—xz

@>0,|a| =a

. . " . .. 1 — ei—1 X -
.. Using the definition of antiderivative. J m dx = sin p +c¢, x€ (—a a),a>0.

. —1 = —pne 1 X g —
As shown in (10) we MVefmdx COS a+c, x € (—a, )

1 _ _
Also if a < 0, then | T=——=dx=—=sin 1L + c=cos 1 + ¢. as |a| = —a
7= a a = .
We shall usually use the formula for a > 0.
1 e ovll -1 X
14)J-“_"—"_"dx—»--sec + e |x|>|a]l>0.
( — - po [x| > |a]
=—é—case¢:_1-ﬁ—+ c, |x|> |a|>0.

Ifae R— {0} and |x| > |al, L sec! (£) is differentiable and

i(lsec—li)zl.—l L
dx \a a a |x 2 ; a
al¥a2
_ o _ laf
2
a I x|y x*—a*
S R
="
a le‘/xz—a2
_ 1
| x|y x* —a?

1

.. Using the definition of antiderivative, j
I x Isz -a*

dx=isec_1£+c, (x|>]al>0)
a a

. . 1 1 —1Xx
As shown in (10) we can write f— dx = — = cosec ' =+ ¢
ley/xz—a2 a a
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o )
(IS)Ider*loglx“* ¥*ta’l+¢c VxeR

%(log|x+,/xzia2|)=ﬁ%(x+,/m)

= L 1+ —=2X
x+,lx2ia2 24 x* £ a?

) szia2+x
B x+szia2 Jx2-l_-a2
1

‘/xz +a?

.. Using the definition of antiderivative, j ﬁ =log |x + " 2+ag®|+c, Vxe R

(Note : For existence of %, it is necessary that |x| > |a].)
x“—a

Generally, if g(x) is any primitive of f(x), we will not write f f()dx = g(x) + c. But instead, we
will write I S (x)dx = g(x) assuming that ¢ is included in g(x). According to this, in an equation like

_f S x)dx = _[ g(x)dx + _[h(x)dx, there is no need to write c. It is included in the symbol _[ ..... dx. But it
is necessary to write Ixzdx = %3 + c. Here xT3 is not the general integral. It is one integral.

Thus, we may introduce ¢ when all symbols _[ ..... dx are removed after carrying out integration.
L . P I X .
Again, it is not necessary to write _[xzdx + IT dx = Sttt tagasctois also an
. . 3 4
arbitrary constant. Thus, we can write | x2dx + [ x3dx = L+E+ec

For the following examples, we will assume that integral is defined on some appropriate domain
of R. We use symbol I for an integral.

Example 1 : Obtain the integral of the following functions w.n.z. x.

5 3

2 2 1 1
M) X2 +43 -3 @ EL6>0 O F+ L ta @ T
5 L5229 (6 —=—,|x|>2

9-x x* -4

Solution : (1) I = [ (x7 +4.3% - 1) ax

—JoTae + af3a - [La

x%+1 .
=%+1 +4-Fe3—log|x|+c
WA . 3%
=%x2+ Tog,3 —log|x|+c¢

200 MATHEMATICS 12



“

@ 1= J'(2x+1)3 g — J'8x3+1+12x2+6x .

Jx

oy

J.(Sx +_+12x + GX)dx

x2 x2 x2
3 L 3 1
=8 [x2dx + [x 2ax + 12 [x?dx + 6 [ 7
3 o4, 4. 4
=8. L+ &+ 2.5 +6.&2 +¢
2 2 2 2
A 1 s 3
=%x2+2x2+%2 + 4x> + ¢
@ 1-[(E+2 vt a)a-L rar+afl abc+Jxadx+Jaxdx
a X a
x
=é — +c
x
=u2ﬁ+alog|x|+ a1 T loga +c
1
4 I=_|.l+cos2x dx:IZcoszx dx
=l.|'seczxdx
=Etanx+c
1
(5) 1=J'—L9_x2 dx = [ G or &
_ 1 x+3
1 x+3
—glog ~—3| T ¢
6 I=[—L=dx = [ =L— dx
J. 'x2_4 -ll ’x2_22
=log | x+ J(x)2-(2)2% | +¢
=10g|x+"x2_4 | + ¢
Example 2 : Evaluate the following :
44 .2 2
25 x* + x* +3)dx (x* +5)dx 5
1) J4x +9 (Z)J.gx —25 > ¢? 3 2x2 +1) @ x2_5 , X2 # 5
(5 ‘[ f :’_Li:; (6) Iseczx - cosecx dx
L _ 1
Solution : (1) 1 .[4x2+9 dx
=_ x?+2
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4.2
[ _[Eax+3
@ 1 _I9x2—25dx QA _,[ e
1J’ 1 _sz(x2+1)+3
R R
QJ 2 52 ‘Jx 2J.( x2+1]dx
@~ (3)
_1 73 ~1 3 [ =2
5o e e - 41w + 3 [ o
3 3
=1 > —1[x2]ae 3 .,
=35 lo 3x_|_5‘+c _E[XT]"'E’“" x+c
3 + > tan 'x + ¢
[ X245 2 [ sinx
@ 1=|F5dnx2#5 &) 1= | 2w
(x> —5)+10 [ sinx 1 — sinx
=T 25 dx = T+ sine X T=sinmx &
;o p s - 2
1+ _ [ sinx —sin"x
J ( xz—sj dx J 1-sin%x
o o .2
=Idx+10‘|‘ 1 dx _ SInx — sin "X
2 - (V5)° J  cos’x
_ 10 x=45 _[(=sinx_  _sin’x
_x+2J§ log X+J§ +c = (coszx—coszx)dx
x—45
=x+ J5 log ~+v5] T ¢ = [(secx tanx — tan’c) dx
=J'secx tanxdx—_l'(seczx— 1) dx
=_[secxtanxdx—_[seczxdx+fldx
=secx — fanx + x + ¢
6) 1= Iseczx - cosec?x

1
.[ cos*x sin*x

sin 2x + cos *x
sin 2x - cos %x
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sin %x cos *x

= . +
,[ sin x cos *x sin %x cos *x
= I(seczx + cosec?x) dx

= [sec®x dx + [cosec’x dx

tanx — cotx + ¢

€OS 2X — €OS 20
Example 3 : Evaluate : COSx — COS O

. cos 2X — COS 20
Solution : I = COSX — COS O

(2cos?x—1) — (2cos?0.—1)
= dx
(cosx—cosn)

cos?x —cos?o. e
- COSX— COSO.

= 2](cosx + cosQl) dx
= 2Jcosx dx + 2cos0LJ1 dx
= 2 sinx + 2cosO. - x + ¢

= 2 (sinx + xcosQt) + ¢

1—sinx
1+ sinx

NI

Example 4 : Evaluate : J.tan_1 dx, —% <x<

1—sinx
1+ sinx

Solution : I = -[tan_l dx

Il
'—. '—.
—
ENE]
|
0o
S
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Example 5 : If f£'(x) = 322 — ﬁ and £(1) = 4, find £(x).

Solution : We have, f'(x) = 3x2 — %

X

SO =[@x2 — 2x73) dx

SOy =3% — 25 4 ¢

f@=B+ F+e "

Now, £(1) = 13 + 1% e

4=1+1+c

c=2 r@ =4
Fx)=x3+ x_12 + 2 (Substituting ¢ = 2 in (i)

Exercise 6.1

Integrate the following functions w.r.f. x considering them well defined and integrable
over proper domain :

3
503+ x%+2 1
1. 3x2+5x—4+ L+ % 2. —/—F=—— 3.(J;+—]
x  Jx Jx Jx
4. (@2 + bx + )Jx 5. % + & + e° 6. ealogx 4 oxloga
v x> —8 - 1 g 2x3 +18x—1
ox2-2x 8.2+ ‘/x2—9 . x*+9
2x* +7x% + 6x2 xt+x2+1 x6+2
e x? +2x - Jra 12. 75
13 2l 14. 3sinx + Scosx + —L 4 4+ tan?
. x2 +1 « ISInXx COSX cos 2x sin 2X tan<x
2 + 3cosx 2
15. 52, 16. (tanx — 3cotx)? 17. o
-6 6
COSX 1 s x+cos x
18. cosx —1 19. Tcosx 20. sin x cos *x
—_cotx
21. Zoseck —cotx 22. m% 23. (atanx + bcotx)?
2
24. 75— 25. If £'(x) = 8x3 — 2x, £(2) = 8, then find f(x).
o

6.5 Method of Substitution for Integration

If the integrand f(x) is in one of the standard forms or it can be put in one such form, it can be
easily integrated. But if the integrand f(x) is not in one of the standard forms or cannot be easily
converted in one such form, then we may use a very useful method of substition.

In this method _[ f(x)dx is converted into J' g(H)dt by a proper substitution x = ¢ (¢), where _[ g(Hdt

can be obtained by using standard forms or some known method. Now, let us prove the theorem
which is called the rule of substitution for integration.
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Theorem 6.4 : g : [0, B] — R is continuous on [, B] and differentiable on (, P). g'(?) is
continuous on (o, PB) and g'(® # 0, V¢ € (a, B). R, Ca bl and f: [a, b)] > R is
continuous, then x = g(), gives

[f@dx = [f @) g'@at.
Proof : Since f is continuous on [a, 5], _[ f(x)dx exists. Now, x = g(¢) is continuous on [0, B] and

f(x) is continuous on [a, b].

So f(g(?) is also continuous on [0, B] and g'(¢) is given to be continuous. Hence f(g(¢)) £'(¢)
is continuous. So,
I f(g(®) - g(Hdr also exists.
Let h(x) = [ f(x)dx
Hx) = f(x)
Since x = g(¥)
KEg®) = f(®)
As h is a differentiable function of x and x is a differentiable function of ¢, %4 is a differentiable
function of .

L ng@) = L (hog))
= K(g®) 20)
= f(e®) 2

L ng) = 1) £
h(g®) = [f(g) g(Hat
hx) = [ f(g®) gty
s [ = [f(g®) gt
Here on the left hand side, we have a function of x. On the right hand side, we have a function
of ¢. Since g'(f) is continuous and non-zero, x = g(f) is one-one function. Hence ¢ = g~ !(x) can convert
the function on the right hand side into a function of x.

In this rule, a new variable is introduced replacing the variable x. Hence, it is called the method
of change of variable also.

Note : (1) In the formula for the method of substitution, g(r) = x converts the right hand side
according to [ f()dx = [£() % dt.

(2) According to the definition, for y = f(x), f'(x) = %

Here, L2 is not ratio of dy and dx.

dx
(dy)

But f'(x) = ) where dx and dy are ‘differentials’ of x and y respectively. Thus, we can write

dy = f'(x)dx. Hence, if ¢t = sinx, then df = cosx dx. (We will study this in the next semester.)

(3) Commonly used functions &*, sinx, cosx, secx satisfy the conditions of the theorem on some
interval. Thus we will not verify these conditions every time.
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Theorem 6.5 : If [f(x)dx = F(x), then [f(ax + b)dx = T;-F(ax + 5) where f: I = R is continuous
on some interval L. (@ # 0).
Proof : Let t = ax + b. Sox=%.
Hence, x = g(f) is continuous and differentiable and =+ d i g = % # 0. Also g'(?) is

continuous.

[f(ax + b)ax = [ S ar
= [rog a

= 5 [r@ar
—iF(t)
= % F(ax + b)
Thus, (1) [ dx = J:ln_:ll + ¢ gives [(ax + b)Y'dx = % +c

@ JLav=tog|x| +c gives [ rypds =L log |ax +b| +c

3) Icosx dx = sinx + c¢ gives Icos(ax + b)dx = L szn(ax +b)+ec

(px+q)—(a)

1 wx+q - @
8 px+q)+ @

1 1 xX—a . -1 _1
(4)I X —a? dx—Elog xTa +cg1ves_[ P+’ - @) dx—P 'El

+c

We can also use all standard forms stated earlier in this manner.
Theorem 6.6 : [f(x)]" f'(x)dx = -[-f%?:—i, (n # —1, f(x) > 0) where f, f' are continuous and
S['(x) = 0.
Proof : Let £ = £(x). So 1 = f’(x)%
Again f'(x) # 0 and is continuous implies # = f(x) is one-one and

[ roa = [ror (fe%)a

=[-1a
tn+1
~n+1 te
n+1
Jrer ree =LE 4, €=/
. N2+ .
Thus, (1) Isinzx cosx dx = f(sinx)z (% sinx) dx = % +c= sm33x +c

(2) J. cos 2x dx = I(tanx)2 sec’x dx = I(tanx)2 (% tan.x) dx = 1.1 +c
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(3)J.'/xzx—+5dx 12

X +5

1
-1 Jc+5)_E+1
—1fe2+5 T 4L 2+sd=1 T2 — o= [2i5+c

1
-1+1

Theorem 6.7 : If f is continuous in [a, 5] and differentiable in (a, 5) and f' is continuous and

non-zero, Vx € [a, b] and f(x) # 0, Vx € [a, b], then I ”j«((;))dx =log|f(x)| + c.

Proofl : f' is continuous and non-zero. Hence, f is monotonic (increasing or decreasing) function.

Substitution ¢ = f(x) gives x = f1(9)

o e dE -
S'@ 1S ® gx
Now, [ Fiyae = [y - Sx i
=[1
=[La
=log|t|+c
f'x)
f(x) =log|f®)|+c
Thus
1 [_2x
2 J.x2—15
d 2
=~x -15)
=L [f—a=Liog |15 +c
2cosx — 3sinx 1 [ —6sinx + 4cosx
@ | Goosx Fasine @ =3 | Gcosx T asinx.

J' —(6cosx + 4sinx)
(6cosx + 4sinx)
= % log | 6cosx + 4sinx | + ¢
6.6 Some More Standard Forms
(16) On any interval I = (Im: Qk + 1)!2‘-) or ((21: -1k, k-;:) keZ
[tanx dx = log | secx | + .

secx tanx
Here, _[tanx dx = J.— dx (secx # 0)
On given interval, £ = secx is continuous and differentiable and non-zero and -‘%% = secx tanx is
also continuous and non-zero.
Taking, ¢ = secx, dt = secx tanx dx
secx tanx
s Jtanx dx = J—

=J‘%dt

dx
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=log|t|+c

=log | secx | + ¢

(17) On any interval I = (Jm, Qk + 1)—2’-] or ((Zk -1nE, lm:) kelZ
Icotx dx = log |sinx| + c.

Here, Jcotx dx = J-M dx
sinx

On given interval, ¢ = sinx is continuous and differentiable and non-zero and -‘%% = cosx is also
continuous and non-zero.
Taking ¢ = sinx, dt = cosx dx

Jcotx dx =I%€ dx

=41

=[ra
=log|t|+c
=log | sinx | + ¢

(18) On any interval I = (k‘rl:, 2k + l)%) or ((Zk - L, Jm), ke Z
Icosecx dx= log | cosecx — cotx |+ e, x #kn, k € Z
= log ]tan% | + ¢

On given interval, 1 — cosx # 0 and sinx # 0

1—cosx R .
S, cosecx — cotx = T # 0 in the domain.

_ _ [ cosecx (cosecx — cotx)
Now, I = _[cosecx dx = J (Cosecx — comx) dx

dx

j cosec 2x — cosecx cotx
cosecx — cotx

Now, ¢ = cosecx — cotx is continuous and differentiable and non-zero and

% = cosec’x — cosecx cotx is continuous and non-zero on given interval.

; _r1
Sl =[1dr
=log|t|+c
= log | cosecx — cotx | + ¢
. B 1— cosx
Again, log | cosecx — cotx | = log prm—
2sin? £
=log |7 . x X
2sin<- cos
= X
= log |tan 5
Thus, _[cosecx dx = log | cosecx — cotx | + ¢
- X
= log |tan 5|+ ¢
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(19) On any interval I = (km, 2k + D) or (2k — DE, kn), k € Z
Isecx dx = log |secx + tanx | + ¢

= log |lan('%'+%) | +¢

1+ sinx
COSX

secx + tanx = is defined and non-zero as x # (4k — l)%, ke Z

On given interval, 1 + sinx # 0 and cosx # 0

secx (secx + tanx)
Now, I = [ secx dx = _[ Foa—

Now, t = secx + tanx is continuous and differentiable and non-zero and

% = secx tanx + sec’x is continuous and non-zero on given interval.

I J- sec?x + secxtanx

secx+ tanx
=[1
[Lar
=log|t|+c

= log | secx + tanx | + ¢

1+ sinx
cosx

Again, log | secx + tanx | = log

in2 X 2X 2 X X
sin 2+COS 2+2Sln20082|

=log
2 X . 2 X
cos” < —sin” 5 |

X 4 sinX)?
(cos2+sm2) |

= log

(cos? %— sinx? %)l

cos <+ sin
2 2
= log| ——=

X . X
6‘082 sz

1+tan§
_ X
1 tan2

=g | con (343

Thus, _[secx dx = log | secx + tanx | + ¢

=log|tan(%+%) | +c

= log

2x° +5x% +3x+1
Example 6 : Evaluate :j %=1 dx
Sakitton § I _J'2x3+5x2+3x+1 e
olution : I = =1

=J(2x—1)(x2+3x+3)+4 dx
2x -1

INDEFINITE INTEGRATION 209



’—_\_____

=J(x2+3x+3+ﬁ)dx

= [ Rdc+3 [xde+3 [ar+4 [ 55

sz+3xT2+3x+4x%log|2x—1|+C

sz+%x2+3x+210g|2x—l|+c

Example 7 : Evaluate : I( J16 1 ox? + > —19x2 ) dx

1

Solution : I =J(_Jm + m) dx
_I+ I+
“I e Bl o -aor

_ 1 ..—1(3x 1 1 5+ 3x
Lsin™1(35) + 535 % 4 log [5=

Example 8 : Evaluate : [ (7x + 5)‘/3x+ 2 dx
Solution : We will find m and » such that
Tx+5=mBx+2)+n
Ix+5=3mx+2m+n
Comparing the coefficient of x and constant term on both sides,

3m=T7and2m+n=>5

m= and%+n=5.Thusn=5—ﬂ=%

3

1
3
I =[[mBx+2)+nlf3x+2 dx

=_[[%(3x+2) +%]de

_ _[ [%(3x + 2)% +1Gx+ 2)%] dx

=

3
=%J’(3x+2)2dx+§ _[(3x+2) dx

T3 e t3axg t

5 3
_ 14 2 2 2
=45 (Bx+2)* + 57 Bx+2)* +c¢
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3x+4
Example 9 : Evaluate : J‘m dx

3x+4
Solution : I = J.m dx
I—mx+$+—

,/4x+
3 4x+5
=zf,/4x—+ de+ g fmdx

L
2

Bl

j(4x+5)2dx+ 1f@x+5 % a

1
@x+$2 | (4x+5)2

= +c
3 1
4%x3 4 4axsz

Alw

3 1
=L@ +5>+ 1 @x+5)2 +c
Example 10 : Evaluate _[sin"x cos*x dx.

Solution : I = [ sin*x cos*x db.

% _[(2sinx cosx)* dx

= [ (sin2x)* dx

2
1 1—cos4x
= (—2 J dx

é J (1 — 2cos 4x + cos?4x) dx

1 1+ cos 8x
—EI(1—2c0s4x+ - )dx

_[ (3 — 4cos 4x + cos 8x) dx

128

_ 1 __ 4sindx sin Sx]
8 [3x I + +c

128 [3x — sin 4x + —sm 8x] +c

Example 11 : Evaluate : [ sinax cosbx dx, a # £ b
Solution : 1 = [ (sinax cosbx) dx

= % I(2sinax cosbx) dx
= % J [sin (ax + bx) + sin(ax — bx)] dx

= 1 [[sin (a + b)x dx + L [ sin(a — byx dx

:_E_7ﬁ?___5__777_+c
1 [cos (a+b)x cos (a b)x
2 [ a+b ] te
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Example 12 : Evaluate : Isinx sin2x sin3x dx

Example 13 : Evaluate : I

Example 14 : Evaluate : I

Solution : T = [ sinx sin2x sin3x dx
= % | @sin 2x - sinx) sin3x dx
= % I (cosx — cos3x) sin3x dx
=1 J'(Zsin 3x cosx — 2sin 3x cos3x) dx

| (sin 4x + sin 2x — sin 6x) dx

A=

-hl»—-

cos4x coSs2Xx cOS6X
[ 7 7 T % ]+c

cosbx — 1_16' cosdx — % cos2x + ¢
1

sin(x — a) cos (x —b)

R~

dx

. 1
Solution : I = J. Sin (% —a) cos (x — D) dx

_ 1 cos (a—Db)
~ cos(a—-b) Jsin(x—a)cos(x—b)

dx

cos[(x —a) - (x —b)]

1
~ cos(a—b) _I- sin (x — a) cos (x — b) dx (cos(b — a) = cos(a — b))

cos(x—a)cos(x —b)+ sin(x—a) sin(x—b)

_ 1
~ cos(a—Db) .I. Sin(x — a) - cos(x — b)

= cos (; —b) .“ [cot(x — a) + tan(x — b)] dx

1 .
= Cosa—b) [log | sin(x — a)| — log | cos(x — b)[] + ¢

1 |sin(x—a)|
cos(a—Db) log |cos(x—b)| te

sinx cosx
3sin?x — 4cos *x

Sinx cosx
sin’x — 4cos ’x

Solution : I = _[ 3
Let 3sin?x — 4cos’x = ¢
[3(2sinx cosx) + 4(2cosx sinx)]|dx = dt
14sinx cosx dx = dt

sinx cosx dx = ﬁ dt
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" —_1 COSX )
Example 15 : Evalaute J. 2-3cos2x Example 16 : Evaluate : I Y1- 9sinx dx (sinx < -é—)
1
Solution : I = J._— dx
2-3cos2x Solution : I = _[ 31— Osinx fo;;-m dx
— 1
h .[ [1_;an2x] dx Taking 1 — 9sinx = 3, —9 cosx dx = 312 dt
2 -3
1+ tan’x
S cosx dx = —% 2 dt
3 sec*x dx
_I2(1+tan2x)—3+SMn2x ) — 2 dt
.o I = I yt—:;
J' sec’x dx
~J stan?x -1 __1
n-x L[ ear
Taking tanx = t, sec?x dx = dt
=-1 (ﬁ) +c
. _ dt 3\ 2
S 1= J 512 — 1 ,
=—1 (1 — 9sinx)® + ¢

_ __dt
=) 5?2 —@?

1 5t —1
=205 o8| Greg| e
1 J5 tanx —1
=205 o8 | Fan+1| €
cos °x E le 18 : Eval JM o
Example 17 : Evaluate J- prees dx xample : Evaluate ﬁ
9 x? sin~1(x?)
Solution : I = I co:s X dx Solution : [ = -[—6' dx
sinx Jl—x
Taking sinx = t, cosx dx = dt 2
£ Taking sin~1x3 = ¢, jlx;dxﬁ =dt
2_\4 - X
RO | =I£C(;‘;Tx)cosxdx 2 g
. ie. === {di
= J-w cos x dx
Smnx xzdx
- S L= Isin 1x3) =
_ J' a-" 4 1-x
! 1
= [ 3t-dr
_[1-42+6t* — 4t +£°
B t dt .
=1[g]+e
=[(1_ _ 7)
_[( s — 4+ 60 =48 + 1) di — L [sin P +

- Y S AR VLA i
log | 7| 42+4 3 +8+c

4 — Zginbx + %sinsx +c

= log | sinx | — 2sin*x + %sin 3
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10.

13.

16.

19.

22.

25.

28.

31.

33.

3S.

38.

41.

44.

47.

50.

Exercise 6.2

Integrate the following functions defined on proper domain w.r.t. x.

1
5x—3 2.

5+3 _ 36in(2x +3) 5.

x3+2
x+1 11.
cot? (3 + 5x) 14.
l1+cosx, 0<x<T 17
X+2
(x+1)? 20
x‘/x+3 23.
8x +13
Jax+7 26
sin3(2x — 1) 29,
cos2x - cosdx - cosbx 32.
’1+cosx
T-cosx 0<x<T 34.
sin x
sin (x — a) 36.
3
Bx2—4x+5)?2 3x—2) 39
sy 2
sin “(log x) 42.
x
1-tanx
1+ fanx 45.
%614 %1
€ 10" 48.
2+ b tan x> (@< Db) 51

X T4 4 (5x —3)8 3.

