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REAL NUMBERS

1.1 Introduction

In Class IX, you began your exploration of the world of real numbers and encountered
irrational numbers. We continue our discussion on real numbers in this chapter. We
begin with two very important properties of positive integers in Sections 1.2 and 1.3,
namely the Euclid’s division algorithm and the Fundamental Theorem of Arithmetic.

Euclid’s division algorithm, as the name suggests, has to do with divisibility of
integers. Stated simply, it says any positive integer a can be divided by another positive
integer b in such a way that it leaves a remainder r that is smaller than b. Many of you
probably recognise this as the usual long division process. Although this result is quite
easy to state and understand, it has many applications related to the divisibility properties
of integers. We touch upon a few of them, and use it mainly to compute the HCF of
two positive integers.

The Fundamental Theorem of Arithmetic, on the other hand, has to do something
with multiplication of positive integers. You already know that every composite number
can be expressed as a product of primes in a unigue way—this important fact is the
Fundamental Theorem of Arithmetic. Again, while it is a result that is easy to state and
understand, it has some very deep and significant applications in the field of mathematics.
We use the Fundamental Theorem of Anthmetic for two main applications. First, we
use it to prove the irrationality of many of the numbers vou studied in Class IX, such as

V2.3 and 5 . Second, we apply this theorem to explore when exactly the decimal
expansion of a rational number, say E{q #0), is terminating and when it is non-
terminating repeating. We do so by looking at the prime factorisation of the denominator
g of P You will see that the prime Factorisation of g will completely reveal the nature
of the decimal expansion of 2,

So let us begin our exploration.



1.2 Euclid’s Division Lemma
Consider the following folk puzzle™.

A trader was moving along a road selling eggs. An idler who didn’t have
much work to do, started to get the trader into a wordy duel. This grew into a
fight, he pulled the basket with eggs and dashed it on the floor. The eggs broke.
The trader requested the Panchayat to ask the idler to pay for the broken eggs.
The Panchayat asked the trader how many eggs were broken. He gave the
following response:

If counted in pairs, one will remain;

If counted in threes, two will remain;

If counted in fours, three will remain;

If counted in fives, four will remain;

If counted in sixes, five will remain;

If counted in sevens, nothing will remain;

My basket cannot accomodate more than 150 eggs.

So, how many eggs were there? Let us try and solve the puzzle. Let the number
of eggs be a. Then working backwards, we see that a is less than or equal to 150:

If counted in sevens, nothing will remain, which translates to a = 7p + 0, for
some natural number p. If counted in sixes, a = 6 g + 5, for some natural number gq.

If counted in fives, four will remain. It translates to a = 5w + 4, for some natural
number w.

If counted in fours, three will remain. It translates to a = 4s + 3, for some natural
number s.

If counted in threes, two will remain. It translates to a = 3¢ + 2, for some natural
number ¢.

If counted in pairs, one will remain. It translates to a = 2u + 1, for some natural
number u.

That is, in each case, we have a and a positive integer b (in our example,
b takes values 7, 6, 5, 4, 3 and 2, respectively) which divides a and leaves a remainder
r (in our case, ris 0, 5, 4, 3, 2 and 1, respectively), that is smaller than b. The

* This is modified form of a puzzle given in ‘Numeracy Counts!” by A. Rampal, and others.



moment we write down such equations we are using Euclid’s division lemma,
which is given in Theorem 1.1.

Getting back to our puzzle, do you have any idea how you will solve it? Yes! You
must look for the multiples of 7 which satisfy all the conditions. By trial and error
(using the concept of LCM), you will find he had 119 eggs.

In order to get a feel for what Euclid’s division lemma is, consider the following
pairs of integers:

17, 6; 5,12; 20,4

Like we did in the example, we can write the following relations for each such
pair:

17=6 x2+5 (6 goes into 17 twice and leaves a remainder 5)

5 =12 x 0+ 5 (This relation holds since 12 is larger than 5)

20 =4 x5 + 0 (Here 4 goes into 20 five-times and leaves no remainder)

That is, for each pair of positive integers a and b, we have found whole numbers

q and r, satisfying the relation:
a=bg+r,0<r<b
Note that g or r can also be zero.

Why don’t you now try finding integers g and r for the following pairs of positive
integers a and b?

1 10,3; (i1) 4,19; (iii) 81,3

Did you notice that g and r are unique? These are the only integers satisfying the
conditions a = bq + r, where 0 < r < b. You may have also realised that this is nothing
but a restatement of the long division process you have been doing all these years, and
that the integers g and r are called the quotient and remainder, respectively.

A formal statement of this result is as follows :
Theorem 1.1 (Euclid’s Division Lemma) : Given positive integers a and b,
there exist unique integers q and r satisfying a = bqg + , 0 <r < b.

This result was perhaps known for a long time, but was first recorded in Book VII
of Euclid’s Elements. Euclid’s division algorithm is based on this lemma.



An algorithm is a series of well defined steps
which gives a procedure for solving a type of
problem.

The word algoriffun comes from the name
of the 9th century Persian mathematician
al-Khwarizmi. In fact. even the word “algebra’
is derived from a book, he wrote, called Hisab
al-jabr w'al-mugabala.

IA lemma is a proven stalement used for Mubammad fbin Musa al-Khwarkemi
proving another statement, (CLE. T80 = 8500

Euclid’s division algorithm is a technigue to compute the Highest Common Factor
(HCF) of two given positive integers. Recall that the HCF of two positive integers a
and b is the largest positive integer o that divides both a and b.

Let us see how the algorithm works, through an example first. Suppose we need
to find the HCF of the integers 455 and 42, We start with the larger integer, that is,
455. Then we use Euclid’s lemma to get

455= 42 x 10+ 35

Now consider the divisor 42 and the remainder 35, and apply the division lemma
1o get
42=35x1+7
Now consider the divisor 35 and the remainder 7, and apply the division lemma
Lo get
I5=7%x5+0
Notice that the remainder has become zero, and we cannot proceed any further.
We claim that the HCF of 455 and 42 is the divisor at this stage, i.e., 7, You can easily
verify this by listing all the factors of 455 and 42, Why does this method work? It
works because of the following result,

S0, let us state Euclid’s division algorithm clearly.
To obtain the HCF of tweo positive integers, say ¢ and o, with ¢ = d, follow
the steps below:
Step 1 : Apply Euclid’s division lemma, to ¢ and d. So, we find whole numbers, g and
rsuchthat e =dg + r, 0= r< d.
Step 2 : If r=0,dis the HCF of ¢ and d. If r 20, apply the division lemma to d and r.

Step 3 : Continue the process till the remainder is zero. The divisor at this stage will
be the required HCF.



This algorithm works because HCF (c, d) = HCF (d, r) where the symbol
HCEF (¢, d) denotes the HCF of ¢ and d, etc.

Example 1 : Use Euclid’s algorithm to find the HCF of 4052 and 12576.

Solution :
Step 1 : Since 12576 > 4052, we apply the division lemma to 12576 and 4052, to get
12576 = 4052 x 3 + 420
Step 2 : Since the remainder 420 # 0, we apply the division lemma to 4052 and 420, to
get
4052=420x9 + 272
Step 3 : We consider the new divisor 420 and the new remainder 272, and apply the
division lemma to get
420= 272 x 1+ 148
We consider the new divisor 272 and the new remainder 148, and apply the division
lemma to get
272= 148 x 1+ 124
We consider the new divisor 148 and the new remainder 124, and apply the division
lemma to get
148=124x1+24
We consider the new divisor 124 and the new remainder 24, and apply the division
lemma to get
124=24x5+4
We consider the new divisor 24 and the new remainder 4, and apply the division
lemma to get
24=4x6+0

The remainder has now become zero, so our procedure stops. Since the divisor at this
stage is 4, the HCF of 12576 and 4052 is 4.
Notice that 4 = HCF (24, 4) = HCF (124, 24) = HCF (148, 124) =
HCF (272, 148) = HCF (420, 272) = HCF (4052, 420) = HCF (12576, 4052).
Euclid’s division algorithm is not only useful for calculating the HCF of very
large numbers, but also because it is one of the earliest examples of an algorithm that
a computer had been programmed to carry out.

Remarks :

1. Euclid’s division lemma and algorithm are so closely interlinked that people often
call former as the division algorithm also.

2. Although Euclid’s Division Algorithm is stated for only positive integers, it can be
extended for all integers except zero, i.e., b # 0. However, we shall not discuss this
aspect here.



Euclid’s division lemma/algorithm has several applications related to finding
properties of numbers. We give some examples of these applications below:

Example 2 : Show that every positive even integer is of the form 2¢, and that every
positive odd integer is of the form 2¢ + 1, where ¢ is some integer.

Solution : Let a be any positive integer and b = 2. Then, by Euclid’s algorithm,
a = 2q + r, for some integer ¢ > 0, and r = 0 or r = 1, because 0 < r < 2. So,
a=2qgor2q+1.

If a is of the form 2¢, then « is an even integer. Also, a positive integer can be
either even or odd. Therefore, any positive odd integer is of the form 2¢ + 1.
Example 3 : Show that any positive odd integer is of the form 4¢ + 1 or 4¢g + 3, where
g is some integer.

Solution : Let us start with taking a, where a is a positive odd integer. We apply the
division algorithm with a and b = 4.

Since 0 < r < 4, the possible remainders are 0, 1, 2 and 3.

That is, a can be 4q, or 4g + 1, or 4¢q + 2, or 4g + 3, where ¢ is the quotient.
However, since a is odd, a cannot be 4¢q or 4¢ + 2 (since they are both divisible by 2).

Therefore, any odd integer is of the form 4¢ + 1 or 4¢ + 3.
Example 4 : A sweetseller has 420 kaju barfis and 130 badam barfis. She wants to
stack them in such a way that each stack has the same number, and they take up the

least area of the tray. What is the number of that can be placed in each stack for this
purpose?

Solution : This can be done by trial and error. But to do it systematically, we find
HCF (420, 130). Then this number will give the maximum number of barfis in each
stack and the number of stacks will then be the least. The area of the tray that is used
up will be the least.

Now, let us use Euclid’s algorithm to find their HCF. We have :
420= 130x 3+ 30
130=30x4+10

30=10x3+0

So, the HCF of 420 and 130 is 10.

Therefore, the sweetseller can make stacks of 10 for both kinds of barfi.



EXERCISE 1.1

1. Use Euclid’s division algorithm to find the HCF of :
@ 135and225 (i1) 196 and 38220 (ii)) 867 and 255

2. Show that any positive odd integer is of the form 6¢ + 1, or 6g + 3, or 6g + 5, where ¢ is
some integer.

3. Anarmy contingent of 616 members is to march behind an army band of 32 members in
a parade. The two groups are to march in the same number of columns. What is the
maximum number of columns in which they can march?

4. Use Euclid’s division lemma to show that the square of any positive integer is either of
the form 3m or 3m + 1 for some integer m.

[Hint : Let x be any positive integer then it is of the form 3¢, 3¢+ 1 or 3¢ + 2. Now square
each of these and show that they can be rewritten in the form 3m or 3m + 1.]

5. Use Euclid’s division lemma to show that the cube of any positive integer is of the form
9m,9m+1or9m+8.

1.3 The Fundamental Theorem of Arithmetic

In your earlier classes, you have seen that any natural number can be written as a
product of its prime factors. For instance, 2 =2,4 =2 x 2, 253 = 11 x 23, and so on.
Now, let us try and look at natural numbers from the other direction. That is, can any
natural number be obtained by multiplying prime numbers? Let us see.

Take any collection of prime numbers, say 2, 3, 7, 11 and 23. If we multiply
some or all of these numbers, allowing them to repeat as many times as we wish,
we can produce a large collection of positive integers (In fact, infinitely many).
Let us list a few :

7x11x23=1771 3x7x11x23=5313
2x3x7x11x23=10626 23 x3x7°=8232
22x3x7x11x23=21252

and so on.

Now, let us suppose your collection of primes includes all the possible primes.
What is your guess about the size of this collection? Does it contain only a finite
number of integers, or infinitely many? Infact, there are infinitely many primes. So, if
we combine all these primes in all possible ways, we will get an infinite collection of
numbers, all the primes and all possible products of primes. The question is — can we
produce all the composite numbers this way? What do you think? Do you think that
there may be a composite number which is not the product of powers of primes?
Before we answer this, let us factorise positive integers, that is, do the opposite of
what we have done so far.

LN P
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We are going to use the factor tree with which you are all familiar. Let us take
some large number, say, 32760, and factorise it as shown :

32760

2 16380

2 8190

2 4095

3 1365

3 455

So we have factorised 32760 as 2 x 2 x 2 x 3 x 3 x 5 x 7 x 13 as a product of
primes, i.e., 32760 = 2 x 32 x 5 x 7 x 13 as a product of powers of primes. Let us try
another number, say, 123456789. This can be written as 3% x 3803 x 3607. Of course,
you have to check that 3803 and 3607 are primes! (Try it out for several other natural
numbers yourself.) This leads us to a conjecture that every composite number can be
written as the product of powers of primes. In fact, this statement is true, and is called
the Fundamental Theorem of Arithmetic because of its basic crucial importance
to the study of integers. Let us now formally state this theorem.

Theorem 1.2 (Fundamental Theorem of Arithmetic) : Every composite number
can be expressed (factorised) as a product of primes, and this factorisation is

unique, apart from the order in which the prime factors occur.



An equivalent version of Theorem 1.2 was probably first
recorded as Proposition 14 of Book IX in Euclid’s
Elements, before it came to be known as the Fundamental
Theorem of Arithmetic. However, the first correct proof
was given by Carl Friedrich Gauss in his Disquisitiones
Arithmeticae.

Carl Friedrich Gauss 1s often referred to as the ‘Prince of
Mathematicians® and is considered one of the three
greatest mathematicians of all time, along with Archimedes
and Newton. He has made fundamental contributions to Carl Friedrich Gauss
both mathematics and science. (1777 — 1855}

The Fundamental Theorem of Arithmetic says that every composite number
can be factorised as a product of primes. Actually it says more. [t says that given
any composite number 1t can be factorised as a product of prime numbers in a
‘unique’ way, except for the order in which the primes occur. That is, given any
composite number there is one and only one way to write it as a product of primes,
as long as we are not particular about the order in which the primes occur. So, for
example, we regard 2 x 3 x 5 x 7 as the same as 3 x 5 x 7 x 2, or any other
possible order in which these primes are written. This fact is also stated in the
following form:

The prime factorisation of a natural number is unigue, except for the order
of its factors.

In general, given a composite number x, we factorise itas x=p p, ... p . where
P+ Pyeeees p, are primes and written in ascending order, ie., p, £ p,
<...sp_. If we combine the same primes, we will get powers of primes. For example,

32700=2x2x2x3x3x5xTx13=x3x5xTx13

Once we have decided that the order will be ascending, then the way the number
is factorised. is unique.

The Fundamental Theorem of Arithmetic has many applications, both within
mathematics and in other fields. Let us look at some examples.
Example 5 : Consider the numbers 4", where n is a natural number, Check whether
there is any value of n for which 4" ends with the digit zero.

Solution : If the number 4", for any n, were to end with the digit zero, then it would be
divisible by 5. That is, the prime factorisation of 4" would contain the prime 5. This is

10



not possible because 4" = (2)**; so the only prime in the factorisation of 4" is 2. So, the
uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no
other primes in the factorisation of 4”. So, there is no natural number n for which 4"
ends with the digit zero.

You have already learnt how to find the HCF and LCM of two positive integers
using the Fundamental Theorem of Arithmetic in earlier classes, without realising it!
This method is also called the prime factorisation method. Let us recall this method
through an example.

Example 6 : Find the LCM and HCF of 6 and 20 by the prime factorisation method.

Solution : We have : 6=2'x3"and 20=2x2x5=22x 5"

You can find HCF(6, 20) = 2 and LCM(6, 20) =2 x 2 x 3 x 5 = 60, as done in your
earlier classes.

Note that HCF(6, 20) = 2! = Product of the smallest power of each common
prime factor in the numbers.

LCM (6, 20) = 2% x 3! x 5! = Product of the greatest power of each prime factor,
involved in the numbers.

From the example above, you might have noticed that HCF(6, 20) x LCM(6, 20)
= 6 x 20. In fact, we can verify that for any two positive integers a and b,
HCF (a, b) x LCM (a, b) = a x b. We can use this result to find the LCM of two
positive integers, if we have already found the HCF of the two positive integers.

Example 7 : Find the HCF of 96 and 404 by the prime factorisation method. Hence,
find their LCM.
Solution : The prime factorisation of 96 and 404 gives :
96=2°x3, 404 =2>x 101
Therefore, the HCF of these two integers is 2° = 4.

96X 404 96 x 404
HCF(96, 404) 4

Also, LCM (96, 404) = = 9696

Example 8 : Find the HCF and LCM of 6, 72 and 120, using the prime factorisation
method.

Solution : We have :
6=2x3,72=2%x3%120=2>%x3 x5

Here, 2! and 3! are the smallest powers of the common factors 2 and 3, respectively.

11
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So, HCF (6,72,120)= 2'x3'=2x3=6
2%, 3% and 5' are the greatest powers of the prime factors 2, 3 and 5 respectively

involved in the three numbers.

So, LCM (6,72, 120) = 2°x 32 x 5! =360

Remark : Notice, 6 x 72 x 120 # HCF (6, 72, 120) x LCM (6, 72, 120). So, the
product of three numbers is not equal to the product of their HCF and LCM.

EXERCISE 1.2
1. Express each number as a product of its prime factors:
@ 140 (i) 156 (ii)) 3825 (@iv) 5005 (v) 7429

2. Find the LCM and HCF of the following pairs of integers and verify that LCM x HCF =
product of the two numbers.

(i 26and9l (i) 510and 92 (ii)) 336 and 54
3. Find the LCM and HCF of the following integers by applying the prime factorisation
method.
@ 12,15and21 (i1) 17,23 and 29 (iii) 8,9and?25

Given that HCF (306, 657) =9, find LCM (306, 657).
Check whether 6" can end with the digit O for any natural number n.

Explainwhy 7x 11 x 13+ 13and 7x 6 x5 x4 x 3 x 2 x 1 + 5 are composite numbers.

A

There is a circular path around a sports field. Sonia takes 18 minutes to drive one round
of the field, while Ravi takes 12 minutes for the same. Suppose they both start at the
same point and at the same time, and go in the same direction. After how many minutes
will they meet again at the starting point?

1.4 Revisiting Irrational Numbers

In Class IX, you were introduced to irrational numbers and many of their properties.
You studied about their existence and how the rationals and the irrationals together
made up the real numbers. You even studied how to locate irrationals on the number
line. However, we did not prove that they were irrationals. In this section, we will

prove that \/2 , /3, +/5 and, in general, \/; is irrational, where p is a prime. One of
the theorems, we use in our proof, is the Fundamental Theorem of Arithmetic.

Recall, a number ‘s’ is called irrational if it cannot be written in the form E,

where p and ¢ are integers and ¢ # 0. Some examples of irrational numbers, with

12



which you are already familiar, are :

J2,43,\15, w, —ﬂ, 0.10110111011110.. . egc.

J3

Before we prove that ./ is irrational, we need the following theorem, whose
proof is based on the Fundamental Theorem of Arithmetic.
Theorem 1.3 : Let p be a prime number. If p divides @°, then p divides a, where
a is a positive integer.
*Proof : Let the prime factorisation of a be as follows :
a=pp,...p,wherep,p,. ... p areprimes, not necessarily distinct.
Therefore, a*> = (p,p, . . . p )PP, - .. D) =DPD; - .- D-
Now, we are given that p divides a* Therefore, from the Fundamental Theorem of
Arithmetic, it follows that p is one of the prime factors of a’>. However, using the
uniqueness part of the Fundamental Theorem of Arithmetic, we realise that the only
prime factors of a* are p,, p,, .. .,p,. Sopisoneof p,p,....p,.

Now, sincea=p, p,...p,, p divides a.
We are now ready to give a proof that /2 is irrational.

The proof is based on a technique called ‘proof by contradiction’. (This technique is
discussed in some detail in Appendix 1).

Theorem 1.4 : [ is irrational.

Proof : Let us assume, to the contrary, that /7 is rational.
r

So, we can find integers r and s (# 0) such that ./ = e

Suppose r and s have a common factor other than 1. Then, we divide by the common

factor to get \/2 = 2 where a and b are coprime.

So, b2 =a.
Squaring on both sides and rearranging, we get 2b* = a*. Therefore, 2 divides a
Now, by Theorem 1.3, it follows that 2 divides a.

So, we can write a = 2¢ for some integer c.

* Not from the examination point of view.

13



Substituting for a, we get 2b* = 4¢?, that is, b* = 2¢%
This means that 2 divides b?, and so 2 divides b (again using Theorem 1.3 with p = 2).
Therefore, a and b have at least 2 as a common factor.

But this contradicts the fact that @ and b have no common factors other than 1.
This contradiction has arisen because of our incorrect assumption that /7 is rational.

So, we conclude that /7 is irrational.

Example 9 : Prove that /3 is irrational.

Solution : Let us assume, to the contrary, that \/5 is rational.
. . . a

That is, we can find integers a and b (# 0) such that \/5 = ;

Suppose a and b have a common factor other than 1, then we can divide by the

common factor, and assume that a and b are coprime.

SO’ b\/g =da-
Squaring on both sides, and rearranging, we get 3b* = a°.

Therefore, a® is divisible by 3, and by Theorem 1.3, it follows that a is also divisible
by 3.

So, we can write a = 3¢ for some integer c.
Substituting for a, we get 3b* = 9¢?, that is, b* = 3¢

This means that b? is divisible by 3, and so b is also divisible by 3 (using Theorem 1.3
with p = 3).

Therefore, a and b have at least 3 as a common factor.

But this contradicts the fact that @ and b are coprime.

This contradiction has arisen because of our incorrect assumption that /3 is rational.
So, we conclude that /3 is irrational.

In Class IX, we mentioned that :
® the sum or difference of a rational and an irrational number is irrational and

e the product and quotient of a non-zero rational and irrational number is
irrational.

We prove some particular cases here.

14
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Example 10 : Show that 5 — ﬁ is irrational.

Solution : Let us assume, to the contrary, that 5 — ﬁ is rational.
That is, we can find coprime a and b (b # 0) such that 5 — 3= %~
Therefore, 5 — % = \/5 .

Rearranging this equation, we get /3 =5 — a_ 5b - 4.
b b

. . a . . . .
Since a and b are integers, we get 5 — — is rational, and so /3 is rational.

But this contradicts the fact that /3 is irrational.
This contradiction has arisen because of our incorrect assumption that 5 — J3 s

rational.

So, we conclude that 5 — ﬁ is irrational.

Example 11 : Show that 342 is irrational.

Solution : Let us assume, to the contrary, that 3\/5 is rational.

That is, we can find coprime a and b (b # 0) such that 32 = %.
a.
3b

a
Since 3, a and b are integers, % is rational, and so \/E is rational.

Rearranging, we get /2 =

But this contradicts the fact that /7 is irrational.
So, we conclude that 3,/7 is irrational.

EXERCISE 1.3

1. Provethat /5 isirrational.
2. Provethat 3 + 2\/5 is irrational.

3. Prove that the following are irrationals :

0 % i) 75 (i) 6+ 2

15



1.5 Revisiting Rational Numbers and Their Decimal Expansions

In Class IX, you studied that rational numbers have either a terminating decimal
expansion or a non-terminating repeating decimal expansion. In this section, we are

going to consider a rational number, say g(q # 0), and explore exactly when the
decimal expansion of g is terminating and when it is non-terminating repeating
(or recurring). We do so by considering several examples.

Let us consider the following rational numbers :
(1) 0.375 (i1) 0.104 (iii) 0.0875 (iv) 23.3408.

Now () 0375=—1> =37 (i) 0.104 = 104 _ 104
1000 10 1000 10
(i) 0.0875= 21 _ 587 (v) 23,308 = 233408 _ 233408
10000 10 0000 = 10

As one would expect, they can all be expressed as rational numbers whose
denominators are powers of 10. Let us try and cancel the common factors between
the numerator and denominator and see what we get :

375 _3x5 _ 3 104 _13x2° 13

) 0375="2="""_= i) 0.104=—="""_=
() 103 23 X 53 23 ( ) 103 23 » 53 53
2
(i) 0.0875=""=_T (iv) 23,3408 = 223408 _ 27 x7 X521
10 2" x5 5

Do you see any pattern? It appears that, we have converted a real number

whose decimal expansion terminates into a rational number of the form P where p

and g are coprime, and the prime factorisation of the denominator (that is, g) has only

powers of 2, or powers of 5, or both. We should expect the denominator to look like
this, since powers of 10 can only have powers of 2 and 5 as factors.

Even though, we have worked only with a few examples, you can see that any
real number which has a decimal expansion that terminates can be expressed as a
rational number whose denominator is a power of 10. Also the only prime factors of 10
are 2 and 5. So, cancelling out the common factors between the numerator and the
denominator, we find that this real number is a rational number of the form £, where

q
the prime factorisation of g is of the form 2”5, and n, m are some non-negative integers.

Let us write our result formally:

16



Theorem 1.5 : Let x be a rational number whose decimal expansion terminates.

Then x can be expressed in the form g, where p and q are coprime, and the

prime factorisation of q is of the form 2"5", where n, m are non-negative integers.

You are probably wondering what happens the other way round in Theorem 1.5.

That is, if we have a rational number of the form P and the prime factorisation of g

is of the form 2"5™, where n, m are non negative integers, then does P have a
. . . q
terminating decimal expansion?

Let us see if there is some obvious reason why this is true. You will surely agree

a
that any rational number of the form —: where b is a power of 10, will have a terminating
decimal expansion. So it seems to make sense to convert a rational number of the

a
form £ , where q is of the form 2"5™, to an equivalent rational number of the form 3
q

where b is a power of 10. Let us go back to our examples above and work backwards.

3 3 3x5 375
iy ~=— ="~ _—"""-0375
O =y TPy 10

3
1B _13_13x2_ 104,
125 5 2°%x5 10
7 7 7%x5 875

— = = =2 =0.0875
80 2*x5 2*x5* 10*

(i1)

(ii)

) 6
14588 _ 2" xX7x521 _ 2" X7x521 _ 233408 _ 23,3408
625 5* 2t x5t 10*

@iv)

So, these examples show us how we can convert a rational number of the form

a
P where q is of the form 2"5", to an equivalent rational number of the form —-

b

where b is a power of 10. Therefore, the decimal expansion of such a rational number

terminates. Let us write down our result formally.

Theorem 1.6 : Let x = P be a rational number, such that the prime factorisation
. q L
of q is of the form 2"5", where n, m are non-negative integers. Then x has a

decimal expansion which terminates.

17



We are now ready to move on to the rational numbers
whose decimal expansions are non-terminating and recurring.
Once again, let us look at an example to see what is going on.
We refer to Example 5, Chapter 1, from your Class IX

1
textbook, namely, 7 .Here, remainders are 3, 2,6,4, 5, 1, 3,

2,6,4,5,1,...and divisoris 7.
Notice that the denominator here, i.e., 7 is clearly not of
the form 2"5™ Therefore, from Theorems 1.5 and 1.6, we
1
know that — will not have a terminating decimal expansion.

Hence, 0 will not show up as a remainder (Why?), and the
remainders will start repeating after a certain stage. So, we
will have a block of digits, namely, 142857, repeating in the

tient of —.
quotient o 7

0.1428571
7) 10

A
30
28
20
14
®0
56
@0
35
3o
49
Do
7
30

1
‘What we have seen, in the case of 7 ,1s true for any rational number not covered

by Theorems 1.5 and 1.6. For such numbers we have :

Theorem 1.7 : Let x = g, where p and q are coprimes, be a rational number,

such that the prime factorisation of q is not of the form 2"5™, where n, m are
non-negative integers. Then, x has a decimal expansion which is non-terminating

repeating (recurring).

From the discussion above, we can conclude that the decimal expansion of
every rational number is either terminating or non-terminating repeating.

EXERCISE 14

1. Without actually performing the long division, state whether the following rational
numbers will have a terminating decimal expansion or a non-terminating repeating decimal

expansion:
) 13 17 . 64
O 3125 (1) 3 (i) 755
29 23 129
V) 343 (vi) 5 (vii) 25775
35 77
) 355 ® 370

18

15
) 1600

(viil) 75
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2.

3.

Write down the decimal expansions of those rational numbers in Question 1 above
which have terminating decimal expansions.

The following real numbers have decimal expansions as given below. In each case,
decide whether they are rational or not. If they are rational, and of the form P what can
you say about the prime factors of ¢? 1

1) 43.123456789 (@) 0.120120012000120000... (i) 43.123456789

1.6 Summary

In this chapter, you have studied the following points:

1.

Euclid’s division lemma :

Given positive integers a and b, there exist whole numbers g and r satisfying a = bg + r,
0<r<b.

. Euclid’s division algorithm : This is based on Euclid’s division lemma. According to this,

the HCF of any two positive integers a and b, with a > b, is obtained as follows:
Step 1 : Apply the division lemma to find ¢ and r where a =bg +r, 0< r<b.
Step 2 : If r=0, the HCF is b. If r # 0, apply Euclid’s lemma to b and r.

Step 3 : Continue the process till the remainder is zero. The divisor at this stage will be
HCEF (a, b). Also, HCF(a, b) =HCF(b, r).

. The Fundamental Theorem of Arithmetic :

Every composite number can be expressed (factorised) as a product of primes, and this
factorisation is unique, apart from the order in which the prime factors occur.

. If pis a prime and p divides a?, then p divides a, where a is a positive integer.

. To prove that \/5, 3 are irrationals.

6. Let x be arational number whose decimal expansion terminates. Then we can express x

in the form g , where p and g are coprime, and the prime factorisation of ¢ is of the form

2"5™ where n, m are non-negative integers.

. Letx= £ be arational number, such that the prime factorisation of ¢ is of the form 2"5",
q

where n, m are non-negative integers. Then x has a decimal expansion which terminates.

. Let x = = be arational number, such that the prime factorisation of ¢ is not of the form
Let f(’]’b tional numb h that the prime factorisation of ¢ is not of the f

2" 5™, where n, m are non-negative integers. Then x has a decimal expansion which is

non-terminating repeating (recurring).
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POLYNOMIALS 2 ‘

2.1 Introduction

In Class IX, you have studied polynomials in one variable and their degrees. Recall
that if p(x) is a polynomial in x, the highest power of x in p(x) is called the degree of
the polynomial p(x). For example, 4x + 2 is a polynomial in the variable x of

degree 1, 2y>— 3y + 4 is a polynomial in the variable y of degree 2, 5x* —4x> + x — /2
3
is a polynomial in the variable x of degree 3 and 7u®— §u4 +4u’ +u—-8isa polynomial

1
X2 +2x+3

in the variable u of degree 6. Expressions like ! \/; +2,

, etc., are
x—1

not polynomials.