1

\/sz -4

S 3x 12,
sin® (3x + 5) 15.
1
3Ix+4-J3x+1 18.
x% +1 :
x+1? 1
X
‘/m 24,
cosx 27.
cos2x - cosdx 30.

1

‘/1 — COSX

sin mx-sinnx, m #n, m, n € N

1

sin(x—a) sin(x—b) 37.
xX+3
. sz +6x+4 40.
‘/1 + logx 43
— 2
e 1+ x) "
cos %(xe*) 46.
Btan’x + 2) sec 2x %
(tan 3x + 2tanx + 9)> :
xsin~1x2
52.

‘/l—x4

72%+3 sin 22x + cos %2x
sin %2x

1

,/16— 9x2

2x + 1?
x—2

1
S5x—2 4 ———
T+ o )3

1-cos 3x
sin 23x

1
V5-2x+3-2x

x3+3x%2 +2x+1
x-1

x+1

J2x+1

3 3

sin’x cos’x

sin4x
sinx

3x+2
3-2x

J'C3J5x4 +3

sin 2x
(m + n cos2x)?

e™ cosec? (2¢* + 3)

sSin2x

(bcos *x + asin 2x)?

3
(tan'x) 2
1+ x?

214
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e* log(sine)

log(x +1) —logx
. 4, —— ; 3
53 rand 5 XX+ 1) 55. tan’x
4 6 _1
56. sec*x tanx S7. tan®x 58. m+m
2 1 1
59. 1 60. ,20052x + b2sin’x 61 3 o5in%x
(x+2)3
sinx 1 _1
62. Sin3x 63. 3cos 2x + 3sin 2x +1 64. “35in2x + cos 2x

%
6.7 Trigonometric Substitutions

Sometimes using proper trigonometric substitutions, we can transform given integrand into a form
whose integration can be easily obtained. Particularly, when expressions like x2 — a2, a®> — x2, x2 + a?
occur under square root in integrand, trigonometric substitutions are very useful.

x2

4-x?

Suppose our aim is to obtain _[ dx, (x > 0)

Let x = 2sin®. Then dx = 2cosO dO, O € (0, %)

1=_[ 2

4-x?

_ J- 45in 20

‘/m - 2c0s0 4O

_ J‘ 4sin?0-2c0s0d 0

2c0s50

(cas@ >0as 0 e (0-7-;—))
= 4] 5in?0 d©
=4J 1—c;)s29 40

=2[9— si11226]+c

=20 — 25in0 cosO + ¢

m
——
e
N1E
h—

Now, x = 2sin0. Hence O = sin_l(%), 0

2sin0® cos9=2-% 1-% = 1y 4— x2

. =92¢in1(X) — 1
s 1= 2sin (2) 2x"4_x2 +c
Following is a list of some frequently used substitutions. Mostly they are used to remove radical

sign from the integrand. Usually we will take 0 < 0 < %
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Integrands Substitution
%2 +a? x = atan® or x = acot®
X2 —a2 x = asecO or x = acosecO®
a2 —x2 x = asin® or x = acosO
Z;; x = acos20
2ax— x2 x = 2a sin?0
J2ax—x2 = Ja2—(x—a)2 x — a = asin® or acosO

— 1
Example 19 : Evaluate : _[xm dx

1
Solution : Here, T = [ —Jo—= d
olution ere T 5
Let x2 = b2secO

2x dx = b2sec® tan® 4O
2x dx

Now, I = -I.—sz o — b

B J‘ b? secOtan®d O
2b2 sec 9Jb4 sec %0 — b*

7 | 40

> @)+ ¢

2 2
But, since x2 = b%secO, secO = 2—2, 0= sec_lz—2

2
1= ? sec_l(%) + ¢

Example 20 : Evaluate : I 3-x dx, 0 <x<3
X

Solution : Here, 1 = I_,/B—x dx
x

Let x = 3sin%0

Then dx = 3(2sin® cosO) dO

(0<9<12t-)

©0<06<%

T
(0<9<-é—)

216
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= J'—q?,—3sm29 6sin® cos® 40

3sin 20

2
243 cos?0 40

sin®
_ 1-sin?0
=203 [ o
=243 [ (cosec® — sin©) dO
= 243 [log | cosec® — cot®| + cosO1 + ¢

But, since sin?0 = ?, cos’0 =1 — ? So cosO = 3—Tx

cosec?® = 2. So cosec® = F
x x

Also 1 + cor?0 = % So cof® = "%—1 S Kk

26 e )]+ ]+

2
Example 21 : Evaluate J._Vx:'l dx, (x < 0)
X

/ 2
Solution : I = J‘x_4+1 dx
X

Let O = tanIx, —% <0 <0. So, x =tan 0.

dx = sec?0 40, 0O € (—%,0)

J‘ sec® . sec?

_ J‘ cos0
sin “6

= [ (sin@)™* %(sine) do

(secB >0as 0 € (“J‘;‘ﬂ))

- (sin(:)‘3 +ec

__1 1

; + c
3 sin’0

= —% cosec30 + ¢

Now, tan© = x. So co® = i

and cosecO = —‘,1 +cot20
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1 A+xH)?
= — —
3 3 c
Example 22 : Evaluate : J‘ﬁ dx, (x > 2)
(x-1D2(x-2)2
Solution : I = J‘+
(x-12 (x-2)2
Let x — 1 = sec?0, dx = 2secO secO tan® dO ©<0 < _g_;_ )
s dx = 2 sec?0 tan® 4O
2sec?0tan0d 0
s I = 5 -
(sec?0)2 (sec?0—1)2
_ J' 2sec20tan0d 0
sec 30 -tan®
=2 _[ cos@ do
= 2sin@ + ¢
Now, sec20 = x — 1. So cos?0 = 71_—1
-2
and sin20 =1 — cos20 = 1 — —— = X

s sin = Ji—? (0 <0< %)

x—-2
S I=2 -1 +¢

6.8 An Important Substitution

1

. . 1 1 x _ .-
If the integrand is 77 7nr > T+ beosx O a+bsinx+ccosx» then tans = t is a useful

substitution. Using this substitution, we can transform integrand into a standard form of ¢.

Taking tan% = ¢, sec?X . % dx = dt

2
o 2dt 2dt —2dt
- = —3 — 2
sec’:  1+tan*s 1+
X _ 2X
. 2tan7 2t d 1-tan ) 1— t2
sinx = 1+tan2§ = T+¢2 and cosx = 1+tan2§ =12

This will transform the integrand into a function of ¢
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Example 23 : Evaluate : ,[1—2sinx dx

2dt

X =
2

- J' 1 2dt
- = e~ " 2
1_2[ N ] 1+1

Solution : Let tan

14142
_ S S
=2 ) a1 At

—_1
=2_[t2—4t+4—3 dt

1
B 2-[ 27—

t-2-43

t—2+\/§ te

= 1
—2><2J§ log

1 tang-—Z—Jg
75 log tan& -2+ 3 te

dx

Example 24 : Evaulate Im, o e (0,7

Solution : I = I COs ad-f COSX

2dt 1-¢2
Let tan% =t Sodx =", ,2, cosx = 1+2
. N S 2dt
T 1-12 " 1+ ¢

COS(X:+—2
1+¢

2dt
_Jcosa+t2-cosa+l—t2

dt
= 2_[ 1+ cos ) — (1— cos QL2

dt
=2 _[ 2cos*% - 25in*% -t

dt

-[ (cos %)2 - (t sin )

2

cos%+sin%t|
. +c
cos%—sm%tl

1
= 3 lo
2szn% cos% g

Q. X
1+1tan = -tan 3

sina 1og 1-tan % -1an £

+c

, 2t _
t.So,dx =7, and sinx = T 2
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6.9 Inmtegrals of the type [sin™x cos"x dx m, n € N

If m, n € N, the following cases may occur :

(1) m, n are odd (2) m is odd and 7 is even.
(3) mis even and »n is odd (4) m and » both are even.
Let I = Isin”’x cos"x dx

Case 1 : m, n are odd.

We may take sinx = ¢ or cosx = . Usually if m > n, sinx = t and if n > m, cosx = t will

be convenient.

Case 2 : m is odd and 7 is even.
We take cosx = 1.

Case 3 : m is even and »n is odd.
We take sinx = t.

Case 4 : m and n both are even.

1-cos2x 1+cos2x
Zx = ————— and COS2X = —_——

In this situation, we transform sin™x cos™x using sin > >

For small values of m and n, these methods are simple. For larger and negative values of

m and n, other methods are availables, but at this stage we will not study them.

Example 25 : Evaluate [ cos?x sinx dx Example 26 : BEvaluate [ sin?3x - cos3x dx

Solution : Here, m = 5 is odd. » = 2 is even. Solation T = jsin23x . cos3x dx

. Let cosx = t. So —sinx dx = dt Here, m = 23, n = 3. m and » both are odd.
S sinx dx = —dt But m > n. Let sinx = t, so cosx dx = dt
I = [cos®x sin®x dx I = [sin®3x cos?c cosx dx
= [ sin*x - cos®x - sinx dx = [ sin®3x (1 — sin®x) cosx dx
= I(l — cos?x)? - cos®x sinx dx = _[t23 A —22)de

=] — 2?2 (—di) [ = 25 ar

= [ =22+ AY—2)ar = _
I X—) L — L
=[@A -6 —>A)adt _ sin¥x _ sin26x+c
5 ; s 24 26
— 22 _t _
5 7 3 te¢
=25 — 1.7 — L.,:3
SCOS X 7COS X 3C'OS x + ¢

Example 27 : Evaluate Isinzx cos*x dx

Solution : I = Isinzx cos*x dx

Here, m and n both are even.
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11.

13.

£
17.

19.

. sin’xcostx = %(4sin2x cos’x) cos*x
= %sin22x - cos’x
1(1-cos4x\(1+cos2x
=7 2 2
= % (1 — cosdx + cos2x — cos4x cos2x)
= % [1 — cosdx + cos2x — (2cos4x cos2x)
2
= 31—2 [2 — 2cos4x + 2cos2x — cosbx — cos2x]
= 3—12 (2 — 2cos4x + cos2x — cos6x)
w1 = 3—12 | 2 + cos2x —2cosax — cos6x] dx

sin2x __ 2sindx

1
§[2x+ 2

1

sin6x
3 ] +c

i [12x + 3sin2x — 3sindx — sin6x] + ¢

] Exercise 6.3 |

Integrate the following functions defined om proper domains using trigomometric

substition :

1

xZJI _x2 (lxl < 1)

1

3

@? + x*)2

1 © < x < 24)
2ax— x2
= (0<x<a)
K0+ x2y

2

— (Ix] > al)
(x* - a*)?
I B

1 1 (x>2)

(x—1)2 (x -2)2

1
M S—
1+ sinx+ cosx

1
5+4cosx

1
2—-cosx

2.

10.

14.

16.

18.

20.

. X

2
V¥ 0<x<3)

x2

.x2 a6—x6, (0<x<a)

(16 — 9x2)2
a? - x?
a?+ x?

O<x<a

25 — x2

> 0V<x<5)

X

_
3+2SInx+cosx

1
1+ cosOlL cosx

m (O<x<%)
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21. sin*x cos®x 22. sinx cos\O%
23. cos3x sin'x 24. sin®x cos*x
25. sin’x 26. sin'x cos’x

*

6.10 Integration of the type (1) Iﬁ-ﬁm— and J"—-—W
()J' Ax+B Ax+B

dx and j—'— dx
ax® +bx+ec Jax’+bx +c

(1) To evaluate this type of integrals, we express ax> + bx + ¢ as the sum or difference of

two squares.

a2 +bx+c=a x2+éx+£]
-3 a a
=a x2+2x+ b _ B +£]
a 4a
- 2 2
- bY _ b —4ac]
a (x+ 2) =
b? — dac
= a [(x + o) — B2], if b2 — 4ac > 0, where [32=T
2 _
= a [(x + 02 + B?], if b2 — 4ac < 0, where Bz=_%

dx dx
Thus, ax? + bx + ¢ = a [(x + o¢)? = B?]. Hence J 2 +bx+c and _[ m can be evaluated

using previous standard forms. Now let us understand the method by the following examples :

b 2
(Note : If b2 = 4ac, then ax?2 + bx + ¢ = a(x+ﬁ) )

dx
Example 28 : Evaluate : _[ 3x2 +13x — 10

e f—dx
Solution : I = 3x2 +13x—-10
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1 3x—2
=77 log [3z+5)| T ¢

L= 3x—2
(Nnte H | —ﬁlog 3x+5| T ¢

=%[log|3x—2|—log3—log|x+5|]+c

— 1 3x-2 ' (R U
—ﬁlog| 3 |+c where ¢' = ¢ = log3)
1
Example 29 : Evaluate : I [x(—2x) dx (0 ol -%L)

1
Solution : I = Iﬁ dx

o

Il
Sk
—_—

-
|...
|
/N
=
%)
|
B
+
gk

Il
sk
—_—

—_—
ENEN
~—
(]
|
— |
=
|
|-
~——
N

1
_ L . iy
—ﬁsm % + c

= % sin ! (4x— 1) +¢

(2) In order to evaluate this type of integrals, first we find constants m and » such that,
Ax + B = m(derivative of ax2 + bx + ¢) + n
Ax + B =mQax + b) + n
Ax + B = 2ma)x + (mb + n)
Comparing the coefficient of x and constant term on both sides, we get
A =2maand mb+n=8B

m=-2L and n=B — mb
2a
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Ax+B B m2ax+b)+n
Now, .[wc 2rbxte T ) a@ tbrte
2ax+b 1
.[ax2+bx+c dx + n_[ax2+bx+c dx

1
mlog | ax? + bx + c| +n ,[ax2+bx+c dx

For the first integral, we use I% dx = log | f(x) | and for the second integral, we have to use

method (1) of making perfect square in the denominator.

oW o Jax2+bx+c Ja? +bxtc
m(2ax+b)
=.[ ax? +bx+c dx+n_[ ax2+bx+c dx
-1 1
=m [(ax? + bx +¢) 2 (2ax+b)dx+n'[ W2 +bhrtc O
1
@ +bx+o2? -1
=m 1 +"I al +bx+c &
1 1
=2m(ax2+bx+c)2+nI W2 +bhrtc &

Lf (01" *!

11— and to evaluate the second integral,

For the first integral, we use I[f(x)]” f'x)dx =
we have to use method (1) of making perfect square in the denominator.

2x+3
Example 30 : Evaluate : jm dx

Solution : First, we will find constants m and # such that 2x + 3 =m % Gx2+4x+5)+n
2x+3 =m6x +4)+n
2x+ 3 =(6mx+4m + n

Comparing coefficient of x and constant term on both sides, we get 6 = 2 and 4m + n = 3.

m 3and 3+n 3. Thus, » 3
2x+3 Hex+4)+2
I .[3x2+4x+5 _I3x2+4x+5

1 [SxF4 5 1
-3 ,[3x2+4x+5 &+ 3 I3x2+4x+5 dx

224 MATHEMATICS 12



“

. 6x +4 1
=3 _[3x2+4x+5 dx + 5 J.9x2+12x+4+11 dx

1 6x +4 1
=3 J3x2+4x+5 dx + 5 _|.(3x+2)2+(\/ﬁ)2 dx

log|3x2+4x+5|+L tan_lw+c
311 Ji1

|
0 =

2x+3

Example 31 : Evaluate : Iﬁ dx

Solution : Here, the derivative of denominator x2 + 4x + 1 is 2x + 4. Thus 2x + 3 in the
numerator can be written as 2x + 3 = 2x + 4) — 1.

2x+3
1=

T dx
Jx +4x+1

(2x+4)—(1)
J. x +4x+1

=J- 2x +4)

1
— dx—I_'—Z dx
X +4x+1 X +4x+1
1

-1
2 2 —
Je2+4x+1) 2 2x + 4) dx -[J(x+z)2_(./§)2 dx

L1
(X2 +4x+1) 2
- 1 —log | (x+2) + J(x+2)2 - (3)2 | + ¢

—2+1

=2Jx2+4x+1 —log|x+2+ Jx?+4x+1|+c

2
x* +1

Example 32 : Evaluate J' dx

" x>
Solution : I =_[x4+1 dx

2x2

1 P,
T2 Xty K

E+FD+E2-D
2 x* +1

2
_ 1 1 X 1
2 x4+1dx+2.[x4+1

(1+¢2J [_LJ
1 [ X7/ 1 x2
= = dx + = | ———=< dx
2 x2+x_12J 2.[(x2+#)
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Let x — i = u for the first integral and x + i = v for the second integral.

X

So (H%j dx = du and [1—%) dx = dv
X

0. I —
Integrate
— 1
Lo X2 43x+3
-1
4 Fioax—x

1

7- ———————————————————
J7—3x—2x2

1 du dv
2 .[u2+(ﬁ>2 + .[vz—(ﬁ)2

PRVRE By 570 B TRUR TR At £
2 7 an 2 2 722 98 v+ 2
P
tan™! 2+ == log |71
2J2 2 a2 x+x+\/5
1 L (*F1 1 x2 +1-J2x
22 tan 2x )t a2 log x2 +1+J2x

Exercise 6.4

the following w.r.e. x.

1

2. 4x2 _ax+3

1
5. sz—x+5

1

J3x2+5x+7

+c

1-6x —9x2

1
6. T——
J2x +3x—2

1

9 Jx-n&x-2

1 4x +1 3x+2
10. -2 e % +2 12, v x+1
2x+3 3x+1 25in2x — cosx
13. [ aris 14. ) 15. % cos 2x — asinx
o x2 2x
R ey 1o xS rax e 18 i -y
- x2 +1 - x*+4 - x*+1
x4t 1 © x*+16 C Xt 41X +1
1 x -1 x2
22 ¥ £, x*+x?+1 24 S Y
*
Miscellaneous Examples
sin2x
Example 33 : Evaluate : J - P — = 9%
sin [x _?J sin (x +T)
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Solution :

Example 34

Solution : I =

Let x? +

: Evaluate : I

1
n

|=

1 = ¢. Then nx" —

nx (x" +1)

1
_I. 2 T 1 dt
n t —t+z—7

sm2x
-1 (- Z)sin(s+2) ¥

_[ sin2x
— J sinPx— sinPT

_sin2x 2x
sin’x — 7

_[dx smzx—— 5
sin’x—2
=1 | in2 _i|

og |sinx — 3| +c¢

1

x(x™ +1) x> 0)

- -[ x(x™ +1)
Vgx = dt
nx"~ldx

dt
@ -Dt

’ in (x—0
Example 35 : Evaluate : I % dx

Solution :

_ sin(x—0)
1 _J'Jsin(x+9) dx

sin (x—0)
sin (x—0)

J‘ sin (x — (-)) d
sm(x+9) x

sin (x — G)
.[Jsm 2x — sin 2 dx

“

Second Method :

I

(t—l)t
_ [t—(t—Dldt
~n (t—Dt

diiasii

%[loglt—ll—log|t|]+c

I

I
_

o

®

9<x<—g—+9,ﬂ<x<—725-

(sin(x — 0) > 0)
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_ .[ sinx cos © —cosx sin 0 e

Jsin 2x — 5in %0

= COSO J.¢ dx — sin© J¢ dx

sinx — sin?0 sin?x — sin?0

= cosO ‘[ dx — sin© J- Loy dx
Jl—cos x—1+cos?0 ‘lsinzx—sinzﬂ

sinx dx cosx dx

JcosZG—coszx Jsinzx—sinze

Let cosx = u in the first integral and sinx = v in the second integral.
. —sinx dx = du and cosx dx = dv

= cos0O J — sin® ‘[

= —cosO sin~! (a?sﬂ] sin© log | v + ‘/v —sinZ0 |+ ¢

= —cosO sin”! [gg:g) — sin0 log | sinx + Jsin2x—sin0 | + ¢

Example 36 : Evaluate : Jﬁm—x dx 0<x<T

(sinx+1)—1

Solution : I = Jrrsins
1
= [ J1+ sinx dx—f‘/mdx

= n2 X 2X 4 oginX ldx—_[ 1 dx
_['lsm >+ cos 2+2smzcos2 J

2 X 2x n X X
sin 2+C0S 2+2sm2c0s2

—_[ sm +cos— dx — _[— dx
Ism +cos—|
I(sm—+cos dx — I ( cos—+—sm—J dx (0 < % < %)
2
—.[ sm—+cos dx—jmdx
- [ (an o) de - i e (55
— X =
- c:;sz N sz; -j= (—;) log |sec (£-Z) + tan (£-Z) |+ ¢
2(sm?—cos ) J2 log |sec %—%) + tan (%—%) |+ c
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Exercise 6

Integrate the following with respect to x

Jx log (x + 1+ x2)
E (x> 0) 2, ——¥ "~ -
Tt nea
1 1-Jx
5 3 € 1
3 (x+1)2‘/x2+2x+2 . 1+dx " @1
2
xX+3 x*+5x+3
5. > 12 x> -=2) 6. Piarra x#-2,-1)
_xX 1
7o ¥i1x+w0 @F 52 8. Cos(x—a)cos(x—Db)
sin (x +a)
9 Sinx+b (1 — xy”
11. Jwanx lZ.ﬁ
sin *x + cos “x
1
13. ~0<a<l

1—2acosx +a

14. Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

Section A
(1) I [F e = BB + ¢, then /() = ..... ]
log x (log x)° (log x)* (log x)°
(@ == (b) == () == (d) Logx)
(2) Jerlogagrgy = .+ ¢ ]
(@) a e (®) (1(-:lle<Zga) (©) lo;ae) CY 1+tllogea
3) j@ dx = it c ]
(@) (log x)? (b) o)’ (©) 4 (log x)* (d) 2 (log x)°
4) jsecz (5—%) dx = ... + c ]
@ wn (5-%) ®2an(5-%)  © 2an(5-%) (@) —Lan(5-%)
(5)I4x2+9 dx = o + C -

@ Lt (ZE) o) L (BE)  © tan ' () @ 2t ()
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6) | JI—cosx dt = ..+ ¢, 20 < x < 3T ]
@ —2V2 cos £ (b) —V2 cos £ © 2v2 cos £ d) —1 cos (%)

(7) Iﬁ = e + c ]
@ 2Frlogxr  ®) Trrms © J3rlogx (@ —23rlogx

8) _[ ./41? dx = o + ¢ =
@ —2(4 — 3x)_% + ¢ (b) —2(4 + 3x)%

4
2

(©) =34 — 3%) ) 24 + 3x)%

(9)jx2 arts &= + ¢ ]
(@ log|x>—4x+ 5|+ c (b) IOg‘/x2—4x+5
1 x-3
(©) 7G> — 4x + 50 (d) log (—x_l)
1
(10)_[ raa A=t =3
_ t+2
(a) - tan™! (L (b) 5 log ml
1 1 3t 1 _
©) 5j5 tan I(T] @ 55 @ (%)
1
(lljjm dt = ... +c ]
(a) cosect + cott (b) —cot% ©) —4cot% (d) cosect + cot t
eSlogx _e4]ogx
(12)_[ SlEX _g2logx X = .. +c ]
@) e-37 (b) € logx (©) % d) £
(13)[ sec®x - cosec®s dx = ...... + c -
(a) tanx + cotx (b) tanx — cotx (c) sec’x + cosec’x (d) cotx — tanx
(14)f Blogx . (x4 + 1y L gy = ... + ¢ ]
(@) log (x* + 1) (b) —logx*+1)  (¢) %log €28 B VI C) Ry
(log x)* _
(15[ LD gy +c -
s 2 s
(@) Log 0" (b) Log 2 (© lex (@) log x - (log v)* + L2
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@ sinlWx+c¢c () —2J1-x+¢