A polynomial of degree 1 is called a linear polynomial. For example, 2x — 3,

J3x +5, y+ V2, x— %,3z+4, %u + 1, etc., are all linear polynomials. Polynomials

such as 2x + 5 — x2, x* + 1, etc., are not linear polynomials.

A polynomial of degree 2 is called a quadratic polynomial. The name ‘quadratic’

. . 2
has been derived from the word ‘quadrate’, which means ‘square’. 2x*+ 3x — =»

¥ =2, 2—x*+/3x, %— 2+ 5,457 - %v, 47> +% are some examples of

quadratic polynomials (whose coefficients are real numbers). More generally, any
quadratic polynomial in x is of the form ax* + bx + ¢, where a, b, ¢ are real numbers
and a # 0. A polynomial of degree 3 is called a cubic polynomial. Some examples of
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a cubic polynomial are 2 —x*, X3, 2 x*, 3 —x*+ x3, 3x*~ 2x* + x — 1. In fact, the most
general form of a cubic polynomial is

ax®> + bx>* + cx + d,
where, a, b, ¢, d are real numbers and a # 0.

Now consider the polynomial p(x) = x> — 3x — 4. Then, putting x = 2 in the
polynomial, we get p(2) =2*—3 x 2 -4 =— 6. The value ‘— 6’, obtained by replacing
x by 2 in x* — 3x — 4, is the value of x? — 3x — 4 at x = 2. Similarly, p(0) is the value of
p(x) at x = 0, which is — 4.

If p(x) is a polynomial in x, and if k is any real number, then the value obtained by
replacing x by k in p(x), is called the value of p(x) at x = k, and is denoted by p(k).

What is the value of p(x) = x> -3x — 4 at x = —1? We have :

pD =13 x (-1} -4=0
Also, note that p(4)=4>-(3x4)-4=0.

As p(-1) = 0 and p(4) = 0, —1 and 4 are called the zeroes of the quadratic
polynomial x> — 3x — 4. More generally, a real number k is said to be a zero of a
polynomial p(x), if p(k) = 0.

You have already studied in Class IX, how to find the zeroes of a linear
polynomial. For example, if k is a zero of p(x) = 2x + 3, then p(k) = 0 gives us

) 3
2k+3=0,1.e., k= > )

In general, if k is a zero of p(x) = ax + b, then p(k) =ak + b =0, i.e., k =—
a

So, the zero of the linear polynomial ax + b is — = (Constant term)

a Coefficient of x

Thus, the zero of a linear polynomial is related to its coefficients. Does this
happen in the case of other polynomials too? For example, are the zeroes of a quadratic
polynomial also related to its coefficients?

In this chapter, we will try to answer these questions. We will also study the
division algorithm for polynomials.

2.2 Geometrical Meaning of the Zeroes of a Polynomial

You know that a real number £ is a zero of the polynomial p(x) if p(k) = 0. But why
are the zeroes of a polynomial so important? To answer this, first we will see the
geometrical representations of linear and quadratic polynomials and the geometrical
meaning of their zeroes.
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Consider first a linear polynomial ax + b, a # 0. You have studied in Class IX that the
graph of y = ax + b is a straight line. For example, the graph of y = 2x + 3 is a straight
line passing through the points (— 2, —1) and (2, 7).

X

—2|2

y=2x+3 | -1 | 7

From Fig. 2.1, you can see

that the graph of y = 2x + 3

intersects the x-axis mid-way

between x = -1 and x = -2,

that is, at the point [—%, Oj.

You also know that the zero of

2x + 3 1s —é. Thus, the zero of

the polynomial 2x + 3 is the

x-coordinate of the point where the
graph of y = 2x + 3 intersects the Fig. 2.1

X-axis.

In general, for a linear polynomial ax + b, a # 0, the graph of y =ax + b is a

. . L . . -b
straight line which intersects the x-axis at exactly one point, namely, [—, 0].
a

Therefore, the linear polynomial ax + b, a # 0, has exactly one zero, namely, the
x-coordinate of the point where the graph of y = ax + b intersects the x-axis.

Now, let us look for the geometrical meaning of a zero of a quadratic polynomial.
Consider the quadratic polynomial x> — 3x — 4. Let us see what the graph* of
y =x*-3x—4looks like. Let us list a few values of y = x*> — 3x — 4 corresponding to

a few values for x as given in Table 2.1.

* Plotting of graphs of quadratic or cubic polynomials is not meant to be done by the students,
nor is to be evaluated.
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Table 2.1

X |—2|—1 0 1 2 3 4 5

y=x2—3x—4| 6|0 4| -6 | =6 -4 ] o |s

If we locate the points listed ..
above on a graph paper and draw o
the graph, it will actually look like
the one given in Fig. 2.2.

In fact, for any quadratic 3
polynomial ax* + bx + ¢, a # 0, the
graph of the corresponding :
equation y = ax* + bx + ¢ has one i
of the two shapes either open i

upwards like \/ or open i

downwards like /7\ depending on
whether a > 0 or a < 0. (These :
curves are called parabolas.) T

You can see from Table 2.1 i
that —1 and 4 are zeroes of the =
quadratic polynomial. Also i
note from Fig. 2.2 that —1 and 4 i
are the x-coordinates of the points i
where the graph of y = x> - 3x — 4
intersects the x-axis. Thus, the i
zeroes of the quadratic polynomial
x> — 3x — 4 are x-coordinates of Fiiiii:
the points where the graph of o
y = x> — 3x — 4 intersects the
X-axis.

This fact is true for any quadratic polynomial, i.e., the zeroes of a quadratic
polynomial ax? + bx + ¢, a # 0, are precisely the x-coordinates of the points where the
parabola representing y = ax® + bx + ¢ intersects the x-axis.

From our observation earlier about the shape of the graph of y = ax? + bx + ¢, the
following three cases can happen:
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Case (i) : Here, the graph cuts x-axis at two distinct points A and A”.

The x-coordinates of A and A” are the two zeroes of the quadratic polynomial
ax? + bx + c in this case (see Fig. 2.3).

@) (i1)
Fig. 2.3

Case (ii) : Here, the graph cuts the x-axis at exactly one point, i.e., at two coincident
points. So, the two points A and A” of Case (i) coincide here to become one point A
(see Fig. 2.4).

(1) (i)
Fig. 2.4

The x-coordinate of A is the only zero for the quadratic polynomial ax* + bx + ¢
in this case.
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Case (iii) : Here, the graph is either completely above the x-axis or completely below
the x-axis. So, it does not cut the x-axis at any point (see Fig. 2.5).

Iimi

Eﬂ£ i ﬂfﬁi

(@)

Fig. 2.5

So, the quadratic polynomial ax® + bx + ¢ has no zero in this case.

So, you can see geometrically that a quadratic polynomial can have either two
distinct zeroes or two equal zeroes (i.e., one zero), or no zero. This also means that a
polynomial of degree 2 has atmost two zeroes.

Now, what do you expect the geometrical meaning of the zeroes of a cubic
polynomial to be? Let us find out. Consider the cubic polynomial x* — 4x. To see what
the graph of y = x* — 4x looks like, let us list a few values of y corresponding to a few
values for x as shown in Table 2.2.

Table 2.2
X -2 -1 0 1 2
y=x—4x 0 3 0 -3 0

Locating the points of the table on a graph paper and drawing the graph, we see
that the graph of y = x> — 4x actually looks like the one given in Fig. 2.6.
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We see from the table above

that — 2, 0 and 2 are zeroes of the EHHEHHE  HEHH
cubic polynomial x* — 4x. Observe EH ﬁﬁ i R
that —2, 0 and 2 are, in fact, the S = s
x-coordinates of the only points ﬁ% m *

where the graph of y = x* — 4x Ha e

intersects the x-axis. Since the curve EHEHE LT S

meets the x-axis in only these 3
points, their x-coordinates are the
only zeroes of the polynomial.

Let us take a few more

examples. Consider the cubic

polynomials x* and x* — x*. We draw

the graphs of y = x* and y = x* — x?
in Fig. 2.7 and Fig. 2.8 respectively.

Fig. 2.7 Fig. 2.8
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Note that 0 is the only zero of the polynomial x*. Also, from Fig. 2.7, you can see
that O is the x-coordinate of the only point where the graph of y = x* intersects the
x-axis. Similarly, since x> —x*=x*(x— 1), 0 and 1 are the only zeroes of the polynomial
x* — x% Also, from Fig. 2.8, these values are the x-coordinates of the only points
where the graph of y = x* — x* intersects the x-axis.

From the examples above, we see that there are at most 3 zeroes for any cubic
polynomial. In other words, any polynomial of degree 3 can have at most three zeroes.

Remark : In general, given a polynomial p(x) of degree n, the graph of y = p(x)
intersects the x-axis at atmost n points. Therefore, a polynomial p(x) of degree n has
at most n zeroes.

Example 1 : Look at the graphs in Fig. 2.9 given below. Each is the graph of y = p(x),
where p(x) is a polynomial. For each of the graphs, find the number of zeroes of p(x).

(i) (i1) (iii)

(iv) (v) (vi)
Fig. 2.9

Solution :
(1) The number of zeroes is 1 as the graph intersects the x-axis at one point only.
(i) The number of zeroes is 2 as the graph intersects the x-axis at two points.
(iii) The number of zeroes is 3. (Why?)
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(iv) The number of zeroes is 1. (Why?)
(v) The number of zeroes is 1. (Why?)
(vi) The number of zeroes is 4. (Why?)

EXERCISE 2.1

1. The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the
number of zeroes of p(x), in each case.

(i) (i) (i)

(iv) (v) (vi)
Fig. 2.10

2.3 Relationship between Zeroes and Coefficients of a Polynomial

You have already seen that zero of a linear polynomial ax + b is — é . We will now try

to answer the question raised in Section 2.1 regarding the relationsﬁip between zeroes
and coefficients of a quadratic polynomial. For this, let us take a quadratic polynomial,
say p(x) = 2x2 — 8x + 6. In Class IX, you have learnt how to factorise quadratic
polynomials by splitting the middle term. So, here we need to split the middle term
‘~ 8x” as a sum of two terms, whose product is 6 x 2x> = 12x2. So, we write
2x>—8x+6=2x>—6x—-2x+ 6 =2x(x - 3) —2(x - 3)

=(2x-2)(x-3)=2(x-D(x-3)
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So, the value of p(x) = 2x* - 8x + 6 is zero whenx— 1 =0 orx -3 =0, i.e., when
x =1 orx = 3. So, the zeroes of 2x> — 8x + 6 are 1 and 3. Observe that :

—(=8) _ —(Coefficient of x)
2 Coefficient of x*

Sum of its zeroes =1+3=4=

Constant term

Product of its zeroes = 1 x3=3= Q = 5
2 Coefficient of x

Let us take one more quadratic polynomial, say, p(x) = 3x* + 5x — 2. By the
method of splitting the middle term,
3 +5x—2=32+6x-x-2=3x(x+2)-1(x +2)
=0CBx-Dx+2)

Hence, the value of 3x + 5x — 2 is zero when either 3x — 1 =0orx+2=0, i.e.,
1 1
when x = g or x = 2. So, the zeroes of 3x> + 5x — 2 are g and — 2. Observe that :

1 - —(Coefficient of x)

S f it = —+(=2)=—=
Hm OTIEs Zeroes =2) 3 Coefficient of x*

OS]

-2 Constant term

1
Product of its zeroes = — X (=2) =—= — 5
3 3 Coefficient of x

In general, if o and 3* are the zeroes of the quadratic polynomial p(x) = ax* + bx +c,
a # 0, then you know that x — o and x — [ are the factors of p(x). Therefore,

ax’ + bx + ¢ = k(x — o) (x — B), where k is a constant
= k[x* — (ot + B)x + o P]
= kx> — k(o + B)x + ko B
Comparing the coefficients of x?, x and constant terms on both the sides, we get

a=kyb=—kio+B)and ¢ = k.

This gives oa+fB= P

c
a

of =

* o,p are Greek letters pronounced as ‘alpha’ and ‘beta’ respectively. We will use later one
more letter “y’ pronounced as ‘gamma’.
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. b —(Coefficient of x)
Le., sum of zeroes =0 + = —— = : =,
a Coefficient of x

c Constant term
product of zeroes =af = — =

a Coefficient of x>

Let us consider some examples.
Example 2 : Find the zeroes of the quadratic polynomial x> + 7x + 10, and verify the
relationship between the zeroes and the coefficients.
Solution : We have

X+Tx+10=(x+2)(x+5)

So, the value of x> + 7x + 10is zero whenx+2=0o0rx+5=0, i.e., whenx=—-2 or
x = —5. Therefore, the zeroes of x> + 7x + 10 are — 2 and — 5. Now,
(7) _ —(Coefficient of x)
1 Coefficient of x>

sum of zeroes = —2 + (=5) = —(7) =—

10 Constant term
product of zeroes = (-=2)X(=5)=10=—= - jdn : 7
I Coefficient of x

Example 3 : Find the zeroes of the polynomial x* — 3 and verify the relationship
between the zeroes and the coefficients.

Solution : Recall the identity a®> — b*> = (a — b)(a + b). Using it, we can write:
oo (1= B)x+B)

So, the value of x? — 3 is zero when x = /3 orx = — J3-

Therefore, the zeroes of x> — 3 are \/3 and _\E .

Now,

sum of zeroes = 3 — 3= 0 = —(Coefficient of x)’

Coefficient of x*

-3 Constant term
product of zeroes = (\/5)(_\/5) == 1 - Coefficient of x* .
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Example 4 : Find a quadratic polynomial, the sum and product of whose zeroes are
—3 and 2, respectively.

Solution : Let the quadratic polynomial be ax* + bx + ¢, and its zeroes be o and .
We have

a+B=-3=

c
and op=2=—-
a

Ifa=1,thenb=3and c=2.
So, one quadratic polynomial which fits the given conditions is x* + 3x + 2.

You can check that any other quadratic polynomial that fits these conditions will
be of the form k(x* + 3x + 2), where k is real.

Let us now look at cubic polynomials. Do you think a similar relation holds
between the zeroes of a cubic polynomial and its coefficients?

Let us consider p(x) = 2x* — 5x> — 14x + 8.

You can check that p(x) =0 forx =4, - 2, l Since p(x) can have atmost three

zeroes, these are the zeores of 2x* — 5x? — 14x + 8. Now,

5 —(=5) —(Coefficient of x*
sum of the zeroes = 4+ (-2)+ —=—= =5) = (Coe -1(-:16n © )g )
2 2 2 Coefficient of x

product of the zeroes = 4 x (—2) X % =—4= —8 _ —Constant term

2 Coefficient of x°

However, there is one more relationship here. Consider the sum of the products
of the zeroes taken two at a time. We have

{4x2}+ {(—2) x %} + {% x 4}

_ —8—1+2=—7:__14 _ Coefficient of x .
2 Coefficient of x°

In general, it can be proved that if o, B, y are the zeroes of the cubic polynomial
ax’® + bx®> + cx + d, then
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-b
oa+B+y= P
(4

ap + By + ya = —,

a
-d
GBY—j-

Let us consider an example.

1
Example 5% : Verify that 3, -1, 3 are the zeroes of the cubic polynomial

p(x) =3x* = 5x* — 11x — 3, and then verify the relationship between the zeroes and the
coefficients.