(c) —sin"Wx + ¢ d2Jy1—-x +c¢

(sinx*®
a7) m dx = ... + c i
(tanx)'® (tanx)* (tanx)*® (tanx)®
@ oo & == © 5 @ =5
logx2 _
(18) _[—x dx = ... ]
(@) log | ¥2| + ¢ (b) log x+ ¢ () (log x)2+ ¢ (d) %(log x)?+c
xsinx
(19)J (cosx — Sinx +5) A = wees +c -
(a) log | xcosx — sinx + 5 | (b) —log | xcosx — sinx + 5 |
(c) log | xsinx — cosx + 5 | (d) —log | xsinx — cosx + 5 |
20)] (1 = cosx)cosec®x dx = ... +c I~
(a) tan % (b) cot % (c) % tan % (d) 2 tan %
Section B
(2DIf £'(x) = x2 + 5, then [ f(X)dx = ...... . (c and k are arbitrary constants) 1]
(a)%+%+cx+k (b)———x—cx+k
4 2 2
(c)f—z—%+cx+k (d)%+%+cx+k
10x° +10% 10g10
(zz)_[ o A=t C -
(a) 10* — x10 (b) 10* + x10 ©) (10 — x1971  (d) log | 10* + x10
(23)] cos3x - elog sinx gy = + c ]
P
(@) — sin 4x © ec;’sx ) co:‘ x
_sinx _
(24)_[ T+ dcosx X = e +c .}
(@) log | 1 + 4cosx | (b) —4 log | 1 + 4cosx |
(©) —% log | 1 + 4cosx | (d) —log | 1 + 4cosx |
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1
(ZS)J.Jm_J;dx— ...... +c ]

3 2. .22 2 L, 1
(a) E(x + 2)2 + 5 %2 (b) 5(x +2)2 + §x2
3 3 3
) 2(x + 3)2 + %x2 d2x+22+3x
(26)] sin2x cos 3x dx = A cosx + Bcos 5x + ¢, then A + B = ...... =y
@ % ®) = © 2 @ 2
(o7 [ SS45EL e — A cosdx + c, then A = .... -
@ —7 ®) —% © —3 @ 3
1+ cosx
(zs)j el ]
(a) log | sinx |+ log | cosx | (b) log | tanx - tan= |
(c) log | 1+ tan= | (d) log |sec— + tan—|
sinx — cosx
(29)I m dx = ...... + ¢ D
1 1
(@) Sinx+cosx (®) Sinx—cosx
. 1
(c) log | sinx + cosx | (d) log |s7x +cosx
30) [ ==y =+ -
(30 cosx (1+cosx) =~ 777 ¢
(a) 2 log | cosx| + tan% (b) log | secx + tanx | — 2tan%
(c) log | tanx | + 2tan% (d) log | secx | — tan?
onf=ES - e -
@) log|ef—e*| (b)log|e*+ e*| (c) tan™! (&) (d) tan™! (e%)
(32)Ix+f’1‘0gx= ...... +c -
(a) log |x+ xlog x| (b) x log | 1 + log x|
1+logx
(c)log |1+ log x| d ——
(33)[ tanx_ ttanx g - +c -
(@) —'”‘;m‘ (b) _'/Cg’-x (c) 2vcotx (d) 2Vranx
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Section C
= Lt -
3n 1 T
@ J tog |ran (% + 3E)| (b) J5 log |1an(Z+)
1 3n
(¢) 75 log |fan (%‘T)l (d) log |cos 5
(35) & - . +c -
(1+ sinx)?
(a) V2 log |ta (Tn_%) (b) V2 log cosec(%+%)—cot(%+%)
(c) V2 log |tan (% %) (d) V2 log |sec (%+%)+tan (%+%)
(36)‘[ m = + c I:]
(a) % tan~1 (3 tan %) (b) % tan~! (% tan %)
©) % tan~1 (% tan%) ) % tan™1 (3 tan %)
__sinx _
37 )_[ i v = et -
a) x cosa + sinalog| sin(x — a x — a) cosa — sinalog| sin(x — a
(@ nal n( ) (b) ( ) inal n( )
(c) sina log| sin(x — a)| + cosa x (d) sina-x + cosa log| sin(x — a) |
sin2x
(38).[ pcos ’x + q sin *x dx = e +te =
a) — log| psin2x + gcos q — p)log| pcos“x + q sin“x
Z 1 2% 2 b) ( 1 2 2
—1_ 2 .2 —1 = 2 .2
(©) q—7 log | pcos“x + gsin“x | (d) P+ g log | pcos“x + gsin“x |
1
) T g = e -
(@ % tan™! (% tanx) (b) %tan_1 (% tanx)
©) % log | 4 + 9tan®x | (d) % log | 4cos®x + 9sinx |
(40)_[ ’Z+§ ...... c ]
(@) % sin” 1 (%) — Ja2—x? (b) % sin~1 (%) - "az —x?
(c) sin~1 (f) + Ja2 - x2 (d) a sin™1 (f) + "
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(41DIf _[ z‘:: dx = px + gsin2x + rcot x + ¢, then -
@p=—2, g=—4 r=-1 ®p=—1, g=—2 r=-1
©@pr=1,qg=-1,r=1 @Wp=2,q9=-Lr=1

e* _

] o = e —

@ 75 sec” ! [ze EHJ ®) tan 1 (1 + &)
- 2e* +1 & L 1 e* +1
© J3 lan 3 (d) 5 lan 5

(43)Iﬁ dx = ... +c -

(a) sin 1 (2‘_/;“) (b) sin1 (2jé1) (c) sin”! (23%3) (d) sin™1 (S;J;x)
Section D
2
(44)J x4x ;’21“ ...... +c -
(@) x tan l(x2+1J (b) tan_l(xz_lj
X X
1, (X IR e !
(© 75 tan Tox d) 75 tan Tox

(45)] (Janx + Jeox) dx = ... + ¢ =

oo (B) o s ()

tanx +1 -1

© V2! (m] () “5* tan ! (7%)
(46)“/%% SR —

‘/1+x—1

(a) 2 log [m] — 2sin 1x

1 —_

1—,/1—x
(c) 210g[1+mj +Ecot lyx+1

234
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(47).[#3 = ... +c 1

©-x*)2

X X

X x
—_— b) —T— T b) ——=
(a) 3m ( ) 9’9+x2 (C) 9'9_x2 ( ) (9_x2)%
)
(43)If_[.x3‘,1ti2 dx = pcos™1x? + q‘h_x4 + 2 J1—x* +c,thenp+qg+r=... -

@ 0 ) — © 3 (b) —1

Summar>

We have studied the following points in this chapter :

1. Definition of primitive or antiderivative or indefinite integral.
2. Working rules for integration.

3. Standard integrals :

Ol

(1) [x"dx =277 +c,ne R— {-1},x € R".

@ [Lax=log|x|+c xe R— {0}

(3) [cosxdx = sinx + ¢, Vx € R

4) Isinxdx = —cosx + ¢, Vx € R

(5) Jsecxdx =tanx + ¢, x # 2k — DT, k€ Z
(6) Icoseczxdx =—cotx + c,x kI, k€ Z

@) Isecx tanx dx = secx + ¢, x # 2k — 1)%, ke Z

€] Icosecx cotxdx = —cosecx + ¢, x # kW, k € Z

O [atdx =1

bea+qaeR+—ULxeR

1 1 i
um]f+fdwnﬁm1%)+g a€ R— {0}, x€ R

d. x-a
UDJ;A22ﬁ=E%ng+a-+qaelk—mhx¢ia
1 +
(12) Iaz_xz dx=ﬁlog ﬁ_Z +c,ae R—{0}, x#=*a

| I s -
(13)Imdx sin 12+ ¢, x € (—a a),a>0.
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1 1 -1X
14 J‘—d.‘x=—sec 1X 4 ¢ |x|>|al|>0.
14 | =i di= Lsec 1 Z 4 c, |x| > |al

1
15 f—dx=lo x + 2442 +¢, Vxe R
(15) (s g | ‘/x +a? |

Rule of substitution for integration.
If I Jf(x)dx = F(x), then f flax + b)dx = iF(ax + b) where f: I — R is continuous on some
interval 1. (a # 0).

6. [£GI foodx = LT _ . i :
f SN f'(x)dx = " (n # —1, f(x) > 0) where f, f' are continuous and f'(x) # 0.

7. 1If f is continuous in [g, b] and differentiable in (a, ) and f' is continuous and

fc((;‘)) dx = log | f®)| + c.

non-zero, Vx € [a, b] and f(x) # 0, Vx € [a, b], then
(16) Itanx dx = log | secx| + c,

on any interval I = (k‘J'C, 2k + 1)%) or ((2k — DHE, Im:), ke Z
17) _[cotx dx = log | sinx| + c,

on any interval I = (kﬂ: Qk + 1)%) or ((2k - DE, k‘n‘.), ke 7
(18) _[cosecx dx = log | cosecx — cotx| + ¢, x # kT, k € Z,

on any interval T = (kﬂ: Qk + 1)%) or ((2k — 1)121, kn) ke Z

(19) _[secx dx = log |tan(%+§) | + ¢,

on any interval T = (kn' Qk + 1)%) or ((2k — DE, kn) ke 7

Classical Period (400 — 1200)

This period is often known as the golden age of Indian Mathematics. This period saw mathematicians
such as Aryabhata, Varahamihira, Brahmagupta, Bhaskara I, Mahavira, and Bhaskara Il who gave
broader and clearer shape to many branches of mathematics. Their contributions would spread to Asia,
the Middle East, and eventually to Europe. Unlike Vedic mathematics, their works included both
astronomical and mathematical contributions. In fact, mathematics of that period was included in the
'astral science' (jyotisha-shatra) and consisted of three sub-disciplines: mathematical sciences (ganita
or tantra), horoscope astrology (hora or jataka) and divination (samhita). This tripartite division is seen
in Varahamihira's 6th century compilation—Pancasiddhantika (literally panca, "five," siddhanta, "conclu-
sion of deliberation", dated 575 CE)—of five earlier works, Surya Siddhanta, Romaka Siddhanta, Paulisa
Siddhanta, Vasishtha Siddhanta and Paitamaha Siddhanta, which were adaptations of still earlier works
of Mesopotamian, Greek, Egyptian, Roman and Indian astronomy. As explained earlier, the main texts
were composed in Sanskrit verse, and were followed by prose commentaries.
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PROBABILITY 7

The description of right lines and circles upon which geometry is
founded belongs to mechanics. Geometry does not teach us to draw these lines
but requires them to be drawn.
— Newfon

7.1 Introduction

We have already started our study on probability. Recall that the set of all possible outcomes of
a random experiment is the sample space and any subset of a sample space is an event. We
know the axiomatic definition of probability and related theorems on it. We may also recall the
classical definition of probability that if a finite sample space associated with a random experiment

has n equally likely outcomes and of these (0 < r < n) outcomes are favourable for the
occurrence of an event A, then probability of event A namely P(A), is given by i Now we elaborate
these ideas further.

7.2 Conditional Probability

As we have defined probability, it is meaningless to ask for the probability of an event without
referring to a sample space. As an example, if we ask for the probability that an engineer earns at least
¥ 4,00,000 a year is meaningless. We must specify whether we are referring to all engineers in the India,
all those in a particular industry, all those in academic field, all those working in a government department
and so on. Thus, when we use the symbol P(A) for the probability of an event A, some sample
space U must be associated with it. Now we introduce the symbol P(A | B), read as "the probability
of A, given B".

The symbol P(A | B) is used to make it clear that the underlying sample space is B. Here, P(A | B)
is called the conditional probability of A relative to B. Thus, every probability is a conditional probability.
Of course we use the simplified notation P(A) whenever the underlying sample space is U. But
whenever the sample space is reduced to some proper subset B, then we write the conditional
probability of A, given B as P(A | B). Thus, a conditional probability is the probability of an event given
that another event has occurred.
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Let us illustrate some of the ideas connected with conditional probabilities. Let us consider the
experiment of rolling a pair of balanced dice. We try to find the probability that the total of numbers
appearing on the upper face of two dice is greater than 8, given that the number on the first dic is 6.
Let A be the event that total of the number on top face of two dice is greater than 8 and let B be the
event that the first die has 6 on the top face. We wish to find P(A | B). This probability can be computed
by considering only those outcomes for which the first die has a 6. Then, determine the favourable
outcomes of these. All the possible outcomes for two dice are shown below :

U={1,2,3,4,5 6} X{1,2,3,4,5, 6}

Die 1 | Die 2 | Total Die 1 | Die 2 | Total
1 1 2 4 1 S)
1 2 3 4 2 6
1 8 4 4 3 7
1 4 5 4 4 8
1 5 6 4 5 9
1 6 7 4 6 10
7 1 3 S 1 6
2 2 4 5 2 7
2 3 5 5 3 8
2) 4 6 5 4 9
2 5 7 5 5 10
2 6 8 5 6 11
3 1 4 6 1 7
3 2 5 6 2 8
3 8 6 6 3 9
3 4 7 6 4 10
3 5 8 6 5 11
3 6 9 6 6 12

Fig.7.1

There are 6 outcomes for which the first die shows 6, and out of these, there are four outcomes
whose total on two dice is more than 8 (6, 3; 6, 4; 6, 5; 6, 6).

PAIB)=24=2 @)
Let us look at this example in another way. Note that with respect to the sample space U,
we have P(A N B) = 4= (n=236,r=4)
and P(13=3—‘j5 (n =36, r = 6)
A4
Man-f-1-3 2
From (i) and (ii) we see that
P(A M B)

P(A|B) = P(B)
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Following these observations, let us now make the following definition :
Conditional Probability : If A and B are any events of S, where S = P(U) and P(B) # 0,
the conditional probability of A given B is

P(A N B)
P(A|B) = —Pm

Let us first prove that the set function P(A | B) which is a function of A, is infact a probability
function with respect to fixed event B.
Let us recall the axiomatic definition of probability.
Let U be a finite sample space and S be its power set. Suppose that set function
P : § — R satisfies following axioms :
Axiom 1 : P(A) =20 VA € S
Axiom 2 : P(U) =1
Axiom 3 : Whenever A}, A, € S and A, A, are mutually exclusive,
P(A;, U A)) =P(A) + P(A,)
Then P is called a probability function on S.
A result : For a fixed event B the set function P(A|B) which is a function of A is a
probability function where P(B) > 0.
(1) P(A N B) 20 and P(B) > 0.
P(A|B) = “3E 2 0

Hence, for each A € S and for fixed event B of S, we have P(A|B) = 0. So, conditional
probability satisfies the axiom 1 of the probability function.
(2) If A =1, then by the definition of P(A | B),

P(UNB) _ P(B) _

We have P(U|B) = =53~ = BB =

1

Thus, conditional probability satisfies the axiom 2 of the probability function.
(3) IfA, and A, are mutually exclusive events, then by the definition of conditional probability,

P[(A; U A,) N B]

We have P((A; U A,)|B) = P(B) @
Now, (A, UA) N B=(A;, N"B)U A, "NB) (Distributive law)
Since A and A, are mutually exclusive events, A; M B and A, M B are also mutually exclusive.

P[(A; U A,) N B] = P(A; N B) + P(A, N B) (Axiom 3) (ii)

P(A; N B)+P(A, N B) " &

P((A, U A)|B)=— i) 2 (by (i) and (ii))

P(A;\B) = P(A, N\B)
P(B) P(B)

P(A,|B) + P(A,|B)

So, conditional probability satisfies axiom 3 of the probabilty function.

Thus, conditional probability satisfies all axioms of a probability function.
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Properties of Conditional Probability :
(1) If A, and A, are any two events of a sample space and B is an event of U such that P(B) # 0,
then P(A; UA, | B) = P(A|B) + P(A,|B) — P((A; NA,) | B)

P((A A,)NB
We have P((A; UA,) |B) = - lkli(B)Z) )

P((A; N B) U P(A, N B))
P(B)

P(A; N B) + P(A, N B) - P(A; N A, N\ B)
P(B)

_ P(A;NB) , P(A,NB) P(A;NA, NB)
P(B) P(B) P(B)

P(A,|B) + P(A,|B) — P((A; NA,) | B)
(2) P(A'|B) = 1 — P(A|B), where P(B) # 0
We have P(U|B) =1
P((A U AYB)Y=1 AU A" =D
P(A|B) + P(A’'|B) =1 (A and A' are disjoint events)
P(A'|B) =1 — P(A|B)
Example 1 : In a box of 100 memory cards of mobile phones, 10 cards have defects of type A, 5 cards
have defects of type B and 2 cards have defects of both the types. Find the probabilities that
(1) a card to be drawn at random has a B type defect under the condition that it has an
A type defect, and
(2) a card to be drawn at random has no B type defect under the condition that it has no
A type defect.
Solution : Let us define the following events :
A : The memory card has A type defect.
B : The memory card has B type defect.
Then by given information

P(A) = {& = 0.10, P(B) = 725 = 0.05, P(A N B) = 72 = 0.02

(1) The required probability is given by,

P(BNA)
PB|A) = 5 = % =02

(Z) The required probability is given by

v an _ PB'MAY  P(AUB))
PB'|A) = —5@y = ~ @Ay

1- P(A UB)
1- P(A)

1-[P(A) + P(B) — P(A M B)]
1— P(A)

1—(0.10 + 0.05 — 0.02)
1-010

0.90 090 90 30
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Example 2 : The probability that a regularly scheduled flight departs on time is 0.83; the probability
that it arrives on time is 0.82; and the probability that it departs and arrives on time is 0.78.
Find the probability that a plane (1) arrives on time given that it departed on time, and (2) departed
on time given that it has arrived on time.

Solution : Let D be the event that a plane departs on time and A be the event that a plane

arrives on time. By the given information we have P(D) = 0.83, P(A) = 0.82, P(D M A) = 0.78
(1) The probability that a plane arrives on time, given that it departed on time is

_PAND) _ 978 _ 78
PAID)=—5m) = 0m3 ~

(2) The probability that a plane departed on time given that it has arrived on time is

_PDAA _ 078 _ 78 _ 39
POIA)Y="F@  “om ~ & ~ 4

Example 3 : For a biased die the probabilities for different integers to turn up on top face are given
below :

Face 1 2 3 4 5 6
Probability | 0.10 0.32 0.21 0.15 0.05 0.17

The die is tossed and 1 or 2 has turned upon top face. What is the probability that it is face 1 ?
Solution : Let A : The event that face 1 turns up
B : The event that face 2 turns up.
From the table, we see that P(A) = 0.10, P(B) = 0.32.
Now, P(A U B) = P(A) + P(B) (A and B are mutually exclusive events)
= 0.10 + 0.32 = 0.42
We have to find P(A | (A U B))

P[A N (A U B)]

PAI(AVUB) =—Faun

P(A)
P(A U B)

(Why ?)

Example 4 : A survey of 500 adults inquired about monthly expenses of their child. The survey asked
questions about whether or not the person has a child studying in a college and about their monthly
expenses. The probabilities are shown in the table below :

Probability of monthly expenses
Expense too much Just right Too low
Child studying in college 0.30 0.13 0.01
Child not studying in college 0.20 0.25 0.11

Suppose a person is chosen at random. Given that the person has a child studying in a college,
what is the probability that he or she ranks the expense as “too much” ?

Solution : Let B be the event that randomly chosen person's child studying in a college.
P(B) =030 + 0.13 + 0.01 = 0.44

Let A be the event that randomly chosen person's child's monthly expense is ‘too much’.
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From the table, we see that P(A M B)= P(expense too much M child in a college) = 0.30

P(ANB
Hence, required probability P(A |B) = % = % = %

Example 5 : A family has two children. What is the probability that both the children are girls given

B W N e

that at least one of them is a girl ?
Solution : Let b denote a boy and g denote a girl.
The sample space of the experiment is
U = {5, b), (g, b), (b, g), (g &)}
Let A : The event that both the children are girls.
B : The event that at least one of the child is a girl.

Then A = {(g, g)} and B = {(b, g), (g b), (&, 8)}

ANB={g 2}
Thus, P(B) = 2, P(A N B) = ¢
P(A B
The required probability is P(A | B) = — s

1
3

I
Alul-hl»-a

Exercise 7.1

If P(A) = 0.35, P(B) = 0.45 and P(A U B) = 0.65, then find P(B| A).

If P(A) = 0.40, P(B) = 0.35 and P(A U B) = 0.55, then find P(A | B).

If P(A) = 0.3, P(B) = 0.5 and P(A|B) = 0.4, then find P(A M B) and P(B| A).

A balanced die is thrown twice and the sum of the numbers appearing on the top face is observed
to be 7. What is the conditional probability that the number 2 has appeared at least once ?

A balanced die is rolled. If the outcome is an odd number, what is the probability that it is
a prime ?

From the table of example 4, find (1) the probability that a person thinks monthly expense of his
child is too low given that she is not in a college. (2) The probability that a person thinks
monthly expense of his child is just right given that she is in a college.

100 cards numbered 1 to 100 are placed in a box, shuffled thoroughly and then one card is
drawn randomly. If it is known that the number on the drawn card is a perfect square, what
is the probability that it is an odd perfect square ?

In a certain town, 40 % residents have computers, 25 % have internet connections and 15 %
have both computer and internet connection. A resident is selected at random from the town.
(1) If he has a computer, then what is the probability that he has internet connection also ?
(2) If he has an internet connection, then determine the probability that he does not have a
computer.

A balanced die is thrown three times. Let A be the event that 4 appears on the third toss and
B be the event that 6 and 5 appears respectively on first two tosses. Find P(A | B).
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10. A fair coin is tossed three times. The events A, B, E, F, M, N are described as given (1) A : head
on third toss, B : head on first toss. Find P(A|B). (2) E : at least two heads, F : at most two
heads. Find P(E|F). (3) M : at the most two tails, N : at least one tail. Find P(M | N).

%

7.3 Multiplication Theorem on Probability
We know that the conditional probability of event A given that event B has occured is given by

P(A N B)

P(A|B) = =55 P(B) # 0
From this result, we can write P(A M B) = P(B) - P(A | B) @
PBNMA
Also, we know that P(B|A) = “ps=>, P(A) # 0
P(A M B)
P(B|A)=W (ANB=BNA)
P(A N B) = P(A).P(B|A) (ii)

Combining (i) and (ii) we get,
P(A N B) = P(A)-P(B|A) if P(A) #0
=PB)-P(A|B) ifPB)#0
The above result is known as the Multiplication Rule of Probability.

Multiplication rule of probability for more than two events : If A, B and C are three
events of sample space, we have

PANBNC =PANB)MNCOC
=P(A M B) P(C|(A M B)) (Multiplication rule of two events)
=P(A) P(B|A) P(C|(A N B))
Theorem on total probability :
Theorem 7.1 : If B, and B, are mutually exclusive and exhaustive events and P(B,) # 0,
P(B,) #0, then for any event A of S,
P(A) = P(B)) P(A|B,;) + P(B,) P(A|B,)
Proof : Since B, and B, are mutually exclusive and exhaustive events, we have
BIUB2=UandB1ﬁB2=(Z)

A =ANU
=AN (B, VB,
=(ANB)UMANBy (Distributive law) (i)
Now, ANB) N ANBy) =AM B; "By
=AN9Y B; "B, =)
=90

A M B and A M B, are mutually exclusive events
By (i), P(A) = P(A N B)) + P(A N B,)
P(A) = P(B)) P(A|B,) + P(B,) P(A|B,) (Multiplication Rule of Probability)
Similarly, if B,, B,, B; are mutually exclusive and exhaustive events and P(B,) # 0, P(B,) # 0,
P(B;) # 0, then for any event A of S,
P(A) = P(By) P(A|B,) + P(B,) P(A|B,) + P(B;) P(A|B,)
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Bayes' Theorem :
Bayes' theorem is a theorem of probability theory originally stated by the mathematician
Reverend Thomas Bayes (1702 - 1761).
Theorem 7.2 : If B;, B, and B; are mutually exclusive and exhaustive events and A is any
event such that P(A) # 0, then

_ P(A 1 B;) P(B;) § o
P(B,-[A) T P(AIB)) P(B;) + P(A|B,) P(B,) + P(A |B3) P(B3)* i=123

Proof : By the definition of conditional probability,
P(A N B))

P(B;[A) = —5@&y @
Now, using multiplication rule of probability and theorem on total probability we have

P(A N B) = P(A|B) P(B)) (i)
and P(A) = P(A|B,)P(B,) + P(A|B,)P(B,) + P(A|B;)P(B;) (iii)

Hence by (i), (ii) and (iii) we get,

P(A |B;) P(B;)
P(AB,) P(B;) + P(A |B,) P(B,) + P(A IB;) P(B3) ’

P(B;|A) = i=1,23

P(A | B;) P(B;)

== , i=1,2,3
Y, P(AIB;) P(B;)

i=1

Independent Events :

If the probability of occurrence or nom-occurrence of event B does not affect the
probability of occurrence of A i.e. if P(A|B) = P(A) then A and B are said to be independent
events.

As an example, the event of getting number 6 when a die is rolled first time and the event of
getting number 6 when a die is rolled second time are independent events. By contrast, the event of
getting number 6 when a die is rolled first time and the event that the sum of the numbers seen on
the first and second trials is 8 are not independent.

Now, by the definition of conditional probability,

P(A N B)
PAIB) = —pg ®(®) = 0)

If A and B are independent events, then
P(A|B) = P(A)

P(A N B)
P(B)

P(A N B) = P(A) - P(B)

P(A N B)
Then P(B) = @A) ®@A) = 0)

P(B) = P(B|A)
Thus, if events A and B are independent and P(A) > 0, P(B) > 0, then P(A N B) = P(A) - P(B)
and P(A |B) = P(A) and P(B| A) = P(B).
Also, if P(A N B) = P(A) - P(B), then we can say that A and B are independent events.

= P(A)
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So, if A and B are independent events, P(A M B) = P(A) - P(B).

Theorem 7.3 : If A and B are independent events, then A and B', A' and B and A' and B'
are also independent.

Proof : Events A M B and A M B' are mutually exclusive and A = (A M B) U (A M B)
P(A) = P(A N B) + P(A N B)
P(A) = P(A).-P(B) + P(A N B) (A and B are independent)
P(A N B) = P(A) (1 — P(B))
P(A N B) = P(A) P(B)

A and B' are independent events. Similarly, we can prove that A' and B are independent

events.
Now, P(A' N B")= P[(A U B)] (De Morgan's law)

=1—PA U B)
=1-— (PA) + P(B) — P(A N B))
=1 — P(A) — P(B) + P(A N B)
=1 — P(A) — P(B) + P(A) P(B) (A and B are independent)
= (1 = P(A)) — P(B) (1 — P(A))
= ({1 = PA)A - PB)

P(A' N B")Y = P(A)P(B")

A' and B' are independent events.
Remark : (1) Three events A, B and C are said to be mutually independent, if
P(A M B) = P(A) P(B)
PB N C) = P(B) P(C)
P(A N C) = P(A) P(C)
and P(A N B N C) = P(A) P(B) P(C)
If at least one of the above is not true for three given events, we say that the events are not
mutually independent.
(2) Three events A, B and C are said to be pairwise independent, if
P(A N B) = P(A) P(B)
P(B N C) = P(B) P(O)
and P(A N C) = P(A) P(C)

Example 6 : Three cards are drawn in succession, without replacement, from an ordinary deck of
52 playing cards. Find the probability that the event A; M A, M A occurs, where A, is the
event that the first card is a red ace, A, is the event that the second card is a ten or a jack,
and A; is the event that the third card is greater than 3 but less than 7.

Solution : Here, events A, : the first card is a red ace, A, : the second card is a ten or a jack,
A; : the third card is greater than 3 but less than 7.

Now, P(A)) = & (Ace of heart and diamond)
P(A,|A) = % (Without replacement, 4 cards of 10 and 4 jacks)
PA3|(A; NAY) =22 (Why ?)
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By multiplication rule of probability,

_2 .8 .12
52 51 50
=L
5525

Example 7 : A bag contains 8 red and 5 white balls. Two successive draws of 3 balls are made in such
a way that (1) balls are replaced before the second trial, (2) the balls are not replaced
before the second trial. Find the probability that the first draw will give 3 white balls and the second
draw will give 3 red balls.

Solution : Let A denote the event of drawing 3 white balls in the first draw and B denote the

event of drawing 3 red balls in the second draw. We have to find P(A M B).

(1) Draw with replacement : If the balls drawn in the first draw are replaced back in the
bag before the 2nd draw, then the events A and B are independent and the required probability is
given by the expression :

P(A N B) = P(A) - P(B)

1st draw : 3 balls can be drawn out of 8 + 5 = 13 balls in (133) ways.

(3
If all the 3 balls drawn are white, then » = (3)
)
P(A) = - = (1—33)
3

2Znd draw : When the balls drawn in the first draw are replaced before the 2nd draw, the bag
8
again contain 13 balls. Now, if all the 3 drawn balls are red, then » = (3)

Hence, P(A M B) = P(A):-P(B)

B ) e

T 13) 713 (286) T 20449
) (5)

(2) Draw without replacement : If the balls drawn are not replaced back before the second
draw, then the events A and B are not independent and the required probability is given by :

P(A N B) = P(A)-P(B| A)
)
As discussed in part (i) P(A) = m @
3

If 3 white balls which were drawn in the first draw are not replaced back, then there are
13 — 3 = 10 balls left in the bag. (8 red, 2 white)
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Hence, P(B | A) = (113) (i)
y

Thus, from (i) and (ii)

5 ()
P(A N B) = P(A)-P(B|A) = (1—33)(1—30] -5
3 3
Example 8 : A and B are two independent events such that P(A U B) = 0.5 and P(A) = 0.2,
find P(B).
Solution : Since A and B are independent events, we have P(A M B) = P(A) - P(B)
P(A) + P(B) — P(A N B)
P(A) + P(B) — P(A) P(B)
P(A) + P(B) (1 — P(A))
05 =02+PB)(A —0.2)

Now, P(A U B)

Il

03 =P(B) X 0.8
P(B) = %

Example 9 : A machine manufactured by a firm consists of two parts A and B. Out of 100 A's
manufactured, 9 are likely to be defective and out of 100 B's manufactured, 5 are likely
to be defective. Find the probability that a machine manufactured by the firm is free of
any defect.

Solution : Let event E : Part A of the machine is defective
and event F : Part B of the machine is defective.

By the given conditions,
PE) = =25, P(F) = 135

Event E' : Part A is not defective and
Event F' : Part B is not defective.

N -1 _ 9 _ 91
PE)=1-PE)=1- 2 =%

nN= 1 — =1 =22 =39
P(F)=1—-PF) =1—- 355 = 75

Since E and F are independent events, E' and F' are also independent.
Now, machine manufactured is free of any defect is the event E' M F'.

PE N F)= PE)-PF)

Example 10 : A purse contains 6 silver coins and 3 gold coins. Another purse contains 4 silver coins
and 5 gold coins. A purse is selected at random and a coin is drawn from it. What is the
probability that it is a silver coin ?
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Solution : Let the event B, be the first purse is selected and the event B, be the second purse

is selected.
P(B)) = 1 and P(By = 1

Event A : Selected coin is a silver coin.

P(A|B,) = g = % (Total coins 9, silver coins 6)
Similarly, P(A | By) = 3
Required probability

P(A) = P(Bl) P(A|B)) + P(B,) P(A|By)
X 6 + 1 X 4 — 10 _ 5

18 9

Example 11 : In a class of 75 students, 15 students have taken AB group. 45 have taken A group and
the rest of them have taken B group. The probability that an AB group student fails in a KVPY
(Kishor Vigyan Protsahak Yojana) examination is 0.005; an A group student failing has a
probability 0.05 and the corresponding probability for a B group student is 0.15. If a student
is known to have passed the KVPY examination, what is the probability that she is a student
of B group ?
Solution : Let us define the following events :

1 : The student has taken AB group

B, : The student has taken A group
B; : The student is of B group
A : The student passes in the KVPY examination.

By the given information :

PB) =12=02,PB,) =2 =06 PBy) =12 =02

P(A |B)) = 1 — 0.005 = 0.995, P(A|B,) = 1 — 0.05 = 0.950, P(A | By) = 1 — 0.15 = 0.850
Now, P(A) = P(A|B,) P(B,) + P(A|B,) P(B,) + P(A|B;) P(B;)

(0.995)(0.2) + (0.95)(0.6) + (0.85)(0.2)

= 0.1990 + 0.570 + 0.170

=0.939 ()
We have to find P(Bs | A).
By Bayes' theorem,

P(A | B3) P(B3)

P(B3|A) = 3
2. P(A1B;) P(B;)

i=1

P(A |B;) P(B;)
P(A)

_ (02) (0850) :

_ 0170 _ 170

0939 939
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| Exercise 7.2 ]

A card is drawn from a well shuffled pack of 52 cards. Events A and B are defined as follows :
A : getting a card of spade

B : getting an ace

Determine whether the events A and B are independent or not.

If P(B") = 0.65, P(A U B) = 0.85 and A and B are independent events, then find P(A).

10 boys and 5 girls study in a class. Three students are selected at random, one after the other.
Find probability that,

(1) First two are boys and the third is a girl,

(2) First and third are boys and second is a girl,

(3) First and third are of same sex and the second is of opposite sex.

Police plan to enforce speed limits by using radar system at 3 different locations within the
city limits. The radar system at each of these locations are operated for 40 %, 30 % and
20 % of the time. If a person who is speeding on his way to work has probabilities of 0.2, 0.1
and 0.5 respectively of passing through these locations, what is the probability that he will be
fined ?

Suppose coloured balls are distributed in three boxes are as follows :

Colour | Box 1 Box 2 Box 3
Red 2 4 3
White 3 1 4
Blue 5 3 3
Total 10 8 10

A box is selected at random from which a ball is selected at random. What is the probability
that the ball selected of red colour ?

Three machines A, B and C produce respectively 50 %, 30 % and 20 % of the total number of
items of a factory. The percentage of defective output of these machines are 3 %, 4 % and 5 %
respectively. If an item is selected at random, find the probability that the item is non-defective.
In a certain college 25 % of boys and 10 % of girls are studying mathematics. The girls
constitute 60 % of the student body.

(1) What is the probability that mathematics is being studied ?

(2) If a student is selected at random and is found to be studying mathematics, what is the

probability that the student is a girl ?
There are two therapies B and B, available for curing a patient suffering from a certain disease.

The patient can choose any one of the two therapies. If he selects therapy B, the probability of
i
8
from the disease is % (i) what is the probability that the patient is cured from the disease ?

(i) Given that the patient is cured, what is the probability that he has selected therapy B, ?

%

his recovery from the disease is & and if he selects therapy B, the the probability of his recovery
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7.4 Random Variable and Probability Distribution

We have studied how we can determine probability of various events using probability
function defined on the power-set S of a sample space associated with all possible outcomes of a
random experiment. In many real situations we are not interested in studying the details of all

outcomes of a random experiment. For instance, in a sample space with possible outcomes bb, bg,
gbh, gg of a random experiment of having two children in a family, we are interested in knowing the
number of boys (or number of girls) rather than the outcomes themselves. Similarly, in case of
a randomly selected electric bulb from a lot of electric bulbs produced in a factory, we are
interested in determining the life in hours. Thus, we associate a real number, in one way or another,
with an outcome of each of the random experiments described above. In other words, we define a
real-valued function on a sample space associated with a random experiment and we shall call this
real valued function a ‘ramdom wvariable’. We shall study a random variable and its probability
distribution in this section.

Let us understand the idea of a random variable by considering a simple example. Suppose
we select a family having two children. b represents a boy. g represents a girl. The sample space
associated with the random experiment is U = {bb, bg, gb, gg}.

If the outcomes of U are equally likely, we have by the classical definition of probability,
P({bb}) = P({bg}) = P({gb}) = P({gg}) = %

Suppose X : U — R is a real valued function defined by, X(x#) = number of boys in u.

If u = bb, then X(bb) = 2. If u = gg, then X(gg) = 0 and for u = bg or gb, X(bg) = X(gh) = 1.

Hence, the range of function X : U — R is the set {0, 1, 2}. We now take the subset {1} of the
range of the function X. Pre-image set of {1} is {# € U | X(u) = 1} = {bg, gb}.

Similarly, pre-image set of {2} is {bb} and pre-image set of {0} is {gg} and pre-image set of
{0, 1, 2} is {bb, bg, gb, gg} = U.

Thus, corresponding to any value in the set {0, 1, 2} assumed by X there corresponds some
event of sample space U.

As an example for X(u) = 0 for u € U there corresponds the event {gg}. Hence, the probability
that X(u#) = 0 is equal to the probability of the event {gg}. Therefore P(X(x) = 0) = P({gg}) = %.

In the table below the values of probabilities associated with the elements of the range set of the
function X are shown :

Element u# of U Probability of event {u}, P({u}) X(u) =x PX(w) = x)
bb P({bb}) = % 2 %
= AL
bg P({bg}) = 4 . 1,11
1 4 4 2
gb P({gb}) = 1
g8 P({ggh) = & 0 3

We shall call a real valued function on the sample space as a random variable, denoted by X and
its value by x. The probability with which X assumes a value x shall be denoted by p(x).

That is p(x) = P(X = x) = P(X(%) = x)
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The various real values assumed by a random variable X and its corresponding probabilities,
as shown in the table above, can be expressed as follows :

X=x 0 1 2

P | 5 | 3 | %

2
Obviously, 3 p(x)=p(0) +p() +p2) =4 + 3 + 1 =1

x=0
This table gives the probability distribution of random variable X and p(x) is called the
probability function of random variable X.

1
4

Now, we shall define a random variable X and its probability distribution.

Random Variable : Let U be the sample space associated with a random experiment. A
real valued function X defined on U i.e. X : U — R is called a random variable.

There are two kinds of random variables in the study of statistics, namely discrete random variable
and continuous random variable. If the range of the real function X : U — R is a finite set or an
infinite sequence of real numbers, then it is called a discrete random variable. If the range of X contains

interval of R, then X is called a continuous random variable. We shall consider a discrete random
variable with finite range and its probability distribution only. Thus, we shall assume the range of

random variable X : U — R as {x;, x,,..., x,,}.
Probability Distribution of Random Variable :

Let X : U = R be a random variable. Suppose X has range {x;, x,,..., x,} which is a
subset of R. Further suppose that X assumes a value x; with probability p(x) = P(X = x,).

If (i) p(x) =2 0, i = 1, 2,..., n and (ii) i p(x;) = 1, then the set {p(x;), p(xy)s.., P(x,)}
§=1

is called a probability distribution of the random variable X.

We can write probability distribution of the random variable X in tabular form as follows :

X =x X Xy X3 X,

px) p(x) | p(xy) | p(x3) - |[IEP6E)

Example 12 : A random variable X : U — R, where U is a sample space associated with tossing of

a fair coin three times, is defined as : For ¥ € U , X(#) = number of heads in u. If the

outcomes of U are equally likely, then obtain probability distribution of X.

Solution : The sample space associated with tossing of a fair coin three times is
U = {HHH, HHT, HTH, THH, THT, HTT, TTH, TTT}

If # = HHH, then according to the definition of the random variable, X(HHH) = 3.

If # = HHT or HTH or THH, then X(u) = 2

If 4 = THT or HIT or TTH, then X(u) = 1

If 4 = TTT, then X(») = 0
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Thus, the range of random variable X is the set {0, 1, 2, 3}. Since the elementary events of U
are equally likely, we have

P({HHH}) = P({HHT}) = P({HTH}) = P({THH}) = P({THT}) = P({HTT}) = P({TTH})
= P({TTT}) = g

The probabilities associated with various values assumed by random variable X are given in

Element # of U Probability P({«}) X(u) =x PX = x)
HHH % 3 %
HHT L :
i A EET S B
THH % <
TTH %
THT 1 ) ——> 1 14l4+1-23
HTT % )
TTT % 0 %

Thus, the probability distribution of the random variable X is as follows :

X=x| 0 1 =3
P® | 3 | 5| % |3

Example 13 : Four raw mangoes are mixed accidently with 16 ripe mangoes. Find the probability
distribution of the number of raw mangoes in a draw of two mangoes.
Solution : Let X denote the number of raw mangoes in a draw of 2 mangoes drawn from the
group of 16 ripe mangoes and 4 raw mangoes. Since there are 4 raw mangoes in the group,
X can take values 0, 1 and 2.

Now, P(X = 0) = Probability of getting 0 raw mango

(=)

)

16 X 15 2 _ 12

7 X 20x19 ~ 19

P(X = 1) = Probability of getting one raw mango

Y axsa

)

_ 3
20X 19 95

and P(X = 2) = Probability of getting two raw mangos
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Thus, the probability distribution of X is given by

X =x 0 1 2
el I
P&) 19 95 95

5
Example 14 : Find the constant ¢ for the probability distribution p(x) = ¢ ( x), x=0,1,2,3,4,5
Solution : Here, p(x) = ¢ ()Scj, x=0,1,2,3,4,5

Since, p(x) represents probability distribution of X, we should have
p(0) + p(1) + p2) + p(3) + p(4) + p(5) = 1

(@) + () + B+ () + (3 + ()] -

32c=1

1

V)

Also, for each value of x, p(x) > 0.

Required value of ¢ is L

32
Example 15 : Probability distribution of a discrete random variable X is given in the following table :

X=x —3 =% -1 0 1 2 3
) 0.08 0.14 0.19 027 | 0.17 0.09 0.06

(1) Find the probability of random variable X assuming negative values.
(2) Find the value of P(0 < x < 3).
Solution : (1) Probability that X assumes negative values is
p(—3) + p(—2) + p(—1) = 0.08 + 0.14 + 0.19 = 0.41
(2) PO = x <3)=p(0)+ p(1) + p(2)
=0.27 + 0.17 + 0.09
=0.53

Exercise 7.3 l

1. Find the constant ¢ for each of the following probability distribution :
(1) px)=cx,x=1,2,3,4
2) pe)=ecx?, x=1,2,., 10
3 px)=c-3*,x=0,1,2,3

4) pkx) = c(%)x, x=1,2,3

(5) pex) = c(i), x=0,1,23, 4
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7:5

Examine whether p(x) defined for a random variable X as below is a probability distribution :

2
PO = 7 ¥ = 12 3 1

Let X denote the number of hours you study during a randomly selected school day.
The probability that X can take values x, has the following form, where k£ is some unknown

constant.
0.1, ifx=20
kx, ifx=1or2
PX =x) =
K5—x), ifx=3o0r4
0, otherwise

(1) Find the value of %.

What is the probability that you study.

(2) for at least two hours (3) for exactly two hours (4) for at most two hours ?

Two balanced dice are tossed once. A random variable X is defined on the sample space U
associated with this random experiment as follows :

For u € U, X(u) = sum of integers in u.

Find the probability distribution of X.

A box contains 4 distinct balls of which 2 are white and 2 are black. Two balls are selected at
random with replacement. If X denotes the number of black balls in the two balls selected
from the box, then find the probability distribution of X.

From a lot of 10 bulbs, which includes 3 defectives bulbs, a sample of 2 bulbs is drawn at random.
Find the probability distribution of the number of defective bulbs.

The probability distribution of a discrete random variable X is given in the following table :

X=x 0 1 %

p(x) 33 4¢ — 10c2 | 5¢—1

where ¢ > 0. Find (1) ¢ QPX <2) B)PO1<XL2)

We take 8 identical slips of paper, write the number 0 on one of them, the number 1 on three of
the slips, the number 2 on three of the slips and the number 3 on one of the slips. The slips
are folded. Put in a box and throughly mixed. One slip is drawn at random from the box. If
X is the random variable denoting the number written on the drawn slip, find the probability
distribution of X.

Mathematical Expectation
Suppose that the following is the probability distribution of a random variable X :

X=x X Xy X3 X, _ X,
() p(x1) | p(xp) | p(x3) | PGy, - D) Py
n
where p(x;) 2 0 for each x; and X p(x;) = 1 @

1=1
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Mean : X is a random variable with probability distribution given by (i). We denote mathematical
expectation of X by E(X) and it is defined as :

E(X) = _Zl x; p(x) (i)
i=

Mathematical expectation of a random variable X is called the expected value of X or mean of X.
E(X) is also denoted by the symbol L. Mean of X is infact the weighted average of the possible
values of X, each value being weighted by its probability with which it occurs.

Suppose Y = g(X) is a real function of a discrete random variable X. Then Y = g(X) will also
be a discrete random variable and its mean is defined as
n

BOY) = Blg00] = 3 g() o) (i)

i=
e.g. if g(X) = X2, then

n
E[g(X)] = E(X?) = Z_ZI x? p(x;) (iv)
Variance of Random Variable :

The mean or expected value of a random variable X is of special importance in statistics because
it describes where the probability distribution is centered. However, the only mean does not give
adequate description of the shape of the distribution. We need to characterise the variability in the
distribution. In figure 7.2 we have the histograms of two discrete probability distributions with the

same mean [l = 2 that differ considerably in the variability of their observations about the mean.

Fig.7.2
The most important measure of variability of random variable X is referred to as the
variance of the random variable X. We shall denote it by the symbol GX2 or V(X). If the probability
distribution of a random variable X is given by (i), then variance of X is defined by :
V(X) = oy? = EX?) — [EX)]?
Using formula (ii) and (iv) the formula for 0'X2 is written as
n n 2
GXZ = ‘Zl xr_Z px;) — [Zl X; p(xl.)] W)
= i=
Standard Deviation of Random Variables :

The positive square root of variance Oy> of a random variable X is called the standard

deviation of X. It is denoted by the symbol Gy or ‘/V(X).
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Some Results About Mathematical Expectation :

random variables. We shall assume the following results on expectation without proof.

Example 16 : Probability distribution of a random variable X is as follows :

Suppose that the mathematical expectation and variance of a random variable X are E(X) and
O, respectively. For real constants @, b and ¢, let Y = aX + b and Z = aX? + bX + ¢ be the new

E(Y) = E(@aX + b) =aE(X) + b

Oy? = V(Y) = V(aX + b) = a®> V(X) = a®> 52

Oy = JV(Y) =|a| Ox

E(Z) = E(aX? + bX + ¢) = aE(X?) + BEXX) + ¢

X=x =2) -1 0 1 2 3
) 0.05 0.14 0.23 031 | 0.16 0.11
Find E(X) and Oy.
Solution : E(X) = Zx; p(x;)

E(X) =

(vi)
(vii)
(viii)

(ix)

(—=2)(0.05) + (—1)(0.14) + (0)(0.23) + (1)(0.31) + (2)(0.16) + (3)(0.11)
—0.10 — 0.14 + 0 + 0.31 + 0.32 + 0.33

0.72
0.72

02 = 2x? p(x) — [EX)P

= {4(0.05) + 1(0.14) + 0(0.23) + 1(0.31) + 4(0.16) + 9(0.11)} — (0.72)?

=228 —0.5184 = 1.7616

Oy? = 1.7616 and

ox = J1.7616 = 13272

Example 17 : The mean and the standard deviation of a random variable X are given by E(X) =5 and
Ox = 3 respectively. Find E(X2), E((3X + 2)?). Also find the standard deviation of 2 — 3X.

Solution : Here, E(X) = 5 and GOy = 3
We know that, Gy? = E(X?) — [E(X)]?
E(X?) = 0y + [E(X)])?

E((3X + 2)?) =E(9X2 + 12X + 4)

=9+25
E(X?) =34

= 9E(X?) + 12E(X) + 4

=9.34+12-5+4

=306 + 60 + 4
E((3X + 2)%) =370
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Now, V(2 — 3X) = 32V(X) = 9V(X) =9 G,,> = 9-9 = 81
The standard deviation of 2 — 3X is J81 =9,

If the expected gain of two players playing a game is zero, then the game is said fo be
fair. If the expected gain of any player is positive, the game is said to be in his favour. If the
expected gain of a player is megative the game is said to be against him.

Example 18 : A player playing a game of tossing a balanced die receives ¥ 10 from his opponent if
he throws an integer 3 or 4. If he throws 1 or 2 or 5 or 6, then how much should be pay to
his opponent, so that the game becomes fair ?