Solution : Comparing the given polynomial with ax® + bx* + cx + d, we get
a=3,b=-5,c=-11,d=- 3. Further
p3)=3x3-(5%x3)-(11x3)-3=81-45-33-3=0,
p1)=3x (1P -5x(-1P’-11x(-1)-3=-3-5+11-3=0,

4] e

1
Therefore, 3, —1 and —— are the zeroes of 3x* — 5x* — 11x — 3.

So, we take =3, B=-1and y= _%.

Now,
1 1 5 —(-5 -b
— -1 —_ =2 == = s
oa+B+y=3+( )+[ 3) 373 3 p
1 1 1 -11 ¢
oc§+py+yoc_3><(—1)+(—1)><[—5j+[—gjx3——3+§—1_7_;,
1 —-(-3) -d
= —1 —_—— :1:—:_.
aBy=3x( )X[ 3j 3 »

* Not from the examination point of view.
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EXERCISE 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between
the zeroes and the coefficients.

i) x*-2x-8 () 4s*—4s+1 (i) 6x*—3-"7x
(iv) 4u*+8u (v) #-15 (vi) 3x*—x—4
2. Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively.
1 1
Q) — -1 () v2.- (i) 0, 5
4 3
iv) 1,1 L i) 4,1
(iv) 1 W -3y Vi) 4,

2.4 Division Algorithm for Polynomials

You know that a cubic polynomial has at most three zeroes. However, if you are given
only one zero, can you find the other two? For this, let us consider the cubic polynomial
x* = 3x* —x + 3. If we tell you that one of its zeroes is 1, then you know that x — 1 is
a factor of x* — 3x? — x + 3. So, you can divide x* — 3x*> —x + 3 by x — 1, as you have
learnt in Class IX, to get the quotient x> — 2x — 3.

Next, you could get the factors of x> — 2x — 3, by splitting the middle term, as
(x + 1)(x — 3). This would give you

X =3x-x+3=(x-DG*-2x-3)
=(x-Dx+1Dx-3)

So, all the three zeroes of the cubic polynomial are now known to you as
1,-1,3.

Let us discuss the method of dividing one polynomial by another in some detail.
Before noting the steps formally, consider an example.

Example 6 : Divide 2x* + 3x + 1 by x + 2. 2x—1

Solution : Note that we stop the division process when x+2 ) 2xX +3x+1

either the remainder is zero or its degree is less than the 20 + Ay

degree of the divisor. So, here the quotient is 2x — 1 and p——

the remainder is 3. Also, —x+1
Cx-Dx+2)+3=2+3x-2+3=2x>+3x+1 :LXIZ

ie, 2¥%+3x+1=x+2)2x-1)+3 3

Therefore, Dividend = Divisor x Quotient + Remainder

Let us now extend this process to divide a polynomial by a quadratic polynomial.
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Example 7 : Divide 3x* + x> + 2x + S by 1 + 2x + x*. 3x_5

Solution : We first arrange the terms of the  x*+ 2x +_y 3 +x"2x+5

dividend and the divisor in the decreasing order 3¢ + 6 +3x
of their degrees. Recall that arranging the terms —
in this order is called writing the polynomials in —Sx’-x+5
standard form. In this example, the dividend is =5x"—10x -5
already in standard form, and the divisor, in A ha

9x + 10

standard form, is x>+ 2x + 1.

Step 1 : To obtain the first term of the quotient, divide the highest degree term of the
dividend (i.e., 3x°) by the highest degree term of the divisor (i.e., x*). This is 3x. Then
carry out the division process. What remains is —5x* — x + 5.

Step 2 : Now, to obtain the second term of the quotient, divide the highest degree term
of the new dividend (i.e., —5x2) by the highest degree term of the divisor (i.e., x?). This
gives —5. Again carry out the division process with —5x> — x + 5.

Step 3 : What remains is 9x + 10. Now, the degree of 9x + 10 is less than the degree
of the divisor x> + 2x + 1. So, we cannot continue the division any further.

So, the quotient is 3x — 5 and the remainder is 9x + 10. Also,
(P+2x+ D XxBx=5+Ox+10) =3+ 6x>+3x-5x> - 10x =5+ 9x + 10
=33 +x+2x+5
Here again, we see that
Dividend = Divisor x Quotient + Remainder

What we are applying here is an algorithm which is similar to Euclid’s division
algorithm that you studied in Chapter 1.

This says that

If p(x) and g(x) are any two polynomials with g(x) # 0, then we can find
polynomials ¢(x) and r(x) such that

p(x) = g(x) x q(x) + r(x),
where r(x) = 0 or degree of r(x) < degree of g(x).
This result is known as the Division Algorithm for polynomials.

Let us now take some examples to illustrate its use.

Example 8 : Divide 3x* — x* — 3x + 5 by x — 1 — x%, and verify the division algorithm.
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Solution : Note that the given polynomials x—2

are I}Ot in sFandar.d form. To' carry out 2 +x_j 43¢ —3x +5
division, we first write both the dividend and 3 2
S . . -X+ xX—- x
divisor in decreasing orders of their degrees. L 4
So, dividend = —x* + 3x* - 3x + 5 and 27— 2x+5
divisor = —x*> + x — 1. 2 —2x+2
_ + _

Division process is shown on the right side.

3
We stop here since degree (3) = 0 < 2 = degree (—x? + x — 1).

So, quotient = x — 2, remainder = 3.
Now,

Divisor x Quotient + Remainder
(=x*+x-1)(x-2)+3

=X+ -x+2X>-2x+2+3

= 4+3x>-3x+5
= Dividend

In this way, the division algorithm is verified.

Example 9 : Find all the zeroes of 2x* — 3x* — 3x? + 6x — 2, if you know that two of
its zeroes are /2 and _/p .

Solution : Since two zeroes are /2 and _./2, (x —ﬁ)(x + \/5) =x2-2isa

factor of the given polynomial. Now, we divide the given polynomial by x? — 2.

2% 3x +1
xz—y 26— 35— 3+ 6x 2 . T
4 ) First term of quotient is ——= 2x
2x —4x X
— +

—3x'+ X+ 6x-2 Second f auotiont i —3x3__3x
3¢ +6x econd term of quotient is 2
+ —

X -2 ) S

© 9 Third term of quotient is 2 =1

— +
0
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So,2x* =3x =32+ 6x -2 =(x*-2)2x* = 3x + 1).
Now, by splitting —3x, we factorise 2x? — 3x + 1 as (2x — 1)(x — 1). So, its zeroes

are given by x = 5 and x = 1. Therefore, the zeroes of the given polynomial are

NN % and 1.

EXERCISE 2.3
1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder
in each of the following :
() p(x)=x*-3x+5x-3, gx)=x>-2
() px)=x*-3x*+4x+5, gx)=x+1-x
(i) p(x)=x*-5x+6, g(x)=2-x

2. Check whether the first polynomial is a factor of the second polynomial by dividing the
second polynomial by the first polynomial:

@) #-3,2t"+3-22-9t—-12
() xX2+3x+1,3x*+53-Tx>+2x+2

(i) X*—=3x+1, -4 +x>+3x+1

5 5
3. Obtain all other zeroes of 3x* + 6x> —2x>— 10x — 3, if two of its zeroes are \/; and —\/; .

4. Ondividing x* — 3x? + x + 2 by a polynomial g(x), the quotient and remainder were x — 2
and —2x + 4, respectively. Find g(x).

5. Give examples of polynomials p(x), g(x), g(x) and r(x), which satisfy the division algorithm
and

(i) deg p(x)=deg g(x) (ii) deg g(x) =deg r(x) (iii) degr(x)=0

EXERCISE 24 (Optional)*

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes.
Also verify the relationship between the zeroes and the coefficients in each case:

1
() 2x3+x*=5x+2; 5’1,—2 (i) X¥*—4x*+5x-2; 2,1,1

2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a
time, and the product of its zeroes as 2, —7, —14 respectively.

“These exercises are not from the examination point of view.
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3. If the zeroes of the polynomial x* —3x> + x + 1 are a — b, a, a + b, find a and b.

4. If two zeroes of the polynomial x* — 6x* —26x% + 138x—35 are 2 + NE) , find other zeroes.

5. If the polynomial x*— 6x° + 16x*— 25x + 10 is divided by another polynomial x> - 2x + k,
the remainder comes out to be x + a, find k and a.

2.5 Summary
In this chapter, you have studied the following points:

1. Polynomials of degrees 1, 2 and 3 are called linear, quadratic and cubic polynomials
respectively.

2. A quadratic polynomial in x with real coefficients is of the form ax? + bx + ¢, where a, b, ¢
are real numbers with a # 0.

3. The zeroes of a polynomial p(x) are precisely the x-coordinates of the points, where the
graph of y = p(x) intersects the x - axis.

4. A quadratic polynomial can have at most 2 zeroes and a cubic polynomial can have
at most 3 zeroes.

5. If o and P are the zeroes of the quadratic polynomial ax? + bx + ¢, then

oc+p=—é, ocpzﬁ_
a a

6. If o, B, yare the zeroes of the cubic polynomial ax® + bx® + cx + d, then

[l

oc+[3+y:_b
a

o+ By+ yo _—

a
—d
and afy=—-
a
7. The division algorithm states that given any polynomial p(x) and any non-zero
polynomial g(x), there are polynomials ¢g(x) and r(x) such that

p(x) = g(x) gx) + r(x),
where r(x) = 0 or degree r(x) < degree g(x).
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PAIR OF LINEAR EQUATIONS 3
IN TwO VARIABLES

3.1 Introduction
You must have come across situations like the one given below :

Alkhila went to a fair in her village. She wanted to enjoy rides on the Giant Wheel
and play Hoopla (a gamoe in which you throw a ring on the items kept in a stall, and if
the ring covers any object completely, you get it). The number of times she played
Hoopla is half the mamber of rides she had on the (iant Wheel. If each ride costs
= 3, and a game of Hoopla costs ~ 4, how would you find out the number of rides she
had and how many times she played Hoopla, provided she spent ~ 20,

May be vou will try it by considering different cases. If she has one ride, is it
possible? Is it possible to have two rides? And so on. Or you may use the knowledge
of Class TX, to represent such situations as linear equations in two variables.
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Let us try this approach.

Denote the number of rides that Akhila had by x, and the number of times she
played Hoopla by y. Now the situation can be represented by the two equations:

_ 1 |
y= 75X (D
3x+4y =20 )

Can we find the solutions of this pair of equations? There are several ways of
finding these, which we will study in this chapter.
3.2 Pair of Linear Equations in Two Variables

Recall, from Class IX, that the following are examples of linear equations in two
variables:

2x+3y=35
x—-2y-3=0
and x—-0y=2, ie., x=2

You also know that an equation which can be put in the form ax + by + ¢ = 0,
where a, b and ¢ are real numbers, and a and b are not both zero, is called a linear
equation in two variables x and y. (We often denote the condition a and b are not both
zero by a’ + b* # 0). You have also studied that a solution of such an equation is a
pair of values, one for x and the other for y, which makes the two sides of the
equation equal.

For example, let us substitute x = 1 and y = 1 in the left hand side (LHS) of the
equation 2x + 3y = 5. Then

LHS=2(1)+3(1)=2+3=5,
which is equal to the right hand side (RHS) of the equation.
Therefore, x = 1 and y = 1 is a solution of the equation 2x + 3y = 5.
Now let us substitute x = 1 and y = 7 in the equation 2x + 3y = 5. Then,
LHS=2(1)+3(7)=2+21=23
which is not equal to the RHS.
Therefore, x = 1 and y = 7 is not a solution of the equation.

Geometrically, what does this mean? It means that the point (1, 1) lies on the line
representing the equation 2x + 3y = 5, and the point (1, 7) does not lie on it. So, every
solution of the equation is a point on the line representing it.
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In fact, this is true for any linear equation, that is, each solution (x, y) of a
linear equation in two variables, ax + by + ¢ = 0, corresponds to a point on the
line representing the equation, and vice versa.

Now, consider Equations (1) and (2) given above. These equations, taken
together, represent the information we have about Akhila at the fair.

These two linear equations are in the same two variables x and y. Equations
like these are called a pair of linear equations in two variables.

Let us see what such pairs look like algebraically.
The general form for a pair of linear equations in two variables x and y is
ax+by+c =0
and ax+b,y+c,=0,
where a, b, ¢, a,, b,, ¢, are all real numbers and a; + b’ # 0, a; + b; # 0.
Some examples of pair of linear equations in two variables are:
2x+3y—-7=0 and 9x-2y+8=0
Sx=y and -7x+2y+3=0
x+y=7and 17=y
Do you know, what do they look like geometrically?

Recall, that you have studied in Class IX that the geometrical (i.e., graphical)
representation of a linear equation in two variables is a straight line. Can you now
suggest what a pair of linear equations in two variables will look like, geometrically?
There will be two straight lines, both to be considered together.

You have also studied in Class IX that given two lines in a plane, only one of the
following three possibilities can happen:

(i) The two lines will intersect at one point.
(i) The two lines will not intersect, i.e., they are parallel.

(i) The two lines will be coincident.

We show all these possibilities in Fig. 3.1:
In Fig. 3.1 (a), they intersect.
In Fig. 3.1 (b), they are parallel.
In Fig. 3.1 (c), they are coincident.
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(a) (b) (©)
Fig. 3.1

Both ways of representing a pair of linear equations go hand-in-hand — the
algebraic and the geometric ways. Let us consider some examples.

Example 1 : Let us take the example given in Section 3.1. Akhila goes to a fair with
¥ 20 and wants to have rides on the Giant Wheel and play Hoopla. Represent this
situation algebraically and graphically (geometrically).

Solution : The pair of equations formed is :

1
y= X
ie., x-=2y=0 (1)
3x+4y=20 (2)

Let us represent these equations graphically. For this, we need at least two
solutions for each equation. We give these solutions in Table 3.1.

Table 3.1
20
X 0 2 X 0 — 4
3
. i 0 2
@) (ii)

Recall from Class IX that there are infinitely many solutions of each linear
equation. So each of you can choose any two values, which may not be the ones we
have chosen. Can you guess why we have chosen x = 0 in the first equation and in the
second equation? When one of the variables is zero, the equation reduces to a linear
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equation in one variable, which can be solved easily. For instance, putting x = 0 in
Equation (2), we get4y =20, i.e., y = 5. Similarly, putting y = 0 in Equation (2), we get

3x =20, | D puras 22 s g
x=20,ie,x=—".Butas == is -
not an integer, it will not be easy to

plot exactly on the graph paper. So, #

we choose y = 2 which gives x =4, =i

an integral value.

Plot the points A(0, 0), B(2, 1) ==
and P(0, 5), Q(4, 2), corresponding :

to the solutions in Table 3.1. Now

draw the lines AB and PQ,

representing the equations i

x — 2y =0 and 3x + 4y = 20, as =

shown in Fig. 3.2. Fig. 3.2
In Fig. 3.2, observe that the two lines representing the two equations are

intersecting at the point (4, 2). We shall discuss what this means in the next section.

Example 2 : Romila went to a stationery shop and purchased 2 pencils and 3 erasers
for % 9. Her friend Sonali saw the new variety of pencils and erasers with Romila, and
she also bought 4 pencils and 6 erasers of the same kind for ¥ 18. Represent this

situation algebraically and graphically.

Solution : Let us denote the cost of 1 pencil by % x and one eraser by % y. Then the

algebraic representation is given by the following equations:
2x+3y=9 (D
4x + 6y = 18 2)

To obtain the equivalent geometric representation, we find two points on the line

representing each equation. That is, we find two solutions of each equation.
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These solutions are given below in Table 3.2.

Table 3.2
X 0 | 45 X 0 3
9-2x : 0 18— 4x : "
Y73 T 6
(i) (it)
We plot these points in a graph
paper and draw the lines. We find that
both the lines coincide (see Fig. 3.3). :
This is so, because, both the
equations are equivalent, i.e., one can i gpa ki g
be derived from the other. = TaEe
Example 3 : Two rails are 1 i
represented by the equations - i :@
Xx+2y—4=0and 2x +4y—12=0. X« o % Ly i S
Represent this situation geometrically. i it
i i
Solution : Two solutions of each of B AREE i %W
the equations : i 5
x+2y—-4=0 (D
2x+4y-12=0 2)
are given in Table 3.3
Table 3.3
X 0 4 X 0 6
4—x 5 0 12— 2x 3 0
Y=g Y=y
(i) (i1)

To represent the equations graphically, we plot the points R(0, 2) and S(4, 0), to
get the line RS and the points P(0, 3) and Q(6, 0) to get the line PQ.
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We observe in Fig. 3.4, that the

lines do not intersect anywhere, i.e., =

they are parallel.

So, we have seen several 2
situations which can be represented

by a pair of linear equations. We
have seen their algebraic and
geometric representations. In the
next few sections, we will discuss
how these representations can be

used to look for solutions of the pair

of linear equations.

Fig. 3.4

EXERCISE 3.1

1. Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then.

Also, three years from now, I shall be three times as old as you will be.” (Isn’t this
interesting?) Represent this situation algebraically and graphically.

. The coach of a cricket team buys 3 bats and 6 balls for ¥ 3900. Later, she buys another
bat and 3 more balls of the same kind for ¥ 1300. Represent this situation algebraically
and geometrically.

. The cost of 2 kg of apples and 1kg of grapes on a day was found to be ¥ 160. After a
month, the cost of 4 kg of apples and 2 kg of grapes is ¥ 300. Represent the situation

algebraically and geometrically.

3.3 Graphical Method of Solution of a Pair of Linear Equations

In the previous section, you have seen how we can graphically represent a pair of
linear equations as two lines. You have also seen that the lines may intersect, or may
be parallel, or may coincide. Can we solve them in each case? And if so, how? We
shall try and answer these questions from the geometrical point of view in this section.

Let us look at the earlier examples one by one.

® In the situation of Example 1, find out how many rides on the Giant Wheel
Akhila had, and how many times she played Hoopla.

In Fig. 3.2, you noted that the equations representing the situation are
geometrically shown by two lines intersecting at the point (4, 2). Therefore, the
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point (4, 2) lies on the lines represented by both the equations x — 2y = 0 and
3x + 4y =20. And this is the only common point.

Let us verify algebraically that x = 4, y = 2 is a solution of the given
pair of equations. Substituting the values of x and y in each equation, we get
4-2x2=0and 3(4) + 4(2) = 20. So, we have verified that x =4, y=21is a
solution of both the equations. Since (4, 2) is the only common point on both
the lines, there is one and only one solution for this pair of linear equations
in two variables.

Thus, the number of rides Akhila had on Giant Wheel is 4 and the number
of times she played Hoopla is 2.

In the situation of Example 2, can you find the cost of each pencil and each
eraser?

In Fig. 3.3, the situation is geometrically shown by a pair of coincident
lines. The solutions of the equations are given by the common points.

Are there any common points on these lines? From the graph, we observe
that every point on the line is a common solution to both the equations. So, the
equations 2x + 3y =9 and 4x + 6y = 18 have infinitely many solutions. This
should not surprise us, because if we divide the equation 4x + 6y =18 by 2, we
get 2x + 3y =9, which is the same as Equation (1). That is, both the equations are
equivalent. From the graph, we see that any point on the line gives us a possible
cost of each pencil and eraser. For instance, each pencil and eraser can cost
% 3 and ¥ 1 respectively. Or, each pencil can cost ¥ 3.75 and eraser can cost
% 0.50, and so on.

In the situation of Example 3, can the two rails cross each other?

In Fig. 3.4, the situation is represented geometrically by two parallel lines.
Since the lines do not intersect at all, the rails do not cross. This also means that
the equations have no common solution.

A pair of linear equations which has no solution, is called an inconsistent pair of

linear equations. A pair of linear equations in two variables, which has a solution, is
called a consistent pair of linear equations. A pair of linear equations which are
equivalent has infinitely many distinct common solutions. Such a pair is called a
dependent pair of linear equations in two variables. Note that a dependent pair of
linear equations is always consistent.

We can now summarise the behaviour of lines representing a pair of linear equations

in two variables and the existence of solutions as follows:
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(1) the lines may intersect in a single point. In this case, the pair of equations
has a unique solution (consistent pair of equations).

(i) the lines may be parallel. In this case, the equations have no solution
(inconsistent pair of equations).

(iii) the lines may be coincident. In this case, the equations have infinitely many
solutions [dependent (consistent) pair of equations].

Let us now go back to the pairs of linear equations formed in Examples 1, 2, and
3, and note down what kind of pair they are geometrically.
(i) x—2y=0and3x+4y-20=0 (The lines intersect)
@) 2x+3y—-9=0and4x+ 6y—18=0 (The lines coincide)
@) x+2y—-4=0and2x+4y—-12=0 (The lines are parallel)

al’bl

(G
and -~ in all the
a; b, )

Let us now write down, and compare, the values of

three examples. Here, a,, b, ¢, and a,, b,, ¢, denote the coefficents of equations
given in the general form in Section 3.2.

Table 3.4
4 b, G
Sl | Pair of lines — | = | = Compare the | Graphical Algebraic
a, b, | ¢ ; .| .
No. ratios representation |interpretation
I [x-2y=0 2o |ah I ing |Exactl
L x=2y= 3 4| 220 | @ b, 1.ntersectlng xlaq y one
3x+4y-20=0 nes solution
(unique)
2 | pemnoen | 2 L 2 | LBl i |
. -9= —| = = == t t
X+ 3y 2 6 |28 |a b o “oinciden nfinitely
lines many solutions
4x+6y—18=0
3 |eezyaco | 2| 2|22 ﬂ‘ﬁqﬁipaulr No soluti
| x+2y-4= e I = t
X+2y 5 1 12 |a b o arallel lines |No solution
2x+4y—-12=0

From the table above, you can observe that if the lines represented by the equation
ax+by+c =0

and ax+by+c,=0
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o . a b
are (i) intersecting, then —- # —
a, b
. . a, bl (e
(ii) coincident, then — = — = —-
a, bz Cy
a bl ¢
(iii) parallel, then —= — # —-
In fact, the converse is also true for any pair of lines. You can verify them by
considering some more examples by yourself.

Let us now consider some more examples to illustrate it.

Example 4 : Check graphically whether the pair of equations

x+3y=26 (D
and 2x-3y=12 2)
is consistent. If so, solve them graphically.

Solution : Let us draw the graphs of the Equations (1) and (2). For this, we find two
solutions of each of the equations, which are given in Table 3.5

Table 3.5
X 0 6 X 0 3
6—x 5 0 2x —12 p 5
y= 3 y = 3 - -
Plotthepoins A0.2,B6,0. ¥
PO,-4)and QB3,-2)ongraph o lan
paper, and join the points to formthe = | & B
lines AB and PQ as shown in = iy ”\:..f%i:: : jﬂ
Flg. 3.5. i 5 i!!!!‘ ;
We observe that thereisapoint = 7'fp i
B (6, 0) common to both the lines = =24 %P L2
AB and PQ. So, the solution of the = 3L  ~»
pair of linear equations is x = 6 and il
y=0, i.e., the given pair of equations ; i
is consistent. N
Fig. 3.5
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Example 5 : Graphically, find whether the following pair of equations has no solution,
unique solution or infinitely many solutions:

S5x-8y+1=0 (D)
24 3
3x — ?y + g =5 0 )
Solution : Multiplying Equation (2) by 3 we get

S5x-8y+1=0
But, this is the same as Equation (1). Hence the lines represented by Equations (1)
and (2) are coincident. Therefore, Equations (1) and (2) have infinitely many solutions.

Plot few points on the graph and verify it yourself.

Example 6 : Champa went to a ‘Sale’ to purchase some pants and skirts. When her
friends asked her how many of each she had bought, she answered, ‘“The number of
skirts is two less than twice the number of pants purchased. Also, the number of skirts
is four less than four times the number of pants purchased”. Help her friends to find
how many pants and skirts Champa bought.

Solution : Let us denote the number of pants by x and the number of skirts by y. Then
the equations formed are :

y=2x-2 (D)
2

and

Let us draw the graphs of "
Equations (1) and (2) by finding two
solutions for each of the equations. :
They are given in Table 3.6.

Table 3.6

y=2x-2| 2|-2

y=4x-4 | -4 0
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Plot the points and draw the lines passing through them to represent the equations,
as shown in Fig. 3.6.

The two lines intersect at the point (1, 0). So, x = 1, y = 0 is the required solution
of the pair of linear equations, i.e., the number of pants she purchased is 1 and she did
not buy any skirt.

Verify the answer by checking whether it satisfies the conditions of the given
problem.

EXERCISE 3.2

1. Form the pair of linear equations in the following problems, and find their solutions
graphically.
(@i 10 students of Class X took part in a Mathematics quiz. If the number of girls is 4
more than the number of boys, find the number of boys and girls who took part in
the quiz.

(@ii) 5 pencils and 7 pens together cost ¥ 50, whereas 7 pencils and 5 pens together
cost X 46. Find the cost of one pencil and that of one pen.

a b o . . .
L, L and -1, find out whether the lines representing the

a, b, (%)

2. On comparing the ratios

following pairs of linear equations intersect at a point, are parallel or coincident:

@ S5x-4y+8=0 @) 9x+3y+12=0
Tx+6y—-9=0 18x+6y+24=0
@) 6x-3y+10=0
2x-y+9=0

a b c
L. —L and C—l , find out whether the following pair of linear

3. On comparing the ratios
2 b, 2

equations are consistent, or inconsistent.
@ 3x+2y=5; 2x-3y=17 @) 2x-3y=8; 4x-6y=9

(iif) %x+%y:7 ;9x—10y=14 (iv) 5x=3y=11; —10x+6y=-22
4
v) §x+ 2y =8 ;2x+3y=12

4. Which of the following pairs of linear equations are consistent/inconsistent? If
consistent, obtain the solution graphically:
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@ x+y=5, 2x+2y=10
(i) x—y=8, 3x—3y=16
@) 2x+y-6=0, 4x-2y-4=0
@iv) 2x-2y-2=0, 4x-4y-5=0

5. Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is
36 m. Find the dimensions of the garden.

6. Given the linear equation 2x + 3y — 8 = 0, write another linear equation in two variables
such that the geometrical representation of the pair so formed is:

() intersecting lines (i) parallel lines

(i) coincident lines

7. Draw the graphs of the equations x — y + 1 = 0 and 3x + 2y — 12 = 0. Determine the
coordinates of the vertices of the triangle formed by these lines and the x-axis, and
shade the triangular region.

3.4 Algebraic Methods of Solving a Pair of Linear Equations

In the previous section, we discussed how to solve a pair of linear equations graphically.
The graphical method is not convenient in cases when the point representing the

solution of the linear equations has non-integral coordinates like (\/5 2\/7),

4 1
(-1.75,3.3), (E E) , etc. There is every possibility of making mistakes while reading

such coordinates. Is there any alternative method of finding the solution? There are
several algebraic methods, which we shall now discuss.

3.4.1 Substitution Method : We shall explain the method of substitution by taking
some examples.
Example 7 : Solve the following pair of equations by substitution method:
Tx—15y =2 (1

x+2y=3 2)
Solution :
Step 1 : We pick either of the equations and write one variable in terms of the other.
Let us consider the Equation (2) :

x+2y=3
and write it as x=3-2y 3)
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Step 2 : Substitute the value of x in Equation (1). We get
73 -2y)— 15y =2

ie., 21 -14y-15y=2

ie., -29y=-19

Therefore, y= L
29

Step 3 : Substituting this value of y in Equation (3), we get

29 29
Therefore, the solution i v ki
erefore, the solutionis x =~ y = .
o 49 19 _ .
Verification : Substituting x = 29 andy= 29" you can verify that both the Equations

(1) and (2) are satisfied.
To understand the substitution method more clearly, let us consider it stepwise:

Step 1 : Find the value of one variable, say y in terms of the other variable, i.e., x from
either equation, whichever is convenient.

Step 2 : Substitute this value of y in the other equation, and reduce it to an equation in
one variable, i.e., in terms of x, which can be solved. Sometimes, as in Examples 9 and
10 below, you can get statements with no variable. If this statement is true, you can
conclude that the pair of linear equations has infinitely many solutions. If the statement
is false, then the pair of linear equations is inconsistent.

Step 3 : Substitute the value of x (or y) obtained in Step 2 in the equation used in
Step 1 to obtain the value of the other variable.

Remark : We have substituted the value of one variable by expressing it in terms of
the other variable to solve the pair of linear equations. That is why the method is
known as the substitution method.

Example 8 : Solve Q.1 of Exercise 3.1 by the method of substitution.

Solution : Let s and ¢ be the ages (in years) of Aftab and his daughter, respectively.
Then, the pair of linear equations that represent the situation is

s—7=T7@1-7),ie,s-Tt+42=0 (1)
and s+3=3(t+3),ie,5-3t=6 2)
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Using Equation (2), we get s = 3¢ + 6.
Putting this value of s in Equation (1), we get
(Bt+6)-Tt+42= 0,
i.e., 4t = 48, which gives r = 12.
Putting this value of # in Equation (2), we get
s=3(12)+6=42

So, Aftab and his daughter are 42 and 12 years old, respectively.

Verify this answer by checking if it satisfies the conditions of the given problems.
Example 9 : Let us consider Example 2 in Section 3.3, i.e., the cost of 2 pencils and

3 erasers is T 9 and the cost of 4 pencils and 6 erasers is % 18. Find the cost of each
pencil and each eraser.

Solution : The pair of linear equations formed were:

2x+3y=9 (D)
4x + 6y = 18 2)
We first express the value of x in terms of y from the equation 2x + 3y = 9, to get
9 -3y
x=— 3

Now we substitute this value of x in Equation (2), to get

49 -3y)
- 7 = 1
> + 6y 8
ie., 18 -6y +6y= 18
ie., 18= 18

This statement is true for all values of y. However, we do not get a specific value
of y as a solution. Therefore, we cannot obtain a specific value of x. This situation has
arisen because both the given equations are the same. Therefore, Equations (1) and (2)
have infinitely many solutions. Observe that we have obtained the same solution
graphically also. (Refer to Fig. 3.3, Section 3.2.) We cannot find a unique cost of a
pencil and an eraser, because there are many common solutions, to the given situation.

Example 10 : Let us consider the Example 3 of Section 3.2. Will the rails cross each
other?
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Solution : The pair of linear equations formed were:

x+2y-4=0 (1)
2x+4y-12=0 2)
We express x in terms of y from Equation (1) to get
x=4-2y

Now, we substitute this value of x in Equation (2) to get
24-2y)+4y-12=0

ie., 8§-12=0

i.e., —-4=0

which is a false statement.

Therefore, the equations do not have a common solution. So, the two rails will not
cross each other.