Solution : Sample space associated in the game of tossing a die is U = {1, 2, 3, 4, 5, 6}. We
define a random variable X on U as follows :

X(m)=( 10 u=3,4

{ a u=1,2,56
where a is the amount in rupees which the player has to pay to his opponent.
The probability distribution of X is as follows :

X=x 10 a
P 2 2
Now, E(X) =10.2 + a.2
_ 4a+20
ST 6
Since the game is to be fair, we must have E(X) = 0.
4a+20 _
e = 0
4a+20=0
a=-—5

Hence, the player has to pay ¥ 5 to his opponent if # = 1, 2, 5 or 6.

Exercise 7.4 J

1. Determine the discrete probability distribution, mathematical expectation, variance, standard
deviation of a discrete random variable X which denotes the minimum of the two numbers that
appear when a pair of fair dice is thrown once.

2. A player tosses 3 fair coins. He wins ¥ 500 if 3 heads occur, ¥ 300 if 2 heads occur, ¥ 100 if
one head occurs. On the other hand, he loses ¥ 1500 if 3 tails occur. Find the expected value
of the game for the player. Is it favourable to him ?

3. The probability distribution of a random variable X is as follows :

X=x 1 2 3 4 k

p(x) 0.1 k 02 3k | 03

(1) Find the value of %.

(2) Find the mean and variance.

PROBABILITY 257



\_____/—\

4. The probability distribution of a random variable X is as follows :

X=x —1 0 1 2 3

§ 169 0.2 0.1 k 2k 0.1
(1) Find the value of k.

(2) Calculate the mean, variance and standard deviation.

5. Find the variance of the numbers obtained at the throw of an unbaised die.

6. Probability distribution of a random variable X is as follows :

X =x = - 0 1 2
p(x) 02 0.1 03 03 | o1

Find (1) E(X) (2) V(X) () EGX +2) (4) V3X + 2)

7. A bakery owner finds from his past experience that sale of number of chocolate cakes
produced in his bakery on any day is a random variable X having the following probability
distribution :

No. of cakes sold X = n

p(n)

He gets a profit of ¥ 5 per each cake sold and incurs a loss of ¥ 2 per cake not being sold. If
the bakery owner produces 3 cakes on a given day what is the value of his expected profit ?

al=| ©
O\lb—l ot
=] N
=] W
al=| »
=] w»n

8. The mean and standard deviation of a random variable X are 10 and 5 respectively. Find

E(X2), E[X(X + 1)], E (X;m] and E (X;m)z.

%
7.6 Binomial Distribution

We have studied a random variable and its probability distributions in the earlier sections of this
chapter. In this section we shall study a special distribution, a binomial distribution.

Binomial distribution is also known as the ‘Bernolli distribution’ after the Swiss mathematician
James Bernoulli (1654-1705) who discovered it in 1700.

Let us consider an experiment of tossing a coin. If we toss a coin, we get two outcomes
namely, ‘Head’ or ‘Tail’. For the sake of definiteness we shall call ‘Head’ a success and ‘Tail’ a failure.
Hence sample space associated with the experiment is U = {S, F} where S denotes success and F
denotes failure. Suppose that probability of getting a success is p and that of getting failure is g.
That is P({S}) = p and P({F}) = q. Since there are two outcomes of the experiment we must have
pt+tqg=1and hence g =1 — p.

Suppose a coin is tossed » times under identical conditions. Alternatively we can say that an
experiment of tossing a coin is repeated » times under identical conditions. Since the experiment is
performed under identical conditions, the probability of getting success ‘S’ at each of the » trials remains
the same i.e., p. Trials of a random experiment possessing this property are called Bernoulli trials. We
now define Bernoulli trials as follows :

Bernoulli trials : Suppose a random experiment has two possible outcomes namely
success (S) and failure (F). If the probability p(0 < p < 1) of getting success at each of
the n trials of this experiment is constant, then the trials are called Bernoulli trials.
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Bernoulli trials have following properties :

(1) There is a constant probability of success (S) or failure (F) at each Bernoulli trial.

(2) Bernoulli trials are mutually independent

(3) If the constant probability of getting a success (S) at any Bernoulli trial is
P (0 < p < 1), then probability of getting a failure (F) is g =1 — p.

Suppose X denotes number of successes in a sequence of » Bernoulli trials of a random

experiment having a constant probability p of success. Suppose that the probability
distribution of random variable X is given by

P =PX =) = (1) pa" % x = 0,1, 2, 0]

where 0 < p<land g=1-—p

Probability distribution of random variable X given by (i) is called a Binomial distribution
and random variable X is called a binomial random variable. The positive integer » and
probability p of success ‘S’ are called the parameters of the binomial distribution.

The formula of p(x) given by (i) for x =0, 1, 2,..., n can be obtained from the binomial expansion

of (p + ¢)". The general term of the binomial expansion of (p + g)”* is (2) P* q" — * which is equal

to the formula (i). Hence, the probability distribution of random variable is called the binomial
distribution. Also, sum of all probabilities is

n

)2 (Z)p"q""‘=(p+q)”=1"=1

x=0

The binomial distribution occurs in games of chance (e.g. rolling a dice), quality inspection (e.g.
count of number of defectives), opinion polls (e.g. number of empolyees favouring certain schedule
changes), medicine (e.g. number of patients recovered by a new medication) and so on.

Result : The mean and variance of binomial distribution with parameters » and p are
np and npg respectively.

Example 19 : It has been claimed that in 60 % of all solar-light installations, the utility bill is
reduced by at least one third. Accordingly, what are the probabilities that the utility bill will be
reduced by at least one third in

(1) four of five installations;
(2) at least four of five installations.

Solution : Let X denote the number of solar-light installations in which the utility bill is
reduced by at least one third out of 5 solar-light selected at random from a lot.

Here, X is a binomial random variable having binomial distribution with parameters » = 5 and
p = 0.60. Hence, the probability distribution of X is given by

pex) = (i)(%)x(%)s_x, x=0,1,2,3,4,5

(1) The probability of the utility bill is reduced by at least one third in four installations by
putting x = 4 in p(x).
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4 5—4
) = (7)) ()
= 5(0.6)* (0.4)
= 0.2592 @)

(Z) The probability that utility bill is reduced by at least one third in at four installations is
p4) + p(5). Now,

P = (3)(8) &)
= (0.6)°
= 0.07776
Hence, required probability = p(4) + p(5)
= 0.2592 + 0.07776 (by (1)

=0.337

Example 20 : The mean and variance of a binomial distribution are 3 and 2 respectively. Find the
probability that the variate takes values less than or equal to 2.

Solution : If n and p are the parameters of the binomial distribution, then we know that

Mean = np = 3 o
and Variance = npqg = 2 (i)
n,
Dividing (ii) by (i) we get, - = 2
g=%So,p=1-g=1-%=3

Substituting in (i) we get, n % =3.S0,n=9

The probability distribution of binomial random variable X is given by

9 X o\9—x
0= (AN @ 020
The probability that the variable takes the value less than or equal to 2 is given by P(X < 2).
Px<2)=PX=0+PX=1)+PX=2)

= p(0) + p(1) + p(2)

-6 + (6 + Q)erar
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10.

l Exercise 7.5 I

An educationist claims that 80 percent of the students passing a higher secondary examination
take admission to colleges for university education. What is the probability that out of 10
students (1) 5 students (2) 8 or more students take admission to a college ?

It has been found from an experiment that 40 percent of rats get stimulated on administering a
particular drug. If 5 rats are given this drug, what is the probability that (1) exactly three and
(2) all rats get stimulated ?

In a city of some western country, 70 percent of the married persons take divorce. What is the
probability that at least three among four persons will take divorce ?

Harit participates in a shooting competition. The probability of his shooting a target is 0.2.
What is the probability of shooting the target exactly three times out of five trials ?

The mean and standard deviation of a binomial random variable X are 8 and 2 respectively.
Find the parameters of the probabilty distribution of X and obtain the value of P(X = 0) and
P(1 £ X <3).

In a book of 500 pages, there are 50 printing errors. Find the probability of at most two
printing errors in 4 pages selected at random from the book.

If 4 of 12 scooterists do not carry driving licence, what is the probability that a traffic inspector

who randomly selects 4 scooterists will catch (1) 1 for not carrying driving licence. (2) at least
2 for not carrying driving licence.

In a shooting competition, the probability of a man hitting a target is % If he fires 5 times, what
is the probability of hitting the target (1) at least twice (Z) at most twice.

A quality control engineer inspects a random sample of 3 calculators from a lot of 20
calculators. If such a lot contains 4 slightly defective calculators, what is the probability that
the inspector's sample will contain (1) no slightly defective calculators, (2) one slightly defective
calculators, (3) at least two slightly defective calculators.

If the probability of selecting a defective bolt is 0.1, find (1) the mean (2) the variance for the
distribution of defective bolts in a total of 400.

*

Miscellaneous Examples :

Example 21 : Suppose E and F be two independent events such that P(E) < P(F). If P(E N F) = %

and P(E' N F') = 1, then find P(E) and P(F).

Solution : We are given P(E N F) = % and P(E' N F") = %
As E and F are independent events, E' and F' are also independent events.

PE N F) = % => P(E) P(F) = ﬁ and

PENF)=1=pE)pE)=1

[1 — P(B)] [ — P(F)] =

1 = P(E) — P(F) + P(E) P(F) =
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1 —PE) —P(F) + 5 = =
P(E) +P(F) =1+ 3= — 2
P(E) + P(F) = &

We know that the quadratic equation whose roots are a and b is x2 — (a + b)x + ab = 0

The equation whose roots are P(E) and P(F) is
x2 — [P(E) + P(F)]x + P(E) P(F) = 0
2 _ 1 i
x 3% + 5 0
12x2—7x+1=0
Gx—1DMA@x—1)=0

_1 1
x=3 %
Since P(E) < P(F), we have P(E) = ¢ and P(F) = 1.

Example 22 : Find the number of times a fair coin must be tossed so that the probability of getting
at least one head is at least 0.95.

Solution : Let n be the required number of tosses, and X be the number of heads obtained in
n tosses. Then X is a binomial random variable having binomial distribution with parameters » and

p= % Hence, the probability distribution of X is given by

px) = [z) (%)x (%)n _x, x=0,1,2,...n

Now, P(at least one head) = P(X 2 1)
=1—PX=0)
=1 — p(0)
0 n—-0
=1—(")(1) (1
=33 @)
=1 — (1Y
1-(3)
Given P(at least one head) = 0.95
— (1"
1- (1) 20095
1 n
(1) <005
L < L
2” - 20
27 220
n=5
The least value of n is 5.

Hence, under the given conditions a fair coin must be tossed at least 5 times.
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Example 23 : For a random experiment the sample space is U = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Events A, B, C are defined as follows :

A ={0,0,0),(1,0,0)}, B={0,0,0), (0,1, 0)}, C={0,0,0), (0,0, 1)}

Prove A, B, C are pairwise independent but not mutually independent.

Solution : Here, P(A) = P(B) = P(C) =% %
ANB=BNC=ANC={0,0,00} =ANBNC

PANB)=PBNC)=PANC)=1=PANBNC

1
4
Now, P(A N B) = 1 = 2 -4 = P(A) P(B)

P(BmC)=%=%-%=P(B) P(C)

=1l.1_
=1.1=p@) P©
A, B, C are pairwise independent events.
But PA N B N C) = % # % = P(A) P(B) P(C)

A, B, C are not mutually independent.

Note : If we select any vertex of tetrahedron OABC
randomly, then sample space C0,0,)

U = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (O, 0, 1)}.

Event A : Vertex is on X-axis.

5
>

Event B : Vertex is on Y-axis. Y
B(0,1,0)
Event C : Vertex is on Z-axis.

Events A, B, C are as in Example 23.

Exercise 7

1. Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and then one card is
drawn randomly. If it is known that the number on the card drawn is more than 3, what is the
probability that it is an even number ?

2. A couple has 2 children. Find the probability that both are boys, if it is known that (1) one of
the children is a boy; (2) the older child is a boy.

3. An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the
other without replacement. What is the probability that both the balls drawn are black ?

4. An urn contains 4 red and 7 blue balls. Two balls are drawn at random with replacement.
Find the probability of getting (1) both red balls (2) both blue balls (3) one red and one
blue ball.
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5. A can hit a target 4 times in 5 shots, B can hit it 3 times in 4 shots and C can hit it 2 times in
3 shots. Calculate the probability that,

(1) A, B, C all can hit the target. (2) B, C can hit and A cannot hit.
(3) Any two of A, B and C will hit the target (4) None of them will hit the target.

6. A general insurance company insuring vehicles for a period of one year classifies its policy
holders into three mutually exclusive group.

Group T, : Policy holders with very high risk factor
Group T, : Policy holders with high risk factor
Group T4 : Policy holders with less rick factor

From the past experience of the company, 30 % of its policy holders belong to group T, 50 %
belong to group T, and the rest belong to group T;. If the probabilities that policy holders
belonging to groups T, T, and T; meet with an accident are 0.30, 0.15 and 0.05 respectively,
find the proportion of policy holders having a policy for one year will meet with an accident.
If a randomly selected policy holder does not meet with an accident, what is the probability that
he belongs to group T,?

7. Rajesh agrees to play a game of tossing a balanced die. If an integer 1 or 2 is obtained on the
die, he loses ¥ 2. If an integer 3 or 4 or 5 is obtained, he gets ¥ 5 and if integer 6 is obtained,
he gets ¥ 10. If the amount of ¥ X received by Rajesh is treated as a random variable, then
obtain probability distribution of X.

8. A random variable X assumes integral values from integers 1 to 100 with equal probability.
Find E(X), E(X?) and Gy2.

9. Nine balanced coins are tossed together once. Find probability of getting (1) four heads and
(2) at least six heads.

10. The probability function of a binomial distribution is

6
plx) = (xj Fq® % x=0,1,2,.., 6.

If 3p(2) = 2p(3), then find the value of p.

11. If each element of a second order determinant is either zero or one, what is the probability
that the value of the determinant is positive ? (Assume that the individual entries of the
determinant are chosen independently.)

12, A restaurant serves two special dishes — A and B to its customers consisting of 60 %
men and 40 % women. 80 % of men order dish A and the rest order B. 70 % of woman
order B and the rest order A. In what ratio of dishes A to B should the restaurant prepare
the two dishes ?

13. In a railway reservation office, two clerks are engaged in checking reservation forms. On
an average, the first clerk checks 55 % of the forms, while the second checks the
remaining. The first clerk has an error rate of 0.03 and second has an error rate of 0.02.
A reservation form is selected at random from the total number of forms checked during
a day, and is found to have an error. Find the probability that it was checked by the
second clerk.
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14. A fair coin tossed two times. Events A, B, C defined as follows :
Event A : First toss shows head
Event B : Second toss shows head
Event C : Same result on both toss
Show that events A, B, C are pairwise independent but not mutually independent.
15. Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

Section A : (1 mark)

(1) Two cards are drawn in succession from a standard well shuffled pack of 52 cards.
What is the probability that both the cards are aces if the cards are drawn without

replacement ? -
(a) 0.0045 (b) 0.0385 (c) 0.045 (d) 0.0059
(2) A circular wheel with numbers 1 to 20 on its surface is rolled twice. What is the
probability of getting two 13's ? 1]
L L 1 L
@ = OFn © 25 @) 5
(3) Let A and B be two events such that P(A) = 0.4, P(A U B) = 0.7 and P(B) = p. For
what choice of p are A and B independent ? ]
1 1 3 5
(@ 5 (®) 3 © 5 @z
(4) Two unbiased coins are tossed. If one coin shows head, the probability that the other also
shows head is... 1
1 1 1
(@) 4 ®) 4 © 1 @1

(5) A problem in mathematics is given to three students A, B, C and their respective

probability of solving the problem is %, L and %. Probability that the problem is solved

3
is... ]
3 1 2 1
@ 3 (b) 1 © 2 ) 1
(6) A die is tossed 5 times. Getting an odd number is considered a success. Then the variance
of distribution of success is... ]
8 3 4 2
(a) (b) 3 © 4 @ 2
(7) The probability that A speaks truth is %, while this probability for B is %. The probability
that they contradict each other when asked to speak on an event is... ]
A 1 3 4
@ % (b) 1 © 3 ) 4
(8) If A and B are two events such that P(A) > 0 and P(B) # 1, then P(A | B') is... 1
' P(A) "R
(@ 1—-PA[B) (b)1—-PA|B) © BBy (d 1 —PA'B)
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(9) The probability that a student is not a swimmer is %. The probability that out of 5 students

exactly 4 are swimmers is... 1
3 4 4 4
@ (3) ® 4(3) © 5C4 (3) @ (2)
(10)Let X be a random variable with probability distribution 1
X=x | 0 1 I
oo | ] 4] ]

Then EQ2X + 3) is...
@ 3 (b) 1 © 3 () 6
Section B : (2 marks)

(11)A study has been done to determine whether or not a certain drug leads to an improvement
in symptoms for patients with a particular medical condition. The results are shown in the

following table : 1
Improvement | No improvement Total
Drug 270 530 800
No drug 120 280 400
Total 390 810 1200

Based on this table, what is the probability that a patient shows improvement if it is known
that the patient was given the drug ?

(a) 0.4375 (b) 0.225 (c) 0.3375 (d) 0.3205

(12) Suppose it is known that the patient shows improvement. Based on the table of example 11,
what is the probability that the patient was given the drug ? 1
(a) 0.225 (b) 0.667 (c) 0.792 (d) 0.692

(13) A box contains four red, two white and three green marbles, all of which are the same
size. Two marbles are selected one after the other from the box, without replacement.
What is the probability that the marbles are of the same colour ? 1

(a) 0.67 (b) 0.5 (c) 0.14 (d) 0.28
(14) A company has three plants at which it produces a certain item. 30 % are produced at
plant A, 50 % at plant B and remaining at plant C. Suppose that 1 %, 4 % and 3 % of the

items produced at plants A, B and C respectively are defective. If an item is selected at
random from all of those produced, what is the probability that the item was produced at

plant B and is defective ? -
(a) 0.5 (b) 0.2 (c) 0.02 (d) 0.04
(15) The mean and variance of a random variable X having a binomial distribution are 4 and 2
respectively, then P(X = 1) is... ]
1 1 1 1
@ ¢ (b)) g © 7 ) 35
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(16) Tt is given that the events A and B are such that P(A) = %, P(A|B) = % PB|A) = 2

Then P(B) is... :3|
(@) ®) + © 3 @ 2

(17) If two events A and B are such that P(A') = 0.3, P(B) = 0.5 and P(A M B) = 0.3, then
P(B|A U B) is... 1
(a) 0.375 (b) 0.32 (c) 0.31 (d) 0.28

(18) If parameters of a binomial distribution are » = 5 and p = 0.30, then the mean is ......
and variance is ....... . 1
(a) 1.5, 1.5 (b) 1.5, 1.05 (c) 1.5, 1.40 (d) 1.5, 1.15

Section C : (3 marks)

(19) A company has three plants at which it produces a certain item. 30 % are produced
at plant A, 50 % at plant B and 20 % at plant C. Suppose that 1 %, 4 % and 3 % of the items
produced at plants A, B and C respectively are defective. If an item is selected at random
from all those produced, what is the probability that the item is defective ? 1

(a) 0.029 (b) 029 (c) 0.025 (d) 0.08

(20) The probability that an event A occurs in a single trial of an experiment is 0.4. Three
independent trials of the experiment are performed. The probability that A occurs at least

once is... -
(a) 0.936 (b) 0.784 (c) 0.904 (d) 0.874
(21) The variance of g(X) = 2X + 3, where X is a random variable with probability distribution
X=x 0 1 2 3 ]
p(x) % % % % is...
(a) 6 (b) 36 (c) 4 (d) 8
Section D : (4 marks)
(22) A random variable X has the probability distribution : -
X 1 2 3 4 5 6 7 8
p(x) 0.15 0.23 0.12 | 0.10 | 020 | 0.08 0.07 | 0.05

For the events E = {X is a prime number} and F = {X < 4}, the probability P(E U F) is...

(a) 0.35 (b) 0.77 (c) 0.87 (d) 0.50

(23) If a random variable X can take all non-negative integral values and the probability that
X takes the value r is proportional to 0. (0 < & < 1), then P(X = 0) is... 1
(@)1 — o (b) o ©) % (d) o2
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(24) The mean and standard deviation of a random veriable X are 10 and 5 respectively. Match

the following : 1
A B

M EX?) ® O

(i) EXX+ 1) (@ 135

(i) E [( 22 IOD ) 125

@) E [(X?O)Z] © 1

@ @ : (@), (@): (@), (i):(p) (V):(s)  BYD: (@), (iD): (), (iiD): (s), (iv): (p)
© @ : @, ():(q, (iD):(p), (V):(s) (D) D:(p), (iD): (), (i) : (1), (iv): (s)

We studied the following points in this chapter :
1.

The conditional probability of an event A, given the occurrence of the event B is given by

P(A N B)
P(A|B) = =55 P(B) # 0.

0<PA|B)<1, PA'|B)=1—(A|B)

P((AUB)|C)=PA|C)+ PB|C) — P(ANB)|C)

P(A N B) = P(A)-P(B|A), P(A) # 0

P(A N B) = P(B).P(A|B), P(B) # 0

If B, and B, are mutually exclusive and exhaustive events and P(B,) # 0, P(B,) # 0, then
for any event A of S,

P(A) = P(B)) P(A|B,) + P(B,) P(A|B,)

If B; and B, are mutually exclusive and exhaustive events and A is any event such that

P(A | B;) P(B;)

P(A) # 0, then P(B;| A) = 5xT5,75(B,) + P(A 1B,) P(B,) + P(A 1By P(By)> | —

TaiZ28

If A and B are independent events then P(A M B) = P(A) P(B)

If A and B are independent events then A and B', A' and B and A' and B' are also
independent.

A random variable is a real valued function whose domain is the sample space of a random
experiment.

The probability distribution of a random variable X in tabular form is

X=x X Xy X3 x,

) p(x) | p(xp) | plx3) e | PGxyp)
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10. Mean : EX) = i x; p(x)
i=1

Variance : V(X) = 0,2 = E(X?) — [EX)]?

n n 2
0= 3 x2pte) — | 3 x 06
i=1 t=1
Standard deviation : Oy = m

11. E@X + b) = aE(X) + b
12. V(@X + b) = a2 V(X)
13. Bernoulli Trials :

(1) There is a constant probability of success (S) or failure (F) at each Bernoulli trial.

(2) Bernoulli trials are mutually independent

(3) If the constant probability of getting a success (S) at any Bernoulli trial is p (0 < p < 1),

then probability of getting a failure (F) is ¢ = 1 — p.

14. Binomial Distribution : Suppose X denotes number of successes in a sequence of »

Bernoulli trials of a random experiment having a constant probability p of success.
The probability distribution of random variable X is given by

p =px =0 = 1) a5 5= 0,1, 2m
where 0 < p < 1 and ¢ = 1 — p is a binomial distribution with parameters » and p.

15. The mean [l and variance 0'x2 of binomial distribution with parameters » and p are np and

npq respectively.

Ramanujan's notebooks

‘While still in Madras, Ramanujan recorded the bulk of his results in four notebooks of loose leaf
paper. These results were mostly written up without any derivations. This is probably the origin of the
misperception that Ramanujan was unable to prove his results and simply thought up the final result
directly. Mathematician Bruce C. Berndst, in his review of these notebooks and Ramanujan's work, says
that Ramanujan most certainly was able to make the proofs of most of his results, but chose not to.

This style of working may have been for several reasons. Since paper was very expensive,
Ramanujan would do most of his work and perhaps his proofs on slate, and then transfer just the results
to paper. Using a slate was common for mathematics students in the Madras Presidency at the time.
He was also quite likely to have been influenced by the style of G. S. Carr's book studied in his teenage,
which stated results without proofs. Finally, it is possible that Ramanujan considered his workings to
be for his personal interest alone; and therefore only recorded the results.

The first notebook has 351 pages with 16 somewhat organized chapters and some unorganized
material. The second notebook has 256 pages in 21 chapters and 100 unorganised pages, with the third
notebook containing 33 unorganised pages. The results in his notebooks inspired numerous papers by
later mathematicians trying to prove what he had found. Hardy himself created papers exploring material
from Ramanujan's work as did G. N. Watson, B. M. Wilson, and Bruce Bert. A fourth notebook with
87 unorganised pages, the so-called "lost notebook", was rediscovered in 1976 by George Andrews.
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LINEAR PROGRAMMING

Nature is an infinite sphere of which the centre is everywhere and
the circumference is nowhere.
— Blaise Pascal

In order to translate a sentence from English to French, two things are necessary.
First we must understand thoroughly the English sentence.
Second we must be familiar with the forms of expression peculiar to French language.
The situation is very similar when we allempt (o express in mathematical symbols
a condition proposed in words. First we must understand thoroughly the condition.
Second we must be familiar with the forms of mathemaical expression.
— George Polya

8.1 Introduction

Before discussing the basic concepts and applications of linear programming, let us understand
the meaning of the words, ‘linear’ and ‘programming’. The word linear refers to linear relationship
among variables in a model. Thus, a given change in one variable will always result into a proportional
change in another variable. For example, doubling the investment on a certain investment will
exactly double the return. The word programming refers to the modelling (plan of action) and
solving a problem mathematically. Linear Programming was first developed by Leonid Kantorvich,
a Russian mathematician, in 1939. During world war II, George B Dentzing while working
with the US Air Force, developed linear programming model, primarily for solving military
logistics problems.

In earlier classes, we have discussed system of linear equations and their applications in
some practical problems. In class XI we have studied linear inequalities and system of linear
inequalities in two variables and their solutions by graphical method. In this chapter, we shall apply
the system of linear inequalities to some real life problems. The type of problems which seek
to maximize (or minimize) profit (or loss) form a general class of problems called Optimisation
problems. Any optimisation problem may involve finding maximum profit, minimum cost, or minimum
use of resources etc.

A special but a very important class of optimisation problems is Linear Programming Problems.

Linear programming problems are of much interest because they are being used extensively in all
functional areas of management, airlines, agriculture, military operations, oil refining, education, energy
planning, pollution control, transportation planning and scheduling, research and development, health
care system etc.

In this chapter, we shall study some linear programming problems and their solutions by graphical
method only. There are many other methods also to solve such problems.

8.2 A Linear Programming Problem and its Mathematical Formulation

We begin our discussion with the help of an example which will lead us to a mathematical
formulation of the problem in two variables.

A dealer deals in only two items : AC (Air conditioners) and Coolers. He has capital finance ¥ 5,00,000
to invest and has storage space of at most 60 pieces. An AC costs ¥ 25,000 and a cooler costs I 5000.
He estimates that from the sale of one AC, he can make profit of ¥ 2500 and from the sale of one cooler
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he can make profit of ¥ 750. The dealer wants to know how many AC and coolers he should buy
from the available capital so as to maximise his total profit, assuming that he can sell all the items
which he buys.

In this example, we observe that,

(1) The dealer can invest his money in buying AC or coolers or a combination thereof. Further
he would earn different profits by following different investment strategies.

(2) There are certain constraints namely, his investment is limited to a maximum of ¥ 5,00,000
and storage capacity for a maximum of 60 pieces.

Suppose he decides to buy AC only and no collers, so he can buy 5,00,000 + 25,000 = 20 AC. His
profit in this case will be T (2500 X 20) = ¥ 50,000.

Suppose he decides to buy coolers only and no AC. With his capital of ¥ 5,00,000 he can buy
100 coolers. But he can store only 60 pieces. Therefore, he has to buy only 60 coolers which will
give him a total profit of ¥ (60 X 750) = ¥ 45,000.

There are many other possibilities, for instance, he may buy 10 AC and 50 coolers, as he can
store only 60 pieces. Total profit in this case would be ¥ (10 X 2500 + 50 X 750) =¥ 62,500 and so
on. This, dealer can earn different profits by following different investment strategies. So, the
problem is : How should the dealer invest his money in order to get maximum profit ? To answer this
question, let us try to formulate the problem mathematically.

Mathematical formulation of the problem :

Let x be the number of AC and y be the number of coolers that the dealer buys.
Obviously, x 2 0,y 2 0 (non-negative constraints) (i)
Here, the cost of one AC is ¥ 25,000 and cost of one cooler is ¥ 5000. The dealer can invest at
the most ¥ 5,00,000. Mathematically,
25,000 x + 5000 y < 5,00,000
5x +y <100 (investment constraint) (ii)
The dealer can store maximum 60 items.
x+y <60 (storage constraint) (iii)
The dealer wishes to invest in such a way that he can earn maximum profit, say z.
It is given that the profit earn on selling of an AC is ¥ 2500 and that on a cooler is ¥ 750.
So the profit function z is given by
z =2500x + 750 y (called objective function) (iv)
Mathematically, the given problem now reduces to :
Maximise z = 2500 x + 750 y
Subject to the constraints :
5x+y <100
x+y <60
x20,y=20
So, we have to maximise a linear function z subject to certain conditions determined by a set of
linear inequalities. The variables are non-negative. There are also some other problems where we
have to minimise a linear function (as an example, expenditure) subject to certain conditions determined

by a set of linear inequalities with non-negative variables. Such problems are called Linecar

Programming Problems.
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Before we proceed further, we now formally define some terms (which have been used above)
which we shall be using in the linear programming problems :

The general structure of linear programming model consists of three basic components :

(1) Decision Variables : We need to evaluate various alternatives for arriving at the
optimal value of the objective fumction. The variables in a linear program are a set of
quantities that need to be determined in order to solve a problem. i.e., problem is solved
when the best values of the variables have been identified. These variables are called decision
variables. They are usually denoted by x, y (if there are two variables) or x,, x,,..., X, if
there are more variables.

In the example discussed above x, y are decision variables.

(2) The objective function : The objective function of each linear programming problem
is expressed in terms of decision variables to optimize the criterion of optimality such as
profit, cost, etc. It is expressed as :

Optimize (maximize or minimize)

Z=cx tcyy or
z = eyxy +eyxy +oo+ ¢ x,. In this chapter, we shall find the optimal value of the given
objective function by the graphical method.

(3) The constraints : There are always certain limitations on the use of resources, e.g.
labour, raw material, space, money, time etc. such limitations are being expressed as linear
equalities or inequalities in terms of decision variables. The solution of a linear programming
model must satisfy these constraints.

Now on we will denote a linear programming problem as an LP problem.

Thus, the general mathematical model of LP problem is as follows :

Find the values of decision variables x, y so as to optimize (maximize or minimize).

z=cx + cyy
subject to the linear constraints,
apx +apy (= 2) b
ayx + ayy (5, =, 2) b,
a3 x + apy (S, =, 2) by
x20,y20
In general, we can write as the following :
Find the values of decision variables x,, x,,..., x,, S0 as to optimize (maximise or minimise)
z = cxp + %y tt )%,
Subject to the linear constrains,
ayx; t+ apxy ot ax, (S = 2) b
ayx; + aypxy ot ayx, (S,=2) by

a1 % + a,o%, +ot+a,,x, & = 2)5b,
and x; 20,x, 20, .., x, 20
Here, a; 's are coefficients representing the per unit contribution of decision variable
Xx;, to the value of objective function. «;'s are called the input-output coefficients and

J I

represent the amount of resource. a,}-'s can be positive, negative or zero. The b;'s represent

the total availability of the ith resource.
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Let us take an example of LP model formulation.

Example 1 : A furniture firm manufactures chairs and tables. Each requires the use of three
machines A, B or C. Production of one chair requires 2 hours on machine A, 1 hour on machine
B and 1 hour on machine C. Each table requires 1 hour each on machines A and B and 3 hours
on machine C. The profit realized by selling one chair is ¥ 300 while that from sale of a table is
T 600. The total time available per week on machine A is 70 hours, the time available on machine
B is 40 hours and that on machine C is 90 hours. How many chairs and tables should be made
per week so as to maximize profit ? Develop a mathematical formulation.
Solution : Let us represent the given data in a tabular form as following :

\_____/—\

Machine Chair Table Available time per week
number of hours | number of hours (in hours)
A 2 1 70
1 1 40
C 1 3 90
Profit per unit T 300 T 600

Let the number of chairs and tables manufactured respectively x and y.
Let z denote the total profit. Then z = 300x + 600y ()
It is given that a chair requires 2 hours on machine A and a table requires 1 hour on machine A.
Therefore, the total time taken by machine A to produce x chairs and y tables is (2x + y) hours.
This must be less than or equal to total hours available on machine A.
2x +y <70 (ii)
It is given that a chair requires 1 hour on machine B and a table requires 1 hour on machine B.

Therefore, total time taken by machine B to produce x chairs and y tables is (x + y) hours. Total time
available per week on machine B is 40 hours.

x+y<40 (iii)
Similarly, from the consideration of machine C we have the inequality

x+3y <90 (Why ?) (iv)
Since the number of chairs and tables cannot be negative.

x20andy20 v)

Hence, the mathematical form of the given LPP is as follows :
Maximize z = 300x + 600y
Subjectto 2x +y < 70
x+y<40
x+3y <90
and x=20,y=20.

We will now discuss how to find solutions to a linear programming problem. In this chapter
we shall study only graphical method.

LINEAR PROGRAMMING 273



a

8.3 Graphical Method of Solving Linear Programming Problems
In this section first we shall discuss some definitions related to the solution of a linear programming
problems.
Definition : The set of values of decision variables x; (i = 1, 2,..., n) which satisfy the
constraints of an LP problem is said to constitute solution to that LP problem.
As an example,
Consider the LP problem.
Maximize z = 300x + 600y
subject to 2x +y £ 70
x+y<40
x+ 3y <90
and x 20,y =20
Here, x =1,y =3;x =7,y = 6; x = 10, y = 18 etc. are solutions of this LP problem as they
satisfy the constraints 2x +y <70, x +y < 40 and x + 3y £ 90 and x = 0, y = 0 . Note that x = 10,

y = 30 is not a solution because it does not safisfy x + 3y < 90.

Feasible Solution : A set of values of the decision variables x,, x,,..., x,, is called a feasible
solution of an LP problem, if it satisfies both the constraints and non-negativity conditions.

Infeasible Solution : An infeasible solution is a solution for which at least one constraint
is violated.

Optimal feasible Solution : A feasible solution of an LP problem is said to be an optimal
feasible solution, if it optimizes (maximizes or minimizes) the objective function.

Feasible region (solution region) : When we graph all the constraints, the feasible region
is the set of all points which satisfy all the constraints including non-negativity constraints.

Figure 8.1
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In figure 8.1, the region OABCD (yellow coloured) is the feasible region of Example 1.

The region other than the feasible region is called the infeasible region.

Note that points within and on the boundary of the feasible region represent feasible solutions of
the constraints. In fig. 8.1, every point within or on the boundary of the feasible region OABCD
represents feasible solution to the problem.

For example, the point (35, 0), (30, 10), (15, 25), (0, 30), (20, 0), (0, 10), (20, 10) etc. are some
of the feasible solutions. The point (30, 20) is an infeasible solution of the problem. We see that every
point in the feasible region OABCD satisfies all the constraints of example 1. We also observe that
there are infinitely many points in the feasible region. Among them we have to find out one point which
gives a maximum value of the objective function z = 300x + 600y. To handle this situation, we use the
following theorems which are fundamental in solving linear programming problems. We shall not prove
these theorems, we just state them.

Theorem 8.1 : Let R be the feasible region (convex polygon) for a linear programming problem
and let z = ax + by be the objective function. When z has an optimal value (maximum or
minimum), where the variables x and y are subject to comstraints described by linear
inequalities, this optimal value must occur at a corner point (vertex) of the feasible region.

Theorem 8.2 : Let R be the feasible region for a linear programming problem and let
z = ax + by be the objective function. If R is bounded, then the objective function z has
both a maximum and a minimum value on R and each of these occurs at a corner point
(vertex) of R.

In the above example, the corner points (vertices) of the bounded (feasible) region are : O,
A, B, C, D and their coordinates are (0, 0), (35, 0), (30, 10), (15, 25) and (0, 30) respectively. Let us
now compute the values of z at these points. We have z = 300x + 600y.

Vertex of the feasible region Corresponding value of z (in )
0(0, 0) 0
A(35, 0) 10,500
B30, 10) 15,000
C(15, 25) 19,500 K—Maximum
D(0, 30) 18,000

We observe that the maximum profit is earned by the firm by producing 15 chairs and 25 tables.
Note : If R is unbounded, then a maximum or a minimum value of the objective function may not
exist. However, if it exists, it must occur at a corner point of R. (by theorem 8.1)
This method of solving linear programming problem is known as Corner Point Method.
Following steps can be used to solve an LP problem in two variables graphically by using
corner-point method.
(1) Formulate the given LP problem in mathematical form, if it is not given in mathematical
form.
(2) Find the feasible region of LP problem and determine its corner points (vertices) either by
inspection or by solving the two equations of the lines intersecting at the points.
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(3) Evaluate the objective function z = ax + by at each corner point. Let M and m respectively
denote the largest and the smallest values of z at these points.

(4) When the feasible region is bounded, M and m are the maximum and minimum
values of z.
(5) In case, the feasible region is unbounded, we have.

(i) M is the maximum value of z, if the open half plane determined by ax + by > M has

no point in common with the feasible region. Otherwise, z has no maximum value.
(ii) m is the minimum value of z, if the open half plane determined by ax + by < m has

no point in common with the feasible region. Otherwise, z has no minimum value.

We will now illustrate these steps of coner point method in some examples :
Example 2 : Solve the following linear programming problem graphically :
Maximize z = 20x + 15y
subject to 180x + 120y < 1500
x+y<10
and x 20,y 20

Solution : Since x 2 0 and y 2 0, the solution region is restricted to the first quadrant and along

- =
0X, 0Y,

Figure 8.2
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(i) 180x + 120y < 1500

3x + 2y < 25 x |0 s [ Bt
Draw the line 3x + 2y = 25 B % 5 0 1

_ 25-3x

2
Determine the region represented by 3x + 2y < 25.

(i) x+y<10 x 0 10

Draw the line x + y = 10
y 10 0

y=10—x

Determine the region represented x + y < 10. Colour the intersection of the two regions.

Also x 2 0, y 2 0. The yellow coloured region OABC in figure 8.2 is the feasible region. B(5, 5)
is the point of intersection of 3x + 2y = 25 and x + y = 10.

The corner points of OABC are O(0, 0), A(%,O), B(5, 5) and C(0, 10).

Vertex of the feasible region Corresponding value of z = 20x + 15y
0(0, 0) 0
25
A(%2,0) 166.67
B(, 5) 175
C(0, 10) 150

z is maximum at x = 5 and y = 5. Maximum value of z = 175.

Example 3 : Find the maximum and minimum value of z = 2x + 5y,
subject to 3x + 2y < 6, —2x + 4y <8, x +y =21,x 2 0, y 2 0 using corner point method.
Solution : Since x =2 0 and y = 0, the feasible region is restricted to the first quadrant and

- —
along OX, OY.

Draw the line 3x + 2y = 6
y 3 0
_ 6-3x
2

Determine the region represented by 3x + 2y < 6.
(2) 2x+4y <38

—x+2y<4 x 0 2
Draw the line —x + 2y = 4. y 2 3
_ X+4
2

Determine the region represented by —x + 2y < 4.
3 x+y=21

Draw the line x + y = 1 and determine the region represented by x + y 2 1.
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Figure 8.3

Colour the intersection of the three regions.

The yellow coloured region ABCDE in figure 8.3 is the feasible region. The point C(0.5, 2.25)
is the point of intersection of 3x + 2y = 6 and —2x + 4y = 8.

The corner points of ABCDE are A(1, 0), B(2, 0), C(0.5, 2.25), D(0, 2), E(0, 1).

Corner point Value of z = 2x + Sy
A(l, 0) 2 <—Minimum
B(2, 0) 4
C(0.5, 2.25) 12.25 <—Maximum
D(0, 2) 10
E(0, 1) 5

Hence, x = 1, y = 0 minimizes z = 2x + 5y and the minimum value is 2.

x = 0.5, y = 2.25 maximizes z = 2x + 5y and the maximum value is 12.25.
Example 4 : Minimize 2x + 4y subject to x + 2y 2 10; 3x + y 2 10; x 2 0; y 2 0.

Solution : Since x 2 0 and y 2 0, the feasible region is restricted to the first quadrant and
along (S)(, &

Draw the line x + 2y = 10 5 0
_10-x L
2
Determine the region represented by x + 2y = 10.
(2) 3x+y=210 x 0 D)
Draw the line 3x + y = 10. b 10 7
y=10— 3x

Determine the region represented by 3x + y = 10.

Colour the intersection of the three regions. The feasible region is as shown in the
figure 8.4 Observe that the feasible region is unbounded.
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The corner points are (0, 10), (2, 4), (10, 0).
Corner point Value of z = 2x + 4y

0, 10) 40

2,4 20

(10, 0) 20

From the table, we find that 20 may be the smallest value of z at the corner point (2, 4), (10, 0).
Since the feasible region is unbounded, 20 may or may not be the minimum value of z. To decide this,

we graph the inequality 2x + 4y < 20 (see step 5(ii) of corner point method).
Now, 2x + 4y < 20
x+2y<10
We have to check whether the resulting open half plane has points in common with
feasible region or not. If it has common points, then 20 will not be the minimum value of z. Otherwise,
20 will be the minimum value of z. As shown in the figure 8.4, it has no common point with the
feasible region. Hence, 20 is the minimum value of z. In fact, all the points on the line x + 2y = 10
give the same minimum value 20. Thus, there is an infinite number of points minimizing z = 2x + 4y
subject to the given constraints.
Example 5 : Determine graphically the minimum value of the objective function z = —50x + 20y
subject to the constraints.
2x —y = —5
3x+y=3
2x — 3y < 12
x20,y20,
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Solution : Since x 2 0 and y 2 0, the feasible region is restricted to the first quadrant and
- =
along OX, OY.

X 0 1
(1) 2x—y =2 -5
Draw the line 2x — y = =5 y 5 7
y=2x+5
Determine the region represented by 2x — y 2 —5.
(2) 3x+y=23 X 0 1
Draw the line 3x + y = 3
Determine the region represented by 3x + y 2 3. 4 3 0
3) 2x—3y<12
Draw the line 2x — 3y = 12 x 9 6
_ 2x ; 12 y 2 0

Determine the region represented by 2x — 3y < 12.
Colour the intersection of the three regions. The feasible region is as shown in the figure 8.5.
Observe that the feasible region is unbounded.
The corner points are (0, 5), (0, 3), (1, 0) and (6, 0). We now evaluate z at the corner points.

Corner point Value of z = —S0x + 20y
A0, 5) 100
B(0, 3) 60
C(1, 0) —50
D(6, 0) =300 <—Smallest

 feasible Er.eg'idlilg

7
’

&

7

14
—5x + Iéy < -30
7
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From the table, we find that —300 may be the smallest value of z at the corner point (6, 0). Since

the feasible region is unbounded, —300 may or may not be the minimum value of z. To decide this, we
graph the inequality —50x + 20y < —300 i.e. —5x + 2y < —30 and check whether the resulting open
half plane has points in common with feasible region or not. If it has common points, then —300 will
not be the minimum value of z. Otherwise —300 will be the minimum value of z. As shown in the

figure 8.5, it has common points. Therefore, z = —50x + 20y has no minimum value subject to the

given constraints.

[In the above example, can you say whether z = —50x + 20y has the maximum value 100 at
0,5) ?]
Example 6 : Maximize z = 3x + 4y, if possible, subject to
x—y< -1
—x+y<0
x20,y20

Solution : Let us graph the inequalities x —y < —1, —x+y < 0,x=20and y 2 0.
From figure 8.6 we can see that there is no point satisfying all the constraints simultaneously.
Thus, the problem has no feasible region and hence no feasible solution.

Figure 8.6

From the examples which we have discussed so far, we observed the following :

(1) The feasible region is always a convex region.

(2) The maximum (or minimum) solution of the objective function occurs at the corner of the
feasible region. If two corner points produce the same maximum (or minimum) value of the objective
function, then every point on the line segment joining these points will also give the same maximum
(or minimum) value.
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Exercise 8.1

1. A company sells two different products A and B, making a profit of ¥ 40 and ¥ 30 per unit on
them respectively. The products are produced in a common production process and are sold in
two different markets. The production process has a total capacity of 3,000 man-hours. It takes
three hours to produce a unit of type A and one hour to produce a unit of type B. The market has
been surveyed and company officials feel that the maximum number of units of type A that can
be sold is 8,000 and those of type B is 1200. Subject to these constraints, product can be
sold in any combination. Formulate this problem as an LP problem mathematically to maximize
the profit.
2. Vitamins A and B are found in foods F; and F,. One unit of food F; contains three units of vitamin
A and four units of Vitamin B. One unit of food F, contains six units of vitamin A and three units
of vitamin B. One unit of food F; and F, costs ¥ 4 and ¥ 5 respectively. The minimum daily
requirement (for a person) of vitamins A and B is 80 units and 100 units respectively. Assuming
that anything in excess of the daily minimum requirement of A and B is not harmful, formulate
this problem as an LP problem to find out the optimum mixture of foods F, and F, at the minimum
cost which meets the daily minimum requirement of vitamins A and B.
3. A pension fund manager is considering investing in two shares A and B. It is estimated that,
(1) share A will earn a dividend of 12 percent per annum and share B will earn 4 percent
dividend per annum.

(2) growths in the market value in one year of share A respectively are 10 paise per Re 1
invested and 20 paise per Re 1 invested in B.

He requires to invest the maximum total sum which will give,

(1) dividend income of at least ¥ 600 per annum; and

(2) growth in one year of at least ¥ 1000 on the initial investment.

Formulate this problem as an LP model to compute the minimum sum to be invested to meet

the manager's objective.

Solve the following linear programming problems graphically (4 to 12) :
4. Maximize z = 20x + 10y
subject to x + 2y <40,3x+y =230, 4x+3y=260and x 20,y 2 0
5. Maximize z = 4x + y
subjectto x + y < 50,3x +y <90 and x =20,y =20
6. Minimize z = 200x + 500y
subject to x +2y 210, 3x +4y <24 andx 20,y =0
7. Minimize and maximize z = 3x + 9y
subjecttox +3y <60, x+y =210, x2y,x20,y =20
8. Minimize z = 3x + 2y
subjecttox +y 28, 3x+5y<15,x=20,y =20
9. Maximize z = 3x + 4y
subjecttox +y <4, x20,y20
10. Maximize z = 3x + 4y
subjecttox +2y < 8,3x+2y <12, x20,y20
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11. Maximize z = —x + 2y
subjecttox =23, x+y 25 x+2y26,y26
12. Minimize z = 5x + 10y
subjecttox +2y <120, x+y 260, x—2y20,x=20,y=20

8.4 Different Types of Linear Programming Problems

Diet Problems : In this type of problems, we have to find the amount of different kinds of
constituents / nutrients which should be included in a diet so as to minimize the cost of the desired
diet and such that it contains a certain minimum amount of each constituent / nutrient.

Example 7 : A housewife wishes to mix together two kinds of food, X and Y, in such a way that

the mixture contains at least 10 units of vitamim A, at least 12 units of vitamin B and at least
8 units of vitamin C. The vitamin contents of one kg of food is given below :

Vitamin A Vitamin B Vitamin C
Food X 1 2 3
Food Y 2 2 1

One kg of food X costs ¥ 60 and one kg of food Y costs ¥ 100 . Find the least cost of the
mixture which will produce the diet.

Solution : Let x kg of food X and y kg of food Y be mixed together to make the required diet.

1 kg of food X contains one unit of vitamin A and 1 kg of food Y contains 2 units of
vitamin A.