EXERCISE 3.3

1. Solve the following pair of linear equations by the substitution method.

@ x+y=14 () s—t=3
N t
x—y=4 )
@) 3x-y=3 @iv) 0.2x+03y=1.3
9x-3y=9 0.4x+0.5y=23
_3x Sy
W) V2x+3y=0 i) 5 -5 =72
x y 13
— = ==
J3x \/gy—O 37576
2. Solve 2x + 3y = 11 and 2x — 4y = — 24 and hence find the value of ‘m’ for which
y=mx+3.

3. Form the pair of linear equations for the following problems and find their solution by
substitution method.

(1) The difference between two numbers is 26 and one number is three times the other.
Find them.

(i) The larger of two supplementary angles exceeds the smaller by 18 degrees. Find
them.

(@iii) The coach of a cricket team buys 7 bats and 6 balls for ¥ 3800. Later, she buys 3
bats and 5 balls for ¥ 1750. Find the cost of each bat and each ball.
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(iv) The taxi charges in a city consist of a fixed charge together with the charge for the
distance covered. For a distance of 10 km, the charge paid is ¥ 105 and for a
journey of 15 km, the charge paid is ¥ 155. What are the fixed charges and the
charge per km? How much does a person have to pay for travelling a distance of
25km? 9

(v) A fraction becomes — , if 2 is added to both the numerator and the denominator.
If, 3 is added to both the numerator and the denominator it becomes % . Find the
fraction.

(vi) Five years hence, the age of Jacob will be three times that of his son. Five years
ago, Jacob’s age was seven times that of his son. What are their present ages?

3.4.2 Elimination Method

Now let us consider another method of eliminating (i.e., removing) one variable. This
1s sometimes more convenient than the substitution method. Let us see how this method
works.

Example 11 : The ratio of incomes of two persons is 9 : 7 and the ratio of their
expenditures is 4 : 3. If each of them manages to save I 2000 per month, find their
monthly incomes.

Solution : Let us denote the incomes of the two person by ¥ 9x and ¥ 7x and their
expenditures by ¥ 4y and ¥ 3y respectively. Then the equations formed in the situation
is given by :

9x — 4y = 2000 (D)
and 7x — 3y = 2000 2)

Step 1 : Multiply Equation (1) by 3 and Equation (2) by 4 to make the coefficients of
y equal. Then we get the equations:

27x — 12y = 6000 (3)
28x — 12y = 8000 4)

Step 2 : Subtract Equation (3) from Equation (4) to eliminate y, because the coefficients
of y are the same. So, we get

(28x — 27x) — (12y — 12y) = 8000 — 6000
i.e., x = 2000
Step 3 : Substituting this value of x in (1), we get
9(2000) — 4y = 2000
ie., y = 4000
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So, the solution of the equations is x = 2000, y = 4000. Therefore, the monthly incomes
of the persons are ¥ 18,000 and % 14,000, respectively.

Verification : 18000 : 14000 = 9 : 7. Also, the ratio of their expenditures =
18000 — 2000 : 14000 —2000 = 16000 : 12000=4: 3

Remarks :

1. The method used in solving the example above is called the elimination method,
because we eliminate one variable first, to get a linear equation in one variable.
In the example above, we eliminated y. We could also have eliminated x. Try
doing it that way.

2. You could also have used the substitution, or graphical method, to solve this
problem. Try doing so, and see which method is more convenient.

Let us now note down these steps in the elimination method :
Step 1 : First multiply both the equations by some suitable non-zero constants to make
the coefficients of one variable (either x or y) numerically equal.

Step 2 : Then add or subtract one equation from the other so that one variable gets
eliminated. If you get an equation in one variable, go to Step 3.

If in Step 2, we obtain a true statement involving no variable, then the original
pair of equations has infinitely many solutions.

If in Step 2, we obtain a false statement involving no variable, then the original
pair of equations has no solution, i.e., it is inconsistent.

Step 3 : Solve the equation in one variable (x or y) so obtained to get its value.

Step 4 : Substitute this value of x (or y) in either of the original equations to get the
value of the other variable.

Now to illustrate it, we shall solve few more examples.

Example 12 : Use elimination method to find all possible solutions of the following
pair of linear equations :

2x+3y=8 (D)
dx + 6y =17 )

Solution :

Step 1 : Multiply Equation (1) by 2 and Equation (2) by 1 to make the
coefficients of x equal. Then we get the equations as :
4x + 6y = 16 3)
dx + 6y =17 4)
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Step 2 : Subtracting Equation (4) from Equation (3),
(4x —4x) + (6y —6y) =16 -7
Le., 0= 9, which is a false statement.

Therefore, the pair of equations has no solution.

Example 13 : The sum of a two-digit number and the number obtained by reversing
the digits is 66. If the digits of the number differ by 2, find the number. How many such
numbers are there?

Solution : Let the ten’s and the unit’s digits in the first number be x and y, respectively.
So, the first number may be written as 10x + y in the expanded form (for example,
56 =10(5) + 6).

When the digits are reversed, x becomes the unit’s digit and y becomes the ten’s
digit. This number, in the expanded notation is 10y + x (for example, when 56 is
reversed, we get 65 = 10(6) + 5).

According to the given condition.
(10x +y) + (10y + x) = 66

ie., 11(x+y) = 66

Le., xX+y=26 (D)
We are also given that the digits differ by 2, therefore,

either x—y=2 2)
or y—x=2 3)

If x — y =2, then solving (1) and (2) by elimination, we get x =4 and y = 2.
In this case, we get the number 42.

If y — x =2, then solving (1) and (3) by elimination, we get x =2 and y =4.
In this case, we get the number 24.
Thus, there are two such numbers 42 and 24.
Verification : Here 42 + 24 =66 and 4 — 2 =2. Also 24 + 42 =66 and 4 — 2 = 2.

EXERCISE 34

1. Solve the following pair of linear equations by the elimination method and the substitution

method :
@ x+y=5 and 2x-3y=4 @) 3x+4y=10 and 2x-2y=2
x 2
@) 3x—-5y—-4=0 and 9x=2y+7 @iv) §+?y:—1andx—§:3
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2. Form the pair of linear equations in the following problems, and find their solutions
(if they exist) by the elimination method :

(1) If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces
1. . . .
to 1. It becomes 5 if we only add 1 to the denominator. What is the fraction?

(i) Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as
old as Sonu. How old are Nuri and Sonu?

@) The sum of the digits of a two-digit number is 9. Also, nine times this number is
twice the number obtained by reversing the order of the digits. Find the number.

(iv) Meena went to a bank to withdraw ¥ 2000. She asked the cashier to give her
¥ 50 and ¥ 100 notes only. Meena got 25 notes in all. Find how many notes of
¥ 50 and ¥ 100 she received.

(v) Alending library has a fixed charge for the first three days and an additional charge
for each day thereafter. Saritha paid X 27 for a book kept for seven days, while Susy
paid X 21 for the book she kept for five days. Find the fixed charge and the charge
for each extra day.

3.4.3 Cross - Multiplication Method

So far, you have learnt how to solve a pair of linear equations in two variables by
graphical, substitution and elimination methods. Here, we introduce one more algebraic
method to solve a pair of linear equations which for many reasons is a very useful
method of solving these equations. Before we proceed further, let us consider the
following situation.

The cost of 5 oranges and 3 apples is ¥ 35 and the cost of 2 oranges and 4 apples
is ¥ 28. Let us find the cost of an orange and an apple.

Let us denote the cost of an orange by X x and the cost of an apple by ¥ y. Then,
the equations formed are :

S5x+3y= 35, ie,5x+3y-35=0 (1)
2x +4y =128, ie.,2x+4y-28=0 )
Let us use the elimination method to solve these equations.
Multiply Equation (1) by 4 and Equation (2) by 3. We get
BHO)x +BHAB)y + (=35 =0 3
3)2)x+ B3)(4)y + (3)(-28) = 0 “
Subtracting Equation (4) from Equation (3), we get
[3D)(@) = B)D))x + [(H(3) = B)D]y + [4(=35) - 3)(-28)] =0
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[(H(35) - 3)(=28)]
(34 -03)2)

_ (3)(=28) =D (35)
@ -0
If Equations (1) and (2) are written asax + by +c,=0andax+by +c,=0,
then we have
a =50b =3¢ =-35a,=2,b,=4,c,=-28.

Therefore, X = —

6))

i.e.,

. ) bc, — by,
Then Equation (5) can be writtenas x = ——————,
ab, — ayb,
.. a4, — 64
Similarly, you can get y= ———
ab, — a,by
By simplyfing Equation (5), we get
-84 + 140 4
T 20-6
Similarl _ (35)(2) - (5)(=28)  -70+140 s
R - 20-6 RV

Therefore, x =4, y =5 is the solution of the given pair of equations.

Then, the cost of an orange is ¥ 4 and that of an apple is ¥ 5.

Verification : Cost of 5 oranges + Cost of 3 apples =3 20 + ¥ 15 = 35. Cost of
2 oranges + Cost of 4 apples =3 8 +3 20 =% 28.

Let us now see how this method works for any pair of linear equations in two
variables of the form
ax+by+c =0 (D)

and ax+by+c,=0 2)

To obtain the values of x and y as shown above, we follow the following steps:

Step 1 : Multiply Equation (1) by b, and Equation (2) by b . to get
bax+bby+bc =0 3)
bax+bb,y+bc,=0 4)

Step 2 : Subtracting Equation (4) from (3), we get:

(ba —ba)x+{bb —bb,)y+ (bec—bc,)=0
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Le., (ba, —ba)x=>bc,- by,

_ b, = by

So, , provided a b,—a,b #0  (5)

ab, — aby
Step 3 : Substituting this value of x in (1) or (2), we get

Gady — G4
= (6)
ab, — a,b
Now, two cases arise :
. a b . . .
Case 1: ab,—a,b, #0.In this case —- # — . Then the pair of linear equations has

. . a, b
a unique solution. S

Case 2 :ab,—ap =0.1If we write 4 ﬁ= k,thena =ka,b =kb,
a, b,
Substituting the values of a, and b, in the Equation (1), we get
k (a,x+b,y)+c =0. (7)
It can be observed that the Equations (7) and (2) can both be satisfied only if

. c
¢, =kc,ie., L=k
&)

If ¢, =k c,, any solution of Equation (2) will satisty the Equation (1), and vice

versa. So, if 4 b =9 o , then there are infinitely many solutions to the pair of
a b o
linear equations given by (1) and (2).

If ¢, # k c,. then any solution of Equation (1) will not satisfy Equation (2) and vice
versa. Therefore the pair has no solution.

We can summarise the discussion above for the pair of linear equations given by
(1) and (2) as follows:

. a b . .
(i) When — # —L | we get a unique solution.

a, pl
.. a b ¢ e )
(i) When — = — = — there are infinitely many solutions.
a, b O
a b ¢ . .
(iii) When —- = -1 L there is no solution.
a, h O
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Note that you can write the solution given by Equations (5) and (6) in the
following form :

X y 1
- - (®)

bicy, —=byey  cay, —ca4p  ab, — ayb

In remembering the above result, the following diagram may be helpful to

you: X y 1

1 1 1 1

b, c a b

2 2 2

The arrows between the two numbers indicate that they are to be multiplied and
the second product is to be subtracted from the first.

For solving a pair of linear equations by this method, we will follow the following
steps :

Step 1 : Write the given equations in the form (1) and (2).

Step 2 : Taking the help of the diagram above, write Equations as given in (8).
Step 3 : Find x and y, provided a b,—ab, # 0

Step 2 above gives you an indication of why this method is called the

cross-multiplication method.

Example 14 : From a bus stand in Bangalore , if we buy 2 tickets to Malleswaram and
3 tickets to Yeshwanthpur, the total cost is X 46; but if we buy 3 tickets to Malleswaram
and 5 tickets to Yeshwanthpur the total cost is ¥ 74. Find the fares from the bus stand
to Malleswaram, and to Yeshwanthpur.

Solution : Let % x be the fare from the bus stand in Bangalore to Malleswaram, and
% y to Yeshwanthpur. From the given information, we have

2x + 3y =46, ie., 2x+3y-46=0 (1)
3x+5y="74, ie, 3x+5y-74=0 2)
To solve the equations by the cross-multiplication method, we draw the diagram as
given below.
X y 1
3 —46 2 3
5 74 3 5
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x y 1

Then = =
B3 (74) = (5)(—46)  (—46)(3) — (-TH(2) (2)(5) - 3)(3)
ie : = Y _—
o 2224230 —138+148 10-9
: x_y_1
1€ 810 1
: x 1 y 1
i.e., g = 1 and 10 =1
ie., x=8 and y=10

Hence, the fare from the bus stand in Bangalore to Malleswaram is ¥ 8 and the fare to
Yeshwanthpur is ¥ 10.

Verification : You can check from the problem that the solution we have got is correct.

Example 15 : For which values of p does the pair of equations given below has unique
solution?

4x+py+8=0
2x+2y+2=0
Solution : Here a, =4, a,=2,b, =p, b, =2.
b
Now for the given pair to have a unique solution : 4 +
4 » a, b
i.e., - F <
ie > )
i.e., p+4

Therefore, for all values of p, except 4, the given pair of equations will have a unique
solution.

Example 16 : For what values of k will the following pair of linear equations have
infinitely many solutions?

kx+3y—(k-3)=0
12x+ky —k=0

Solution : Here, 4 i’ b—l = i’ - k=3
a, 12 b, k ¢,

. . . e . a b ¢
For a pair of linear equations to have infinitely many solutions : —-= b—l =1
a, b, &
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or,

k 3 k-3
So, we need E = ;— T
3
127k
which gives k> =36, i.e., k =+ 6.
3 k-3
k- ko

Also,

gives 3k = k* — 3k, i.e., 6k = k* which means k=0 or k = 6.
Therefore, the value of k, that satisfies both the conditions, is k = 6. For this value, the
pair of linear equations has infinitely many solutions.

EXERCISE 3.5

1. Which of the following pairs of linear equations has unique solution, no solution, or
infinitely many solutions. In case there is a unique solution, find it by using cross

multiplication method.
@ x-3y-3=0 @) 2x+y=5
3x-9y-2=0 3x+2y=8
@) 3x—5y=20 @iv) x-3y-7=0
6x—10y=40 3x-3y-15=0

(i)

For which values of a and b does the following pair of linear equations have an

infinite number of solutions?

2x+3y=7

(a-b)yx+(a+b)y=3a+b-2

For which value of k will the following pair of linear equations have no solution?
3x+y=1

Rk-1)x+(k-1)y=2k+1

3. Solve the following pair of linear equations by the substitution and cross-multiplication

methods :

8x+5y=9
3x+2y=4

4. Form the pair of linear equations in the following problems and find their solutions (if

they exist) by any algebraic method :
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@i A part of monthly hostel charges is fixed and the remaining depends on the
number of days one has taken food in the mess. When a student A takes food for
20 days she has to pay ¥ 1000 as hostel charges whereas a student B, who takes
food for 26 days, pays ¥ 1180 as hostel charges. Find the fixed charges and the
cost of food per day.

1
(i) A fraction becomes 3 when 1 is subtracted from the numerator and it becomes Z

when 8 is added to its denominator. Find the fraction.

(ii)) Yash scored 40 marks in a test, getting 3 marks for each right answer and losing 1
mark for each wrong answer. Had 4 marks been awarded for each correct answer
and 2 marks been deducted for each incorrect answer, then Yash would have
scored 50 marks. How many questions were there in the test?