Therefore, x kg of food X and y kg of food Y will contain x + 2y units of vitamin A. It is given
that the mixture should contain at least 10 units of vitamin A.
Therefore, x + 2y = 10 ()
Similarly, x kg of food X and y kg of food Y will produce 2x + 2y units of vitamin B and 3x +y
units of vitamin C. The minimum requirements of vitamin B and C are 12 and 8 units respectively.
2x + 2y 2 12 (ii)
and 3x +y =38 (i)
Since the quantity of food X and Y cannot be negative.
x20,y20 (iv)
It is given that one kg of food X costs ¥ 60 and one kg of food Y costs ¥ 100. So, x kg of
food X and y kg of food Y will cost ¥ (60x + 100y). Thus, the given linear programming problem is
Minimize z = 60x + 100y
Subjectto x +2y 2 10, 2x +2y 212, 3x+y=28and x =0,y = 0.
Now let us solve this LP problem by graphical method.
To solve this LP problem, we draw the lines x + 2y = 10, 2x + 2y = 12 i.e. x + y = 6 and

3x + y = 8 and obtain the feasible region as shown in the figure 8.7, which is an unbounded one.
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Figure 8.7
The corner points of the coloured region ABCD are A(10, 0), B(2, 4), C(1, 5) and D(0, 8).

These points can also be obtained by solving simultaneously the equations of the corresponding
intersecting lines,. The values of the objective function at these points are given in the following table :

Corner point Value of the objective function z = 60x + 100y
A(10, 0) 600
B(2, 4) 520 <— Minimum
C(1, 5) 560
D(0, 8) 800

Clearly, z may be minimum at x = 2 and y = 4. Since the feasible region is unbounded, we have
to graph the inequality 60x + 100y < 520, i.e. 6x + 10y < 52 and check whether the resulting open half
plane has points in common with feasible region or not. We see from the figure 8.7 that it has no
point common with the feasible region. So, z has minimum value equal to 520.

The minimum cost of the mixture is ¥ 520.

Manufacturing problems : In these problems, we determine the number of units of different
products which should be produced and sold by a firm when each product requires a fixed man-power,
machine hours, labour hour per unit of product, warehouse space per unit of the output etc.,
in order to make maximum profit.

Example 8 : A small firm manufactures gold rings and chains. The total number of rings and chains
manufactured per day is atmost 24. It takes 1 hour to make a ring and 30 minutes to make

a chain. The maximum number of hours available per day is 16. The profit on sell of a ring is

¥ 300 and that on sell of a chain is ¥ 190. Find the number of rings and chains that should be

manufactured per day, so as to earn the maximum profit. Make it an LP problem and solve
it graphically.

Solution : Let the number of gold rings to be manufactured be x and that of chains be y. We
construct the following table :
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Item Number Time taken Profit ¥
Gold ring x 1x hour 300x
Gold chain y %y hour 190y
Total x+y (x+2) hour 300x + 190y
Our problem is to maximize the profit z = 300x + 190y subject to constraints x = 0,y =20 (i)
x + %y <16
2x +y <32 (ii)
and x +y <24 (iiii)
We draw the lines 2x + y = 32 and x + y = 24 and obtain the feasible region as shown in the

figure 8.8

Corner points of the feasible region OABC are O(0, 0), A(16, 0), B(8, 16), C(0, 24).
Let us evaluate z at these corner points.

B@16)

15 W EmERE e

HHH _— feasible region |

10 SN A
s N
( A(16,

O F e Pt T R
1 1 2 +y=32  x+y=24

Figure 8..8
Corner point Value of z = 300x + 190y in X
(0, 0) 0
(16, 0) 4800
(8, 16) 5440  ¢— Maximum
©, 24) 4560

We observe that profit is maximum when x = 8 and y = 16 and maximum profit is ¥ 5440.

Thus, to get maximum profit a firm has to produce 8 rings and 16 chains per day.

Transportation problems : In this type of problems, we have to determine transportation

schedule for a commodity from different plants or factories situated at different relations to
different markets in such a way that the total cost of transportation is minimum.
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Example 9 : A brick manufacturer has two depots, A and B, with stocks of 30,000 and 20,000 bricks
respectively. He receives orders from three construction companies P, Q and R for
15,000, 20,000 and 15,000 bricks respectively. The cost in ¥ of transporting 1000 bricks to the
companies from the depots are given below :

From
To P Q R
A 80 40 60
B 40 120 80

How should the manufacturer fulfil the orders 50 as to keep the cost of transportation minimum ?
Solution : The given information is as shown in the following figure.

Figure 8.9

Let the depot A transport x thousand bricks to the company P and y thousand bricks to the
company Q. Since the depot A has stock of 30,000 bricks, the remaining 30 — (x + y) thousand
bricks will be transported to the company R. The number of bricks is always non-negative.

Wehave x 20, y20and 30— (x +y) =0 ie,x+ y < 30 (i

Now, the requirement of the company P is of 15,000 bricks and x thousand bricks are transported
from the depot A, so the remaining (15 — x) thousand bricks are to be transported from the depot B.
The requirement of the company Q is of 20,000 bricks and y thousand bricks are tramsported
from depot A. So the remaining (20 — y) thousand bricks are to be tramsported from depot B.
Now, depot B has 20 — (15 — x + 20 — y) = x + y — 15 thousand bricks which are to be transported
to the company R.

Also, 15—x20,20—y20andx+y—1520

S o x<15,y<20andx+y 215 (ii)

The transportation cost from the depot A to the companies P, Q and R are respectively ¥ 80x,
T 40y and T 60(30 — (x + y)). Similarly, the transportation cost from the depot B to the companies
P, Q and R are respectively ¥ 40(15 — x), 120(20 — y) and 80(x + y — 15) respectively. Therefore, the
total transportation cost z is given by
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z = 80x + 40y + 60(30 — x — y) + 40(15 — x) + 12020 — y) + 80(x + y — 15)
z = 60x — 60y + 3600
Hence, the above LP problem can be stated mathematically as follows :
Minimize z = 60x — 60y + 3600
Subjecttox +y <30, x <15,y <20, x+ypy=215and x =20,y =20
Here, x and y are in thousands.
Let us solve this problem graphically. We draw the lines x + y = 30, x = 15,
y =20 and x + y = 15 and obtain the feasible region as shown in the figure 8.10.

Figure 8.10
Corner points of the feasible region ABCDE are A(15, 0), B(15, 15), C(10, 20), D(0, 20), E(0, 15).
Let us evaluate z at these corner points.

Corner point Value of z = 60x — 60y + 3600
(15, 0) 4500
(15, 15) 3600
(10, 20) 3000
(0, 20) 2400  ¢— Minimum
(0, 15) 2700

Clearly, z is minimum at x = 0, y = 20 and the minimum value of z is 2400.

Thus, the manufacturer should supply 0, 20 and 10 thousand bricks to company P, Q and R from
depot A and 15, 0 and 5 thousand bricks to company P, Q, R from depot B respectively.

In this case the minimum transportation cost will be ¥ 2400.

Marketing Problems : Linear programming can be used to determine the right mix of media
exposure to use an advertising campaign. Suppose that the available media are radio, television
and newspapers. The goal is to determine how many advertisements to place in each medium where
the cost of placing an advertisement depends on the medium. Of course, we want to minimize the
total cost of the advertising compaign and maximizing the mass where advertisement reaches.
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Example 10 : An advertising agency wishes to reach two types of probable customers with
annual income greater than one lakh rupees (target audience A) and customers with annual
income less than one lakh rupees (target audience B). The total adverising budget is . 2,00,000.
One programme of TV advertising costs ¥ 50,000; one programme of radio advertising costs
¥ 20,000. For contract reasons, at least three programmes ought to be aired on TV and the number
of radio programmes must be limited to 5. Surveys indicate that a single TV programme reaches
4,50,000 prospective customers in target audience A and 50,000 in target audience B. One radio
programme reaches 20,000 prospective customers in target audience A and 80,000 in target
audience B. Determine the media mix to maximize the total reach.

Solution : Let us define the following decision variables :

Let x and y be the number of programmes to be aired on TV and radio respectively.

We are given that a single TV programme reaches 4,50,000 in target audience A and 50,000 in
target audience B. One radio programme reaches 20,000 in target audience A and 80,000 in
target audience B.

Hence, we have to maximize.

z =(4,50,000 + 50,000)x + (20,000 + 80,000)y
=5,00,000x + 1,00,000y ®
According to budget constraint we have
50,000x + 20,000y < 2,00,000
ie, 5x +2y <20 (i)

Also, there is number of programme constraints as at least 3 TV programmes and at the most

5 radio programme.
x23and y<5 (i)
Also, number of programmes is non-negative.

R

Figure 8.11
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x20andy =20 (iv)
Thus, LP problem is maximize z = 5,00,000x + 1,00,000y
subject to Sx +2y <20, x23,y<5andx=20,y=20
Let us solve this problem graphically. We draw the lines 5x + 2y = 20, x = 3, y = 5 and obtain
the feasible region as shown in the figure 8.11.
Corner points of the feasible region ABC are A(3, 0), B(4, 0) and C(3,%).
Let us evaluate z at thest corner points.

Corner point Value of z = 5,00,000x + 1,00,000y
3,0) 15,00,000
4,0 20,00,000 ¢<— Maximum
5
(33) 17,50,000

Since the maximum value of z = 20,00,000 occurs at the point B(4, 0), therefore, the agency
must release 4 programmes on TV and no programme on radio to achieve the maximum target

audiences.
Exercise 8

Use the graphical method to solve the following LP problems : (1 to 6)
1. Maximize z =2x + y

subjecttox +2y <10, x+y <6, x —y <2, x—2y<landx=20,y20
2. Minimize z = —x + 2y

subject to —x +3y < 10, x +y<6,x—y<2andx20,y=20
3. Minimize z = 3x + 2y

subjectto 5Sx +y 2 10, x +y 26, x+4y=212andx 20, y 2 0

4. Maximize z = 7x + 3y
subjecttox+y23,x+y£4,0SxS%,OSyS%

5. Minimize z = 20x + 10y

subject to x + 2y < 40,3x +y 230,4x+3y=260and x =20, y 20
6. Maximizez=x+y

subjecttox +y <1, 3x+y=23andx=20,y=20

7. A factory owner purchases two types of machines A and B for his factory. The requirements
and limitations for the machines are as folows :

Machine Area occupied Labour force Daily out-put units
A 1000 m? 12 persons 60
B 1200 m? 8 persons 40
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He has maximum area of 9000 m?2 available and 72 skilled labourers who can operate both the
machines. How many machines of each type should he buy to maximize the daily output ?
Formulate and solve the problem graphically.

8. A diet for a sick person must contain at least 4000 units of vitamin, 50 units of minerals and
1400 units of calories. Two foods A and B are available at a cost of ¥ 5 and ¥ 4 per unit
respectively. One unit of food A contains 200 units of vitamins, 1 unit of minerals and 40 units
of calories, while one unit of the food B contains 100 units of vitamins, 2 units of minerals and
40 units of calories. Find what combination of the foods A and B should be used to have
minimum cost, but it must satisfy the requirements of the sick person. Formulate as an LP
problem and solve it graphically.

9. A shopkeeper wishes to purchase a number of 5 / oil tins and 1 kg ghee tins. He has only ¥ 5760
to invest and has a space to store at most 20 items. A 5 / oil tin costs him ¥ 360 and a 1 kg ghee
tin cost him ¥ 240. His expectation is that he can sell an oil tin at a profit of ¥ 22 and
a ghee tin at a profit of ¥ 18. Assuming that he can sell all the items he can buy, how should
he invest his money in order to maximize the profit ? Formulate this as a linear programming
problem and solve it graphically.

10. One kind of cake requires 300 g of flour and 15 g of fat. Another kind of cake requires 150 g of
flour and 30 g of fat. Find the maximum number of cakes which can be made from 7.5 kg of
flour and 600 g of fat, assuming that there is no shortage of other ingredients used in making
the cakes. Formulate it as an LP problem and solve it graphically.

11. An oil company has two depots A and B with capacities of 7000 / and 4000 / respectively. The
company is to supply oil to three petrol pumps, D, E and F, whose requirements are 4500 /,
3000 7 and 3500 / respectively. The distances (in km) between the depots and the petrol pumps
is given in the following table : (Distance in km)

To
A B
From
D 7 3
E 6 4
F 3 2

Assuming that the transportation cost of 10 / of oil is ¥ 1 per km. How should the delivery be
scheduled in order that the transportation cost is minimum ? What is the minimum cost ?

12. An aeroplane can carry a maximum of 200 passangers. A profit of ¥ 1000 occurs on each
executive class ticket and a profit of ¥ 600 occurs on each economy class ticket. The airline
reserves at least 20 seats for executive class. However, at least 4 times as many passangers
prefer to travel by economy class than by the executive class. Determine how many tickets of
each type must be sold in order to maximize the profit for the airline. What is the maximum
profit ?

13. A manufacturer produces two different models : X and Y, of the same product. Model X
generates profit of ¥ 50 per unit and model Y generates profit of ¥ 30 per unit. Raw materials
r, and r, are required for production. At least 18 kg of »; and 12 kg of r, must be used daily.
Also at most 34 hours of labour are to be utilized. A quantity of 2 kg of r, is needed for model
X and 1 kg of r; for model Y. For each of X and Y, 1 kg of r, is required. It takes 3 hours to
manufacture model X and 2 hours to manufacture model Y. How many units of each model
should be produced to maximize the profit ?
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14. Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

Section A (1 mark)

(1) Objective function of an LP problems is ]
(a) a constant (b) a function to be optimized
(c) an inequality (d) a quadratic equation

(2) Let x and y be optimal solution of an LP problem, then ]

(@) z=Ax + (1 — A)y, A € R is also an optimal solution
) z=Ax+ (1 — A)y, 0 < A <1 gives an optimal solution.
©z=Ax+ 1+ A)y, 0 <A <1 gives an optimal solution.
(d)z=2Ax+ (1 + A)y, A € R gives an optimal solution.
(3) The optimal value of the objective function is attained at the points ]
(a) given by intersection of lines representing inequations with axes only
(b) given by intersection of lines representing inequations with X-axis only
(c) given by corner points of the feasible region
(d) at the origin
(4) The corner points of the feasible region determined by the system of linear constraints are
(0, 10), (5, 5), (15, 15), (0, 20). Let z = px + qy, where p, ¢ > 0. Condition on p and g so

that the maximum of z occurs at both the pooints (15, 15) and (0, 20) is ...... 1
@p=gq (®) p =2q ©q=2p dq=3p
(5) Which of the following statements is correct ? ]

(a) Every LP problem has at least one optimal solution.
(b) Every LP problem has a unique optimal solution.
(c) If an LP problem has two optimal solutions, then it has infinitely many solutions.
(d) If a feasible region is unbounded then LP problem has no solution.
(6) In solving the LP problem : ]
“Minimize z = 6x + 10y
subjectto x =2 6,y =2, 2x +y 210, x =2 0, y 2 0.” redundant constraints are

@x=26,y=2 bB)2x+y=210,x=20,y20
©x=6 dx=26,y=20
(7) A feasible solution to an LP problem, ]

(a) must satisfy all of the problem's constraints simultaneously
(b) need not satisfy all of the constraints, only some of them.
(c) must be a corner point of the feasible region.

(d) must optimize the value of the objective function.

Section B (2 marks)
(8) For the LP problem ]
“Maximize z = x + 4y
subject to 3x + 6y < 6,4x+ 8 =2 16and x =20,y = 0.”
(a) 4 (b) 8
(c) feasible region is unbounded (d) has no feasible region
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(9) For the LP problem ]
Maximize z = 2x + 3y
the coordinates of the corner points of the bounded feasible region are A(3, 3), B(20, 3),
C(20, 10), D(18, 12) and E(12, 12). The maximum value of z is ......
(@) 72 (b) 80 (c) 82 () 70

(10) For the LP problem ]
Minimize z = 2x + 3y
the coordinates of the corner points of the bounded feasible region are A(3, 3), B(20, 3),
C(20, 10), D(18, 12) and E(12, 12). The minimum value of z is ......
(a) 49 (b) 15 (c) 10 (d) 05

Section C (3 marks)
(11) Solution of the following LP problem 1
Maximize z = 2x + 6y
subjectto —x +y<1,2x+y<2andx =20,y 2 0" is
(a) % (b) % (c) 2—36 (d) no feasible region
(12) Solution of the following LP problem ]
Minimize z = —3x + 2y
subjectto 0 S x <4, 1 <y<6,x+y<S5is
(a) —10 () o (c) 2 (d) 10
Section D (4 marks)

(13) The following graph represents a feasible region. Minimum value of z = 5x + 4y is ...... ]
(a) 150 (b) 145 (c) 160 (d) 250
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(14) Corner points of the bounded feasible region for an LP problem are (0, 4), (6, 0), (12, 0),
(12, 16) and (0, 10). Let z = 8x + 12y be the objective function. Match the following : ||
(i) Minimum value of z occurs at ...... (ii) Maximum value of z occurs at
(iii) Maximum of z is ...... (iv) Minimum of z is ......
(@) (i) (6, 0) (i) (12, 0)  (iii) 288  (iv) 48
() () (0, 4) (i) (12, 16) (iii) 288  (iv) 48
© @ O, 4 ({2, 16) (iii) 288  (iv) 96
)@ (6,0 (i) (12,0) (i) 288  (iv) 96

We have studied the following points in this chapter :

1. Mathematical formulation of linear programming problems.

2. Meaning of the terms : Decision variables, the objective function, the constraints.
3. Graphical method of solving linear programming problems
4

Meaning of the terms : feasible solution, infeasible solution, optimal feasible solution, feasible
region, infeasible region.

Fields of Indian mathematics

Some of the areas of mathematics studied in ancient and medieval India include the following :

Arithmetic : Decimal system, Negative numbers (Brahmagupta), Zero (Hindu numeral
system), Binary numeral system, the modern positional notation numeral system, Floating point

numbers (Kerala school of astronomy and mathematics), Number theory, Infinity (Yajur Veda),
Transfinite numbers

Geometry : Square roots (Bakhshali approximation), Cube roots (Mahavira), Pythagorean
triples (Sulba Sutras; Baudhayana and Apastamba) statement of the Pythagorean theorem without
proof), Transformation (Panini), Pascal's triangle (Pingala)

Algebra : Quadratic equations (Sulba Sutras, Aryabhata, and Brahmagupta), Cubic equations and
Quartic equations (biquadratic equations) (Mahavira and Bhaskara II)

Mathematical logic : Formal grammars, formal language theory, the Panini—Backus form
(Panini), Recursion (Panini)

General mathematics : Fibonacci numbers (Pingala), Earliest forms of Morse code (Pingala),

infinite series, Logarithms, indices (Jain mathematics), Algorithms, Algorism (Aryabhata and
Brahmagupta)

Trigonometry : Trigonometric functions (Surya Siddhanta and Aryabhata), Trigonometric
series (Madhava and Kerala school)
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 ANSWERS |

(Answers to questions involving some calculations only are given.)

Exercise 1.1

(1) Not Reflexive, not symmetric, not transitive (2) Reflexive, not symmetric, transitive
(3) Reflexive, not symmetric, transitive (4) Reflexive, symmetric, transitive

(5) Not reflexive, not symmetric, not transitive

Ap=1{..1,7,13,19,.}

A, ={.... 2,8, 14, 20,....}

Equivalence classes :

Ay ={..3,9 15 21..}
A, ={.... 410, 16, 22,...}
Ag=1{..5 11,17, 23,..}
Ag=1{..6,12,18, 24,.}
Reflexive, antisymetric, transitive 4. (1) {1}, {2}, {3}...., (2) {0}, {1, —1}, {2, —=2},...

{(1, 2)} 6. X-axis and Y-axis and lines parallel to them.

Exercise 1.2

f is one-one and onto 2. fis one-one and onto
fis not one-one and not onto 4. fis not one-one, not onto
£ is not one-one, onto 6. fis one-one and onto
fis not one-one, but onto 8. fis one-one and onto
f is one-one, not onto 10. fis one-one, not onto

. fis not one-one, not onto 12. n! one-one functions

. Number of onto functions on A| = 1
Number of onto functions on A, = 2

Number of onto functions on A; = 6, in general number of onto functions on A, = n!

(1) (goN) = x%, (fog)x) = x*

4. (fof)(x) = x*
6. (fog)(x) =

(fof)(x) = x
(foNx) = x

(fog)(n) ={2n + 2, n even
n+3

2 b

n—2, nodd, n

n odd, n

xX—3
2

@) = 2. 7l =

Exercise 1.3

(2) (goHx) = x, (fog)x) = x
— 263 — 4xr + 5x + 4
I, x=21 (goH(x) = I, x>0
0, xe€ [0, 1) 0, x=0,gof =1
-1, x<0 -1, x<0
(gofi(n) = { 2n + 4, n even
=4k + 1, ke Z n—1, n odd
=4k +3, ke Z
Exercise 1.4
x+7 3w = x% 4. f7lm) = &

294
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5.
9.

10.

14

16

18.

19.

20.

21.

1.

N, 0) =2n, f~Yn 1) =2n+1 6. f~! does not exist

(1) £71 does not exist (2) f~Vdoes not exist (3) f~"does not exist
(4) 71 does not exist G =17 (6) £~ !does not exist
@) £ m) = (ma ), [TV = f

Exercise 1

S is not reflexive, not symmetric, not transitive

(1) not one-one, not onto (2) not one-one, onto
(3) not one-one, not onto (4) not one-one, onto
(5) not one-one, onto (6) one-one, not onto
(7) one-one, onto (8) one-one, onto

(9) not one-one, not onto (10) one-one, onto

(11) not one-one, not onto

(gof)(n) = n if 5|n, (fog)(n) = n otherwise (fog)(n) = 0
fog does not exist

1+ x
is one-one, onto, f~1(x) = 1y — 17. 71 does not exist. fis not onto.
> 10810\ T—x

Ifa* b=a+ b+ ab, then * is commutative and associative. If a * b = a — b + ab, then

* 1s not commutative and not associative.

(1) not associative, not commutative (2) commutative, associative

(3) not commutative, not associative (4) not commutative, not associative

(5) commutative and associative (6) not commutative, not associative

(7) commutative, not associative (8) not commutative, not associative

(9) commutative, associative (10) not commutative, not associative
(1)e=0,a_1=—lfa (2)e=2,a_1=% B)e=2,al=4—-a (4)e=0,a_1=a_1
(5) e does not exist (6) e does not exist (7) e does not exist (8) e does not exist

(9) X is the identity, X"! = X  (10) 6 is the identity, ¢! = ¢

Section A : (1)d ()b @)b 4a ()a 6)c (b @B a @O b (10)a
Anb (12)c (1A3)c (14 a (15 a

Section B :(16) a (17) b (18)a (19 a (200 b (2I)b (22)d (@3)a (4 b
25)a (26)b (27) a

Section C :(28) ¢ (29 b @0)b (@Bl c (32)b (33)a @4)a (B5a ((36)d
3Hd @38 c 39d

Exercise 2.1

mE @O-%F 0F @9-F 0F ©-F 20F 0F F @F

6
7-3/5

2

mF ot % o $B 4L,

Exercise 2.2

mo @»F 32 @m 2 ©1 D3E
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10.

Exercise 2

M {if} ol &F @i eou ol ow

Section A :(I)a ()b (3)a @b (G)d ®d (b @b (©a (10)c
(I)a (12)c @13)d @149b (@15d

Section B :(16) ¢ (17)b (18)d (19c (@0)b (@2)d (@2)d @23)b (4)a
25 a (26)c @7)d (28 a (29d @30)b

Section C :(31)b (32)a (33)a (4)d @(35d @6)d (@7)b (38)b (3%a
@)c @hc @2)c

Section D :(43)d  (44)c (@45 b @6)b @b @8 b @b (B0)b (51)b

Exercise 3.1

M43 @1 (3 2212 @6-2 3.10 (@) 131

Exercise 3.2

=23 Im  1n
4, = 5. 51 5n 7.4

Exercise 3.3

M 0. 7 o)} of1d)] 2-8 3-3
125 @4 5k=3%7 6.aeR

M3x+2y—5=0 @2)x=5 @B)x—4y—13=0 8.1

Exercise 3

x=—75 2.x=—-1,—-2 3.x=2 4.x=-7
Mb @c Gd @b GHd ©d TDec GBb b @@0)c ()b

(12)a (13)d (14 d (15 d (16)b

Exercise 4.1

-1 -3 5 =5 1 -7 8 -6
A+B=|3 7|, A—-B=|3 3|, 2A+B=|6 9|, A—-2B=|3 -8
3 -1 -5 3 2 0 -9 5

T 2s5in0 0 T 0 —2cos0
A+AS = 0 2sin0 |’ A—-A = 2c0s0 0

B—A=diagl2 3 —1], 2A+3B=diag[ll 4 7] 4.x=1lor7, y=-2or6

296
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-1 1 7. x=2,y=4 x=4y=2
-7 2 —4
2 3
4 4 -2 1 U
8. a=d4b=1lc=2,d==2 9 A=|, (. B=|s o 10./4 -4
25 28
3 3
17 -1 3
1S P i i ] IS M Sy A 3
-7 1 0
Exercise 4.2
2 2 4 -5 -1 -3
2. a=2,b=4,c=1,d=3 4. AB=]1], BA=|3 -3 6 5.|-1 -7 -10
1 -1 2 -5 4 =2
7 0 00 i ‘5‘ > 02 3 2
6. _O 7 800 9. X = 137,Y=— _53
5 808 2 20
1 -4 .
10. 3 2 Lx=t7 =y 12. =2, —14
Exercise 4.3
-22 11 -11] -5 11 6
-3 2 d -c
LDy 5| @O, 4| &[4 2 2] @+ 2
16 -8 8 -8 17 10
1 1
5 0 3
2. |2 -3 -+ 7 x=3
1 1 _1
4 2 4
1 _1 1
1 2 2 2 2 32 6
505 73 4 3 -1 11 2
8. M|, 7 @, )N - @
5 75 5 3 1 2 25
2 2 2
11 1 9 2 7
9. -2y oL wowzy o)
Exercise 4
= 4 52 26 -21 {0 N 1—345
L3 o o 4|2 21 17| 50, o 6AT' =3 5 o 84719 -1 4
2 2 83 —41 -34 5 =3 -1
36 0 L
9. 1o 36| 10-M{R. D} @ {-L2} 1O L-D @ {(g,g,g)}
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2 _ _
{a ab ] 13. (x, y) = {(ncé _;211 , an2 _’:111% )} 14.x=6 15 x = 143

12.

24.

10.
15.

L I W A =

13.

15.

ac bc+1
IMHd @2)c Bc @Hd BSb ®)a (()d 8) b @b @0)a @ADL
12) ¢ (13)c (A4 b A5 c @d6)b (17) a

Exercise 5.1

Discontinuous for x = 2 5. Continuous 6. Continuous 7. Discontinuous for x = 0

Continuous 9. Discontinuous for x = 0

Discontinuous for x = 0 11. Continuous 12. Continuous 13. k=3 14. k=5

k=1 16. k=0 17.a =4, b = —1 26. Discontinuous 27. k = ﬁ 28.n=15

Exercise 5.2

(1) 2sinx cosx (2) 2tanx sec’x (3) 4x3 (4) —4cos3x sinx

Exercise 5.3

6sin*(2x + 3) - cos(2x + 3) 2. 3tan®x - sec’x 3. sin’x - cos*x (3cos*x — 5sin’x)
—2sin(sin(sec(2x + 3))) - cos(sec(2x + 3)) - sec(2x + 3) . tan(2x + 3)

—(3x2 — 1) - sec(cot(x® — x + 2)) - tan(cot(x> — x + 2)) - cosec*(x3 — x + 2)

@x + 3"~ 1. .Gx+ 2y~ L.[6(m + n)x + 4m + 9n]

1 1 2 3

X - cos2x = = sin®2x cos 2x

n(sin = 'x . cosx + cos" ~ ' . sinx) 9. 3sinx - cos 7}

. 6sin*(4x — 1). cos?(2x + 3) [2cos(2x + 3) cos(4x — 1) — sin(4x — 1) sin(2x + 3)]

Exercise 5.4

X 1+ cosx X+ 4x + 3y ysec *xy — cosx 9 5
= 2XTY X 2
y 2. cosy 3. tan 5 “ TIxt2y " cosy — xsec 2xy 6. 4y 7. y
~25x x—2 COSX. 3 2
16y 9. 3=y 10. cosy 1. [[_,2 12. 77 2
o) =|—2=, x>0 14. f'(x) = 2 x| <1
1+x%° 1+ x%°
2
— < — >
T+ 0 1_|_xza|x| 1
at x = 0, f'(x) does not exist. at x = £ 1, f'(x) does not exist.
3 —2
1+ x? 16. [ _y2

Exercise 5.5

b cos 0 —2co0s20 9

cosec® 2. s —sime 3 cot 4 tant 5. 1an® 6. —bL

a 2 ' 2a

Exercise 5.6

1

(x+i)x(;i;i +10g(x+§)) + (x+%); (%—#log(x+i)j

298
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x* e (1 + logx)(—sinx* + cosx”)

10.

14.

10.

15.

17.

19.

20.

22.

40.

46.

48.

6 20 ) .
%[u oy R R o 1] 4. (log x)=*** (—Smx log(log x) + xclo(,?x )

2 3 4
(et ats) 6 dow o (phy + loglogm) + 1+ logx

X% (sinx logx + xcosx logx + sinx) + (sinx)* (log (sinx) + xcotx)

1
x(x+x) -(1 + ? + logx — x—lzlogx)

CoSx

S.
(sinx)* (log (sinx) + xcotx) + (%) (_Lxsx + sinx - logx)

y> —xylog y Xy -y (xlogy+y)y
= 12. ——= 13. — 77—/
x> —xylogx xy +x (ylogx +x) x

3 7 15x'0 —16x1 +1
y( 1, _2x o 4x | 8x )or— 15. 4x3 — 15x% + 48x — 39

38inx . cosx log3 — 4905% . sinx log4 11.

+x 1422 1+x* 1+x8 (x-1?

Exercise 5.7

c=1 2.c=2+ﬁ 3.¢c=0 4.c=@ 5.c=% 6.c=T 7.c=%

2 |
=L 9.c=%2L q0.c=loge 12.()c=V3@c=y2-1 14.(3,4)

Exercise 5

Discontinuous at x = 3 2. Discontinuous at x = 1 3. Discontinuous at x = —1
Discontinuous at x =2 5. k=5 6. k=2 7. k=1 8.k=22 9.a=1,5b=-1

2X 2 1-y

a=55b=0 11 (X2 + Dlogl0 12. 772 13. —tanx - cos(log (cosx)) 14. — — 2

(sinx)S"* . cosx - (log sinx + 1) 16. (sinx — cosx)s"™ =<0 . (cosx + sinx) (1 + log (sinx — cosx))

x* -1

xx(1+10gx)+(x+%)x (log(x+é) N ) 18.xx+§-(1+x—12+logx— lo;gzx)

1+ x?

—sinx® - x* (1 + logx) + (tanx)* (log tanx + x secx cosecx)

dy _
- = 0, 0<x<1 21. 0

2
12> —1 < x < 0, not differentiable for x = 0.

(sint)! (logsint +1t cot t) 1 1 | a’ +b?
(cost)! (=t tant + log (cos 1)) 24. 2(1+ x%) 25. 2‘/1 —x2 26. 2 37. = y?

1

1 —=L 2 7 _ 3
> 41. 1 42. 3 43. s 44. T Tox 5. T 2
— 47. 5

Section A: ()¢ (2)d ()a @Hb ()b Gb (DHc @Bb @b 10)c
() c (12)c (13)c (A4H)b 15 ¢
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Section B: (16)a (17)d (18)b (19)¢c (20)a (1)c (22)b (23)d (24)a (25 b
Section C :(26)c  (7)b (28)d (29d @0)a @la @32)c
Section D :(33)a (34 b (35 b (36)a (37 c (38d (39)d @0)d

11.

14.

16.
19.

22.

25.

11.

14.

17.

19.

21.

23.

Exercise 6.1

z S 1
X432 —dx+ Tlog | x|+ 44x + ¢ 2.17—0x2+%x2+4x2+c

5 3 7 5 3
2.7 2 2 20.7 . 2b. 3 2.7 o
5X + 2x +6Jx+J;+c 4.7x +5x +3x +c

e+1 a+1 ax

X e X
+ e+ efx + ¢ 6. ES] +

X
e+1

2 / 2 _ 11X 234 3.2
log62+10g|x+ 2-9|+c 9. x% — gtan” = + ¢ 10. 2x° + 3x% + ¢

2
logea+c 7.x7+2x+4log|x|+c

3 2 5 3 3
LS txte 12.%—%+x+tan_1x+c 13. xT—x+2tan_1x+c

—3cosx + Ssinx + 8tanx + 4cotx — x + ¢ 15. —2cotx — 3cosecx + ¢

4tanx — 9cotx — 25x + ¢ 17. —%(cotx + tanx) + ¢ 18. cosecx + cotx + x + ¢

—cotx + cosecx + ¢ 20. tanx — cotx — 3x + ¢ 21. —cosecx — cotx — x + ¢
2 2 ) ¥l x—3
secx — tanx + x + ¢ 23. a“tanx — b*cotx — (a — b)y*x + ¢ 24.x+710g P + ¢
2%t — x2 — 20
Exercise 6.2
%log|5x—3|+c 2.%e7"+4+%+c 3_2712:g:37_c02tz)c_x+c

54x+3

1
e R A 1R ey
= 1

Lo (3) + e 7. 75 log | f5x + f5x2 43| + Fylog

. 1 i [ V1x
5 2 — 1| XX
ﬁlog|\/5x+\/2x +3 |+ oy tan (,/3)-'_0

4

5 3 2
22+ 12x+ 25 log [x — 2| + ¢ 10.%—%+%—x7+x+log|x+l|+c

2x+3
2x -3

1
—%(5—3x)2 +e 123553 + +c¢ 13 —%cot(3 +5x) —x+c
e

402x + 1)?

- %sin (6x + 10) + ¢ 15. %(cosec3x — cof3x) + ¢ 16. 2ﬁsin % +c

X
2

3 3 3 3
FBx+ 42 + Gx+ D21 +c 18 —£(5 =207 + £(3 — 20 +¢

1

log|x+1|—537+c 20.x—2log|x+1]|— 2

x+1

+ c

3

3 3
2 -2x+3)? +c¢

3
L +22+6x+Tloglx—1]+c 22. 2(x + 3)

1 3 1
—2x+ D24 24. %(2x + 1)+ 2@+ D+

3
2 2
2(x + 1)
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3
2

25.

27.

29.

31.

33.

35.

37.

39.

42.

45.

48.

51.

5S.

58.

59.

61.

64.

10.

12.

%(4x + 7)) — —(4x + 7)2 +c 26. —x + —sm2x + 5 sindx + ¢
=3 cos2x + L cosbx + ¢ 28, &2 ex-b _ cos@x—l) +c

64 192 ’ 6 2

% sinéx + L sm2x +c 30. 2 sm 3x + 2sinx + ¢

1
YT sinl2x + Esm4x + 5 sin8x + +c 32. J2log | cosec % - cot%| +c

L x | [ sinim—mx  sin(m+n)x
2log |sin| + ¢ 4. - m—n__  m+n c
. . 1 sin(x —b)
xcosa + sina log |sin(x — a)| + ¢ 36. Sinb—a) 192 [max—ay| T ¢

3
—3& — Dlog |3 —2x| +¢ 38.%(3x2—4x+5)2+c

3
‘/xz +6x+4 +c 40 3(5x +3)2 +c 41. 2 log x — 1 sin(2 logx) + ¢

3
2 1 .
%(logx + 1) + ¢ 43. Inmtncosix) T ¢ 44. log | sinx + cosx | + ¢

tan(xe®) + ¢ 46. %cot(?.e_x +3)+c 47. é log |x¢ + €| + ¢

1 1 log | a?cos®x + b2sin’x | + ¢
50. 22 — a)

—1
Tan’x + 2tanx + 9 +c 494 — ayasin’x + beosx)

2
1 o —1.2\2 -2 1 . ) _1 xX+1 }
4(sm x> +c¢ 52, T e +c¢ 53 2[log (sine")]* + ¢ 54. > {log (—x ) +c

5 3
57 lan’x _ tan’x

4
Lianx + log |cosx| + ¢ 56, ££€X + ¢
2 4 5 3

+ tanx — x + ¢

1 1 1 1
2+ D2 =3+ DP+6(x+ 1D —6log|(x+ 1D +1|+¢c
3 5 12 3 3 b
3 _ 12 3 3 1
30 +2° -2 @+2)7 +6(x+2)7 + ¢ 60. L ran (atanx)+c

1+V3cotx
1—3cotx

tan

J—ta (J-xj +c¢ 62 2‘/— log
ﬁ tan_l(ﬁtanx) +c

tan_l(% tanx) + ¢

+c 63.%

Exercise 6.3

i fo_ 2 3
o AR T LAubu N g I R 3.%%+c
X X 3 a \/x+a

6 3 B _
%[Sll’l lx—3+—a_x]+c 5. 2sin 1"% +c 6. 2sin 1@+m+c
3
\/ 2 — acos & + ¢ 8. %sinﬂ% + ¢ 9. —i - %tan_lx - 2(lfx2) + c

X
| —

Mlog x+ 2 g2 |- —=X— +¢
‘/16 9x2 x* —a?
x2
_aT cos 1(?) + %"a4—x4 +c 13 2og | Jx-1+ Jx-2|+c¢
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14, —— — sin_I% +c 15. log |tan% +1|+c¢ 16 tan_l(l + tan%) + c

tan—
2 1 2 112 X Z 1 X
17. 3 tan [ 3 ] + c 18. ST tan (tan > tanz) + ¢ 19. & tan (\/gtanz) + ¢

tant +1++2
L il B e Simx _ sin'x cosx _ cos'x
20. 5 log tan£+1—ﬁ +c 21 e +c 22. 3 T +c
23. sinfx _ sin'%x c 24. cossx + cos7x— cos"x + ¢
8 10
_ 2 . 3. _ COSX _ 1 _ 1 1
25. —cosx + 3cos X == + c 26. (2x 2sm2x 2sm4x + sm6x) c
Exercise 6.4
|2 223 T | 3x+1— V2|
. ﬁtan 7 + c .Zﬁtan 7 +c 3. o2 log 3erH_‘/—|+c
1 X +1 1 >
4 Zlog x| T ¢ 5.10g|x—5+‘,x —x+5|tc
1 2.3 L. (4x+3
- +‘, +=x-1 - 1
6 \51 XTt5x ‘+c 7.ﬁsm (,/@)+c
1
8. 5 log x+2+x+3x+2 ¢ 9. log x—%+\/x2—3x+2 +c

+c

—4
10. sin_l(xs )+c 11. 2log [ + 3x + 2| — S log |

12. 310 |2x2 +x+ 1] + tan 1(4x+1)+c
S g \/7 ﬁ
[2 2 [ 2 [ x£!L
13. 2¢yx"+4x+5 —log|x+2 + yx " +4x+5|+ ¢ 14. —345-2x—-x" — 2sin 1( e j+c
B _[eF+2
15. 2log | sin*x — 4sinx + 5| + Ttan '(sinx — 2) + ¢ 16. sin”! 3 +c
| . - 2x2 +1 1 4 X2 -1
17. Slog |x* + 1+ ‘,x6+2x3+3|+c 18. sin™ | T |+ 19 ian | T [t

2 2
1 N 1 [ x=t
20. 5 tan o G 21. S tan ' | —3x |+

1 . x? -1 X —J_x+1|
22. 7 lan Vx )~ 4J_ log 3 +J_x+1|
| X2 -x+1 1 (X | Xt -x+1
23. Elog _x2+x+1 + c 24. _2J§ tan _ﬁx +Zlog —x2+x+1 + c

Exercise 6

2 2z 1 1l L L
oox=2x°+ 37 —2.x2 +3.x3 —6-x° —6log| 1 +x°| +¢

5 2
Jxr+2x+2
2. %[log|x+‘h+x2|]2+c 3o ———57  tc

302 MATHEMATICS 12



e —

4. 2J1—x + cos Wx + Jx—xz +c¢ 5. 1,x2+5x+6 + %log | x + % + 1,x2+5x+6 | + ¢
log | X2+ 3x + 2| — 2 log | 7 jog | x2 0]+ 2 log |32
6. x+log|x*+3x+2[—2log|337|+¢ 7.x—50g|x +7x+1|+?og ~15| T ¢
1 cos(x—a)| _ )
8. sin(a —b) log cos(x—b)| +c 9. xcos(a — b) + sin(a — b) log | sin(x + b)| + ¢
10 = (=0t == (-0t 24
1y [anx— 1 tanx —~/2tanx +1
1. 75 tan J2 tanx TR log tanx +2tanx +1| 1€
L —1 @ 2 —1 l+a X
12. 5 lan D | T ¢ 13. =gz lan T—g fany | +c¢
14. Section A: (1) ¢ 2)b @B)c @HDc B)c OGc (MHa @Bc HG)b 1AO)c
(IHb (12)c (13)b (4 c (15 a (16)b (17)a (18 c (19)b (20)a
Section B :(21)d (22)d (@23)d (@2Hc (25 c¢c 26)d 27)c (@28 b (29d
BOb @Bl)e (2)c (33)d
Section C :(34)a (35 c (36)d (37)a (38)c (39d @0)d @)a @2)c
43) ¢
Section D :(44) b (45 b (46)d (@7)c (48)d
Exercise 7.1
3 4 12 1 2 11 13 1 3 2 1
L2 2.4 342 41 52 sl 98 71 s @22 9.
1 3 5
0. )3 @2 @
Exercise 7.2
10 15 15 5 1
1. Yes 2. = 3. o1 Q) o1 A3) 3T 4. 021 5. 3 6. 0.963
4 3 a1 36
7. mE @2 sl o
Exercise 7.3
1 1 1 64 1
L N3y @35 Oz @Dy O3
3 3 3 11
2. MYes 322 @2 @2 @i
4. X =x 2 3 4 5 6 7 8 9 10 11 12
L 2 3 4 R 5 = 4 3 2 L
PX) | 3 36 36 36 36 36 36 36 36 36 | 36
5. X =x 0 1 2 6. X =x 0 1 2
1 1 1 42 42 6
px) T > 7 p(x) il 20 il
=1 1 2
7. We=% @31 03
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15.

E
k)
0 |—
o0 |w
o0 |w
00 |—

Exercise 7.4

X =x 1 2 3 4 5 6
11 9 7 S 3 L
p(X) 36 36 36 36 36 36

Mean = 2.53, Variance = 1.96, Standard deviation = 1.4

25 Yes 3.(1) k= % (2) Mean = 3.6, Variance = 1.64

1) k= % (2) Mean = 1.1, Variance = 1.69, Standard deviation = 1.3
% 6.(1HO0 216 (32 ) 144 7.3 8 8.125,135,0, 1
Exercise 7.5
63 X 45 47 X 14 144 )
O O 20g O35F
0.6517  4.0.0512 S.n=16,p= %, 2—}6, % 6. 0.9963 7. (1) 0.3950 (2) 0.4074

(1) 0.6630 (2) 0.6826 9. (1) 0.512 (2) 0.384 (3) 0.104 10. (1) 40 (2) 36

Exercise 7

4 1 1 3 16 49 36
7 M5 @5 33 L Mnr Do O

2 L B L 17
M o+ o8 @i 6075 L

X=x| 2 5 10

2
&
w|
0=
=

101 © 6767 3333 9, (1)% (2)% 10.% 1. = 12.3:2  13. 035294

M a 2 ¢ B a @b (5)a 6 d (7)) a 8 d 9 b (10)d
() c (12)d @13)d (4 c (15 d (16)c (17)a (@18 b (19 a (20) b
Q) c (22)b (23)a (4) ¢

Exercise 8.1

800 5. 120 6. 2300 7. 60, 180 8. Feasible region does not exist
16 10. 18 11. Maximum value does not exist 12. 400
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_ O Q0 3 =

13.
14.

Exercise 8

10 2.—=2 3.13 4.22 5.240 6. Feasible region does not exist

A type machines 6, B type machines 0, maximum output 360

A type food 5 units, B type food 30 units, least cost ¥ 145.

57 oil tins 8, 1 kg ghee tins 12, maximum profit T 392.

30 11.Ato D : 5007 AtoE=3000/ AtoF:3500/ BtoD: 4000/

40 executive class tickets, 160 economy class tickets, maximum profit ¥ 1,36,000

6,6

Mb @2 b 3 ¢ @ d (B()c @®GDbL (MHa @BGd H»a 10D
(I)c (12)a @1A3) b A4 Db

departed from Madras. He arrived in London on 14 April, with E. H. Neville waiting for him with a
car. Four days later, Neville took him to his house on Chesterton Road in Cambridge. Ramanujan
immediately began his work with Littlewood and Hardy. After six weeks, Ramanujan moved out of
Neville's house and took up residence on Whewell's Court, just a five-minute walk from Hardy's room.
Hardy and Ramanujan began to take a look at Ramanujan's notebooks. Hardy had already received
120 theorems from Ramanujan in the first two letters, but there were many more results and theorems
to be found in the notebooks. Hardy saw that some were wrong, others had already been discovered,
while the rest were new breakthroughs. Ramanujan left a deep impression on Hardy and Littlewood.
Littlewood commented, "I can believe that he's at least a Jacobi", while Hardy said "he can compare
him only with [Leonhard] Euler or Jacobi."

published a part of his findings there. Hardy and Ramanujan had highly contrasting personalities. Their
collaboration was a clash of different cultures, beliefs and working styles. Hardy was an atheist and
an apostle of proof and mathematical rigour, whereas Ramanujan was a deeply religious man and relied
very strongly on his intuition. While in England, Hardy tried his best to fill the gaps in Ramanujan's
education without interrupting his spell of inspiration.

March 1916 for his work on highly composite numbers, which was published as a paper in the Journal
of the London Mathematical Society. The paper was over 50 pages with different properties of such
numbers proven. Hardy remarked that this was one of the most unusual papers seen in mathematical
research at that time and that Ramanujan showed extraordinary ingenuity in handling it. On 6 December
1917, he was elected to the London Mathematical Society. He became a Fellow of the Royal
Society in 1918, becoming the second Indian to do so, following Ardaseer Cursetjee in 1841, and he
was one of the youngest Fellows in the history of the Royal Society. He was elected "for his
investigation in Elliptic functions and the Theory of Numbers." On 13 October 1918, he became the
first Indian to be elected a Fellow of Trinity College, Cambridge.

Srinivasa Ramanujan : Life in England

Ramanujan boarded the S.S. Nevasa on 17 March 1914, and at 10 o'clock in the morning, the ship

Ramanujan spent nearly five years in Cambridge collaborating with Hardy and Littlewood and

Ramanujan was awarded a B.A. degree by research (this degree was later renamed PhD) in
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TERMINOLOGY

(In Gujarati)

Antiderivation
Antiderivative
Arbitrary Constant
Binary Operation
Binomial Distribution
Chain Rule

Cofactor

Column

Composite Function
Conditional Probability
Consistent
Constraints

Decision Variables
Determinant
Equivalence Relation
Event

Feasible Region
Feasible Solution
Implicit Function
Indefinite Integral
Independent Events
Infeasible Solution
Integrable

Integral

Integrand

Inverse Function
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Linear Programming
Many-one Function
Mathematical Expectation
Matrix

Method of Substitution
Minor

Non-singular Matrix
Objective Function
One-one Function

Onto Function

Optimal Feasible Solution
Optimum Value

Order

Primitive

Random Variable
Reflexive Relation

Row

Sample Space
Skew-symmetric Matrix
Standard Deviation
Symmetric Matrix
Symmetric Relation
Transitive Relation
Transpose of a Matrix
Universal Relation

Variance

L REENRILE]

w525 (AU
auBilas »ual
Al®s

28] Ad
GulAalys
AHIL ABLs
eqaall [8y
wis-os [A8y
Al [Q8y
SredH asd B
Sredd Hed
58l

ydol

Y12 (2495 A
AAIAS HoiY
B2
Mealasia
ERIERIBIEE
yHIRld [dad-
AMA slbs
A Aol
uuRd Hoiy
uRad AlkLs
ALABLS Aoik
(G281

306

MATHEMATICS 12