(iv) Places A and B are 100 km apart on a highway. One car starts from A and another
from B at the same time. If the cars travel in the same direction at different speeds,
they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What
are the speeds of the two cars?

(v) The area of a rectangle gets reduced by 9 square units, if its length is reduced by
5 units and breadth is increased by 3 units. If we increase the length by 3 units and
the breadth by 2 units, the area increases by 67 square units. Find the dimensions
of the rectangle.

3.5 Equations Reducible to a Pair of Linear Equations in Two Variables

In this section, we shall discuss the solution of such pairs of equations which are not
linear but can be reduced to linear form by making some suitable substitutions. We
now explain this process through some examples.

Example 17 : Solve the pair of equations:

23
Z+2=13
XY
5 4
- =_2
XY

Solution : Let us write the given pair of equations as

(Y-
-4



These equations are not in the form ax + by + ¢ = 0. However, if we substitute

1 1

—=pand —=g¢q in Equations (1) and (2), we get

X y
2p+3g=13 (3)
Sp—4q=-2 “)

So, we have expressed the equations as a pair of linear equations. Now, you can use
any method to solve these equations, and get p =2, g = 3.

1 1
You know thatp = — andg= —
X Yy

Substitute the values of p and g to get

l=2, i.e.,x=l and l=3, Le., y=l
X 2 y 3

1 1 . . .
Verification : By substituting x= 5 and y= 3 in the given equations, we find that
both the equations are satisfied.

Example 18 : Solve the following pair of equations by reducing them to a pair of
linear equations :

1
Solution : Let us put "'~ p and =2 =4 . Then the given equations

1) y—2 =2 M
1 1
6 -3 _
(x—lj (y—2j =1 @)
can be written as : Sp+q=2 3)
6p-3g=1 4)
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Equations (3) and (4) form a pair of linear equations in the general fcirm. Now,

you can use any method to solve these equations. We get p= = and g =

3 3

=5, 1
Now, substituting —1 for p, we have
x—

1

x=1

1
3‘§
e, x=1=3, ie, x=4,

Similarly, substituting for g, we get

y=2

—
| =

ie.. i= y-2, Le,y=5

Hence, x =4, y = 5 is the required solution of the given pair of equations.
Verification : Substitute x = 4 and y = 5 in (1) and (2) to check whether they are
satisfied.

Example 19 : A boat goes 30 km

upstream and 44 km downstream in
100 hours. In 13 hours, it can go wf

2 u: —-"--"‘-""-._—.—-""""'
40 km upstream and 55 km = =

down-stream. Determine the speed - et :

of the stream and that of the boat in -'-‘-_-"-"—::-- _—
still water. e N

Solution : Let the speed of the boat i
in still water be x kmv/h and speed of gy W,

- ; S
the stream be y kmv/h. Then the T = e B e o=
speed of the boat downstream
=(x + y) km/h,
and the speed of the boat upstream = {(x — v) km/h
] distance
Also, time= ————
speed

In the first case, when the boat goes 30 km upstream, let the time taken, in hour,
be t. Then




Let 1, be the time, in hours, taken by the boat to go 44 km downstream. Then

t, = 44 . The total time taken, t o+, is 10 hours. Therefore, we get the equation
xX+y
30 44
+ =10 (1)
X—y x+Yy

In the second case, in 13 hours it can go 40 km upstream and 55 km downstream. We
get the equation

40 55
+ =13 2)
X—y x+Yy
! =u and ! =y
Put P P 3)

On substituting these values in Equations (1) and (2), we get the pair of linear
equations:

30u+44v=10 or 30u+44v-10=0 4)
40u+55v =13 or 40u+55v-13=0 (5)
Using Cross-multiplication method, we get
u v _ 1
44(-13) — 55(-10) - 40(-10) =30(=13)  30(55) — 44(40)
. u v 1
e 22 7 210 -110
) 1 1
ie., u= 3 v=1]
Now put these values of u and v in Equations (3), we get
1 1 1 1
= — and =
x—-y 5 x+y 11
ie., x—y=5and x+y=11 (6)
Adding these equations, we get
2x =16
i.e., x=8

Subtracting the equations in (6), we get
2y=106
ie., y=13
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Hence, the speed of the boat in still water is 8 km/h and the speed of the stream
is 3 km/h.

Verification : Verify that the solution satisfies the conditions of the problem.

EXERCISE 3.6

1. Solve the following pairs of equations by reducing them to a pair of linear equations:

. L+L—2 . + 3 _2
® 2x 3y (i) \/; \/;
1,1_1B 49
3x 2y 6 Jx \/§
4 5 r
i) —+3y=14 ) Tyt o,
3 6 3
——4y=23 - =1
x Y x—1 y—2
Tx—2y 5
= i) 6x+3y=6
™ Ty (Vi) 6x+ 3y =6xy
8x+ Ty
X =15 2x+4y=5xy
10 2
(vii) + =4 (viii) ! + L .3
Xty x-—y 3x+y 3x—-y 4
15 5 _ 1 3 1 _ -1
x+y x-—y 2B3x+y) 2Bx-y) 8

2. Formulate the following problems as a pair of equations, and hence find their solutions:
@ Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her
speed of rowing in still water and the speed of the current.

(i) 2 women and 5 men can together finish an embroidery work in 4 days, while 3
women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone to
finish the work, and also that taken by 1 man alone.

@iii) Roohi travels 300 km to her home partly by train and partly by bus. She takes 4
hours if she travels 60 km by train and the remaining by bus. If she travels 100 km
by train and the remaining by bus, she takes 10 minutes longer. Find the speed of
the train and the bus separately.
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EXERCISE 3.7 (Optional)*

1. The ages of two friends Ani and Biju differ by 3 years. Ani’s father Dharam is twice as old
as Ani and Biju is twice as old as his sister Cathy. The ages of Cathy and Dharam differ
by 30 years. Find the ages of Ani and Biju.

2. One says, “Give me a hundred, friend! I shall then become twice as rich as you”. The
other replies, “If you give me ten, I shall be six times as rich as you”. Tell me what is the
amount of their (respective) capital? [From the Bijaganita of Bhaskara IT]

[Hint : x+ 100 =2(y — 100), y + 10 =6(x— 10)].

3. A train covered a certain distance at a uniform speed. If the train would have been
10 km/h faster, it would have taken 2 hours less than the scheduled time. And, if the train
were slower by 10 km/h; it would have taken 3 hours more than the scheduled time. Find
the distance covered by the train.

4. The students of a class are made to stand in rows. If 3 students are extra in a row, there
would be 1 row less. If 3 students are less in a row, there would be 2 rows more. Find the
number of students in the class.

5. InaAABC, £LC=3 £B=2(£LA+ £B).Find the three angles.

6. Draw the graphs of the equations 5x —y =5 and 3x— y = 3. Determine the co-ordinates of
the vertices of the triangle formed by these lines and the y axis.

7. Solve the following pair of linear equations:

O px+qy=p-q () ax+by=c
gx—py=p+q bx+ay=1+c

XY .

i) —=5-=0 (iv) (a-b)x+(a+b)y=a’~2ab-b’
ax + by =a*+ b* (a+Db)(x+y)=a>+b?

v) 152x—378y=—"74
~378x+ 152y =—604

8. ABCD is a cyclic quadrilateral (see Fig. 3.7).
Find the angles of the cyclic quadrilateral.

* These exercises are not from the examination point of view.
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3.6 Summary
In this chapter, you have studied the following points:

1. Two linear equations in the same two variables are called a pair of linear equations in two
variables. The most general form of a pair of linear equations is

ax+by+c =0
ax+by+c,=0
where a, a,, b, b,, ¢, c, are real numbers, such that al2 + b12 # 0, a% + 1722 # 0.
2. A pair of linear equations in two variables can be represented, and solved, by the:
(i) graphical method
(i) algebraic method
3. Graphical Method :
The graph of a pair of linear equations in two variables is represented by two lines.

@) If the lines intersect at a point, then that point gives the unique solution of the two
equations. In this case, the pair of equations is consistent.

(@) If the lines coincide, then there are infinitely many solutions — each point on the
line being a solution. In this case, the pair of equations is dependent (consistent).

(i) If the lines are parallel, then the pair of equations has no solution. In this case, the
pair of equations is inconsistent.

4. Algebraic Methods : We have discussed the following methods for finding the solution(s)
of a pair of linear equations :

(1) Substitution Method
(i) Elimination Method
(@iii) Cross-multiplication Method

5. If apair of linear equations is givenby a x + b y + ¢, =0 and a,x + b,y + ¢, =0, then the
following situations can arise :

.oaq b . . . Lo .
(i L= b—l : In this case, the pair of linear equations is consistent.
a, |
@ _b g . . . L .
(i) — =-—% — :Inthis case, the pair of linear equations is inconsistent.
a, b, ¢
o a b ¢ . . ) .. .
(i) — =-—=— :Inthis case, the pair of linear equations is dependent and consistent.

a b o
6. There are several situations which can be mathematically represented by two equations

that are not linear to start with. But we alter them so that they are reduced to a pair of
linear equations.
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04
QUADRATIC EQUATIONS
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QUADRATIC EQUATIONS 4

4.1 Tntroduction

Tn Chapter 2, you have studied different types of polynomials. One type was ihe
guadratic polynomial of the form ax?+ bx + ¢, a # 0, When we equate this polynomial
to zero, we get a quadratic equation. Quadratic equations come up when we deal with
many real-life situations. For instance, suppose a
charity trust decides to build a prayer hall having
a carpet area of 300 square metres with its length . 200 m?
one metre more than twice its breadth. What
should be the length and breadth of fhe hall?

Suppose the breadth of the hall is x metres. Then, Tk
its length should be (2x + 1) meires, We can depict B

this infarmation pictorially as shown in Fig. 4.1. Fig. 4.1
Now, area of the ball = (2x + 1), x ¥ = (2% + x) m?
So, 2xi4x = 300 {Given)

Therefore, I +x-300=0

So, the breadéh of the hall should satisfy the equation 2x*+x— 300 = 0 which is a
guadratic equation.

Many people believe that Babylonians were the first to solve quadratic equations.
For instance, they knew how to find two positive numbers with a given positive sum
and a given positive peoduct, and this problem Is equivalent to solving a quadeatic
equation of the form x' — px + q = . Greek mathematician Euclid developed a
geometrical approach for finding out lengths which, in our present day tesminology,
are sohitions of quadratic equations. Seolving of geadratic equations, in general form, is
often credited to ancient Indian mathemativians, In fagt, Brahmagupta {C.E.598-665)
gave an explicit formula to solve a goadratic equation of the form ax® + bx = ¢. Later,
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Sridharacharya (C.E. 1025) derived a formula, now known as the quadratic formula,
(as quoted by Bhaskara II) for solving a quadratic equation by the method of completing
the square. An Arab mathematician Al-Khwarizmi (about C.E. 800) also studied
quadratic equations of different types. Abraham bar Hiyya Ha-Nasi, in his book
‘Liber embadorum’ published in Europe in C.E. 1145 gave complete solutions of
different quadratic equations.

In this chapter, you will study quadratic equations, and various ways of finding
their roots. You will also see some applications of quadratic equations in daily life
situations.

4.2 Quadratic Equations

A quadratic equation in the variable x is an equation of the form ax? + bx + ¢ =0, where
a, b, ¢ are real numbers, a # 0. For example, 2x* + x — 300 = 0 is a quadratic equation.
Similarly, 2x*> = 3x+ 1 =0, 4x - 3x>+2=0and 1 — x* + 300 = 0 are also quadratic
equations.

In fact, any equation of the form p(x) = 0, where p(x) is a polynomial of degree
2,1s a quadratic equation. But when we write the terms of p(x) in descending order of
their degrees, then we get the standard form of the equation. That is, ax? + bx + ¢ =0,
a # 0 is called the standard form of a quadratic equation.

Quadratic equations arise in several situations in the world around us and in
different fields of mathematics. Let us consider a few examples.
Example 1 : Represent the following situations mathematically:

(1) John and Jivanti together have 45 marbles. Both of them lost 5 marbles each, and
the product of the number of marbles they now have is 124. We would like to find
out how many marbles they had to start with.

(i) A cottage industry produces a certain number of toys in a day. The cost of
production of each toy (in rupees) was found to be 55 minus the number of toys
produced in a day. On a particular day, the total cost of production was
% 750. We would like to find out the number of toys produced on that day.

Solution :
(1) Let the number of marbles John had be x.
Then the number of marbles Jivanti had = 45 — x (Why?).
The number of marbles left with John, when he lost 5 marbles = x -5
The number of marbles left with Jivanti, when she lost 5 marbles =45 -x -5
=40-x
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Therefore, their product = (x — 5) (40 — x)
= 40x — x* — 200 + 5x

= —x2+45x - 200
So, — x4+ 45x-200 = 124 (Given that product = 124)
ie., —xX>+45x-324=0
ie., xX2—45x+324=0

Therefore, the number of marbles John had, satisfies the quadratic equation
X —45x+324=0
which is the required representation of the problem mathematically.
(i) Let the number of toys produced on that day be x.
Therefore, the cost of production (in rupees) of each toy that day = 55 — x

So, the total cost of production (in rupees) that day = x (55 — x)

Therefore, x (55 -x)= 1750
ie., 55x — x> =750
ie., - x>+55x-750=0
ie., X =55x+750=0

Therefore, the number of toys produced that day satisfies the quadratic equation
x*—55x+750=0

which is the required representation of the problem mathematically.

Example 2 : Check whether the following are quadratic equations:
) (x-2*+1=2x-3 @ xx+1)+8=x+2)(x-2)

(i) x 2x+3)=x*+1 (iv) x+2y¥ =x-4
Solution :
i) LHS=(x-2) +1=x>-4dx+4+1=x>-4x+5

Therefore, (x — 2)>+ 1 = 2x — 3 can be rewritten as
X2—4x+5=2x-3
ie., xXX—6x+8=0
It is of the form ax? + bx + ¢ = 0.

Therefore, the given equation is a quadratic equation.
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(1)

(ii)

@iv)

Sincex(x+ 1)+ 8=x>+x+8and (x +2)(x —2)=x*—-4

Therefore, X>+x+8=x*-4

ie., x+12=0

It is not of the form ax* + bx + ¢ = 0.

Therefore, the given equation is not a quadratic equation.

Here, LHS =x 2x +3) = 2x*> + 3x

So, x (2x + 3) = x> + 1 can be rewritten as
232+ 3x=x*+1

Therefore, we get x*+3x-1=0

It is of the form ax® + bx + ¢ = 0.

So, the given equation is a quadratic equation.

Here, LHS=(x+2°=x+6x>+ 12x+ 8

Therefore, (x +2)* = x* — 4 can be rewritten as
X+6x*+12x+8=x-4

ie., 6>+ 12x+12=0 or, xX*+2x+2=0

It is of the form ax®> + bx + ¢ = 0.

So, the given equation is a quadratic equation.

Remark : Be careful! In (ii) above, the given equation appears to be a quadratic
equation, but it is not a quadratic equation.

In (iv) above, the given equation appears to be a cubic equation (an equation of

degree 3) and not a quadratic equation. But it turns out to be a quadratic equation. As
you can see, often we need to simplify the given equation before deciding whether it
is quadratic or not.

EXERCISE 4.1

1. Check whether the following are quadratic equations :

@) (c+172=2(x-3) (i) x*—2x=(-2) 3-x)
(i) (x—2)(x+1)=(—D(x+3) (iv) (x=3)2x+1)=x(x+5)
V) 2x-DE-3)=@x+5)x-1) (vi) X +3x+1=(x-2)
(vi)) (x+2)=2x(*—1) (vili) X*—4x% —x+ 1= (x—2)}

2. Represent the following situations in the form of quadratic equations :

(i) The area of a rectangular plot is 528 m? The length of the plot (in metres) is one
more than twice its breadth. We need to find the length and breadth of the plot.
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(i) The product of two consecutive positive integers is 306. We need to find the
integers.

(iii)) Rohan’s mother is 26 years older than him. The product of their ages (in years)
3 years from now will be 360. We would like to find Rohan’s present age.

(iv) A train travels a distance of 480 km at a uniform speed. If the speed had been
8 km/h less, then it would have taken 3 hours more to cover the same distance. We
need to find the speed of the train.
4.3 Solution of a Quadratic Equation by Factorisation

Consider the quadratic equation 2x* — 3x + 1 = 0. If we replace x by 1 on the
LHS of this equation, we get (2 X 1) — (3 x 1) + 1 = 0 = RHS of the equation.
We say that 1 is a root of the quadratic equation 2x> — 3x + 1 = 0. This also means that
1 is a zero of the quadratic polynomial 2x* — 3x + 1.

In general, a real number o is called a root of the quadratic equation
ax*+bx+c=0,a#0if a &® + bae + ¢ = 0. We also say that x = o is a solution of
the quadratic equation, or that a satisfies the quadratic equation. Note that the
zeroes of the quadratic polynomial ax? + bx + ¢ and the roots of the quadratic
equation ax? + bx + ¢ = 0 are the same.

You have observed, in Chapter 2, that a quadratic polynomial can have at most
two zeroes. So, any quadratic equation can have atmost two roots.

You have learnt in Class IX, how to factorise quadratic polynomials by splitting
their middle terms. We shall use this knowledge for finding the roots of a quadratic
equation. Let us see how.

Example 3 : Find the roots of the equation 2x* — 5x + 3 = 0, by factorisation.

Solution : Let us first split the middle term — 5x as —2x —3x [because (-2x) x (-3x) =
6x* = (2x%) x 3].

So, 2x>=5x+3=2x2-2x-3x+3=2x(x-1)3x-1)=2x=-3)x-1)
Now, 2x? — 5x + 3 = 0 can be rewritten as (2x — 3)(x — 1) = 0.

So, the values of x for which 2x> — 5x + 3 = 0 are the same for which (2x — 3)(x — 1) =0,
i.e., either2x—3=0o0rx—1=0.

3
Now, 2x — 3 =0 gives x=§ andx—1=0givesx = 1.
3
So, x= 5 and x = 1 are the solutions of the equation.

3
In other words, 1 and ) are the roots of the equation 2x* — 5x + 3 = 0.

Verify that these are the roots of the given equation.
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Note that we have found the roots of 2x> — 5x + 3 = 0 by factorising
2x? — 5x + 3 into two linear factors and equating each factor to zero.

Example 4 : Find the roots of the quadratic equation 6x* —x —2 = 0.
Solution : We have
6x* —x—-2=6x2+3x—-4x-2

=3 x2x+1)-22x+ 1)

=Bx-2)2x+ 1)
The roots of 6x*> — x — 2 = 0 are the values of x for which 3x —2)2x+ 1) =0
Therefore, 3x —2=0o0r2x+1=0,
2 1
3 or x=—7=

i.e., X = >

2 1
Therefore, the roots of 6x2 — x — 2 = 0 are 3 and — 3

2 1
We verify the roots, by checking that 3 and 5 satisfy 6x*> —x -2 =0.

Example 5 : Find the roots of the quadratic equation 3x> — 2\/6 x+2=0-

3x% —J6x —~/6x+2
a(\Bx—2) -3 (x -2
- (Br-2)(Bx )

Solution :3x% —2./6x+2

So, the roots of the equation are the values of x for which

(\/gx—\/z)(\/gx— \/5) =0

2
Now, /3x—+/2 =0 for x=\/;,

So, this root is repeated twice, one for each repeated factor x—+2.

Therefore, the roots of 3y — 2\/6 x+2=0 are \/g , \/g .
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Example 6 : Find the dimensions of the prayer hall discussed in Section 4.1.

Solution : In Section 4.1, we found that if the breadth of the hall is x m, then x
satisfies the equation 2x? + x — 300 = 0. Applying the factorisation method, we write
this equation as

2x* —24x +25x-300= 0
2x(x-12)+25(x-12)=0
ie., (x=12)2x+25)=0

So, the roots of the given equation are x = 12 or x =— 12.5. Since x is the breadth
of the hall, it cannot be negative.

Thus, the breadth of the hall is 12 m. Its length = 2x + 1 =25 m.

EXERCISE 4.2

1. Find the roots of the following quadratic equations by factorisation:
i) x*-3x-10=0 () 2x*+x-6=0

1
i) 2x>+7x+5V2=0 @iv) 2x2—x+§=0
(v) 100x*-20x+1=0
Solve the problems given in Example 1.

Find two numbers whose sum is 27 and product is 182.

Find two consecutive positive integers, sum of whose squares is 365.

Nk WD

The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find
the other two sides.

6. A cottage industry produces a certain number of pottery articles in a day. It was observed
on a particular day that the cost of production of each article (in rupees) was 3 more than
twice the number of articles produced on that day. If the total cost of production on that
day was ¥ 90, find the number of articles produced and the cost of each article.

4.4 Solution of a Quadratic Equation by Completing the Square

In the previous section, you have learnt one method of obtaining the roots of a quadratic
equation. In this section, we shall study another method.

Consider the following situation:

The product of Sunita’s age (in years) two years ago and her age four years
from now is one more than twice her present age. What is her present age?

To answer this, let her present age (in years) be x. Then the product of her ages
two years ago and four years from now is (x — 2)(x + 4).
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Therefore, (x=2)(x+4)=2x+1

ie., X+2x-8=2x+1

ie., xX-9=0

So, Sunita’s present age satisfies the quadratic equation x> — 9 = 0.

We can write this as x* = 9. Taking square roots, we get x = 3 or x = — 3. Since
the age is a positive number, x = 3.

So, Sunita’s present age is 3 years.

Now consider the quadratic equation (x + 2)>* — 9 = 0. To solve it, we can write
it as (x + 2)> = 9. Taking square roots, we getx + 2=3 orx + 2 =-3.

Therefore, x=1 or x=-5
So, the roots of the equation (x + 2)*> -9 =0 are 1 and — 5.

In both the examples above, the term containing x is completely inside a square,
and we found the roots easily by taking the square roots. But, what happens if we are
asked to solve the equation x* + 4x — 5 = 0? We would probably apply factorisation to
do so, unless we realise (somehow!) that x> + 4x — 5 = (x + 2)* - 9.

So, solving x> + 4x — 5 = 0 is equivalent to solving (x + 2)*— 9 = 0, which we have
seen is very quick to do. In fact, we can convert any quadratic equation to the form

(x + a)* — b* = 0 and then we can easily find its roots. Let us see if this is possible.
Look at Fig. 4.2.

In this figure, we can see how x* + 4x is being converted to (x + 2)* — 4.

X 4 X 4 X 2 2
1 M 1
| R ‘ 1RSI Ml p
N s | =xl W =<l
| 1l |
TR . = 1 ——TT =
2 2 2
X +4x X" +4x X'+ 2x+2x
X 2 2
i i I I ||| H| ||
xf N [
ol )RR TR B T ) Bl e et ] L e I N
T TR 2 ||||” ,”||| |||” 2
2 ; S5? 1 T
2 x+2
(x+2)x+2xx (x+2)x+2 xx+22-2° (x+2) =2
Fig. 4.2
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The process is as follows:

2 ix i
(x+2 )+2x

X2+ 4x

= x>+ 2x+2x
= (x+2)x+2xx
=X +2)x+2Xx+2x2-2x%x2
=X +2)x+(x+2)x2-2x2
=(x+2)(x+2)-22
=(x+2)>-4

So, xX*+4x-5=x+22-4-5=x+2’-9

So, x? + 4x — 5 =0 can be written as (x + 2)> — 9 = 0 by this process of completing
the square. This is known as the method of completing the square.

In brief, this can be shown as follows:

244 (x+4)2 (4)2 (x+ 4)2 4
X +4x = —| —-|=| = —| -
2 2 2

So, x>+ 4x — 5 = 0 can be rewritten as
2
4
x+—| —4-5= 0
(++3)
ie., (x+22-9=0

Consider now the equation 3x* — 5x + 2 = 0. Note that the coefficient of x? is not
a perfect square. So, we multiply the equation throughout by 3 to get

O -15x+6=0

Now, 9 — 15x + 6 = (3x)2—2><3x><§+6

2 2
(3x)2—2x3xx%+(%) —(2) +6

2 2
[3)6—2) —§+6 = [3)6—2) 1
2 4 2 4
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So, 9x% — 15x + 6 = 0 can be written as

5 1
; 3x-2| = =
1.€., ( 2) 4

. ORI R S |
ie., X-5 =5 o 2 =73
o 1 .
(We can also write this as 3x— 5 =t 5 where ‘t+’ denotes ‘plus minus’.)
5 1
Thus, 3x= —-+—or 3x=§—l
2 2 2
S 5 N 1 5 1
= —+—or X=———
© T6 6% 6 6
4
Therefore, x=lorx= g
: 1 2
Le., x=lorx= 3

Therefore, the roots of the given equation are 1 and 5

Remark : Another way of showing this process is as follows :

The equation 3x-5x+2=0

is the same as

, 52 x_l[éj C 1(2} "2
Now, X —§x+§ = 23 2\ 3 3



2 2
So, the solutions of 3x*>— 5x + 2 = 0 are the same as those of ( — éj — (l) =0,
6 6
2

| W

hich are x— ~ =% ~_ |
which are x — c =% 6,1.6.,)6—

:g.

Let us consider some examples to illustrate the above process.

N | W
AN |~

1
+—=1 dx =
6 and x

Example 7 : Solve the equation given in Example 3 by the method of completing the
square.

Solution : The equation 2x*> — 5x + 3 = 0 is the same as x° —§x+% =0.
N 2 5.3 (x_z)z_(zjiz _ (x_zf_i
oW 272" U) ) 270 4) e
5V 1
Therefore, 2x*> — 5x + 3 = 0 can be written as (x —Zj _R =

So, the roots of the equation 2x* — 5x + 3 = 0 are exactly the same as those of

5V 1 5 1 571
x—— | ——=0.Now, | x—— | —— =0 is the same as 7 7T

4 16 4 16 16
Theref > +1
x—— = +—
erefore, 4 4
5,1
. e
Le., X 172
) 5+1 or 5 1
= —+—O0or x=———
Le., X 22 11
| 3
Le., X = ) orx =

oo}
w



Therefore, the solutions of the equations are ng and 1.

Let us verify our solutions.

3 2
Putting X=§ in 2x* — 5x + 3 = 0, we get 2(%) —5[%)+3=0, which is

correct. Similarly, you can verify that x = 1 also satisfies the given equation.
In Example 7, we divided the equation 2x*> — 5x + 3 = 0 throughout by 2 to get
5

- Ex + 5 = 0 to make the first term a perfect square and then completed the

square. Instead, we can multiply throughout by 2 to make the first term as 4x* = (2x)*
and then complete the square.

x2

This method is illustrated in the next example.
Example 8 : Find the roots of the equation 5x*>— 6x — 2 = 0 by the method of completing
the square.
Solution : Multiplying the equation throughout by 5, we get
25x*-30x-10=10
This is the same as
(5xy-2x(5x)x3+32-32-10=0

i.e., 5x-32-9-10=0

i.e., 5x-3)?-19=0

i.e., (5x-3)?=19

i.e., 5x-3= i\/ﬁ

ie., 5x= 3+./19
3+4/19

So, X = 5

Therefore, the roots are

3+ /19 3- 19
5 and .

+\/E 3—\/5
and .

3
Verify that the roots are




Example 9 : Find the roots of 4x* + 3x + 5 = 0 by the method of completing the
square.

Solution : Note that 4x> + 3x + 5 = 0 is the same as

2 2 2 2 24_ 22_ 224_5_0
2x)* + X(x)x4 4 4 =
3V 9
i 2x+—| ——+5 =
i.e., (x 4) 16 0
: (2x+§2+ﬂ_0
1.e., 1 6 =
2

3 =71
i 2x+—| = —<0
1.e., (x 4) 6

2
3
But (2)6 + Zj cannot be negative for any real value of x (Why?). So, there is

no real value of x satisfying the given equation. Therefore, the given equation has no
real roots.

Now, you have seen several examples of the use of the method of completing
the square. So, let us give this method in general.

Consider the quadratic equation ax? + bx + ¢ = 0 (a # 0). Dividing throughout by

b c
a, we get X +—x+—=0
a a
- bY (b)Y ¢
This is the same as x+— | —-|— | +—=0
2a 2a a
) (x+ b jz b —4dac 0
ie., — | - =
2a 4q°

So, the roots of the given equation are the same as those of

(x+ b jz b —4ac 0, i.e., th f (x+ b jz b —dac (1)
— | ———=0, i.e., those o — | =—
2a 4a° 2a 4a*
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If b* — 4ac > 0, then by taking the square roots in (1), we get

b +b* —4dac

X+— =
2a 2a
—b+b> —4ac
Therefore, X= —
2a
[,2 [,2
So, the roots of ax®> + bx + ¢ = 0 are b+ 5 dac and b 5 dac , if

a a

b* —4ac 2 0. If b* — 4ac < 0, the equation will have no real roots. (Why?)

Thus, if b2 — 4ac = 0, then the roots of the quadratic equation
—b +~\b* - dac
2a

This formula for finding the roots of a quadratic equation is known as the
quadratic formula.

ax? + bx + ¢ = 0 are given by

Let us consider some examples for illustrating the use of the quadratic formula.

Example 10 : Solve Q. 2(i) of Exercise 4.1 by using the quadratic formula.

Solution : Let the breadth of the plot be x metres. Then the length is (2x + 1) metres.
Then we are given that x(2x + 1) = 528, i.e., 2x* + x — 528 = 0.

This is of the form ax* + bx + ¢ =0, wherea =2, b =1, c = — 528.

So, the quadratic formula gives us the solution as

-1+ 1+4(2)(528) —-1++/4225 -1%+65

4 4 4
i = ﬁ or x——_66
i.e., x= 4 4
| _ 16 B
1.e., X = or x= >

Since x cannot be negative, being a dimension, the breadth of the plot is
16 metres and hence, the length of the plot is 33m.

You should verify that these values satisfy the conditions of the problem.
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Example 11 : Find two consecutive odd positive integers, sum of whose squares
15 290.

Solution : Let the smaller of the two consecutive odd positive integers be x. Then, the
second integer will be x + 2. According to the question,

x>+ (x+2)>= 290

ie., X+ x*2+4x+4 =290
ie., 23 +4x-286=0
ie., xX>+2x-143=0

which is a quadratic equation in x.
Using the quadratic formula, we get

-2+ 4+572 2+576 2+%24
3 =

X = =
2 2

i.e., x=11 or x=-13

But x is given to be an odd positive integer. Therefore, x #— 13, x = 11.

Thus, the two consecutive odd integers are 11 and 13.

Check : 112+ 13> =121 + 169 = 290.

Example 12 : A rectangular park is to be designed whose breadth is 3 m less than its
length. Its area is to be 4 square metres more than the area of a park that has already

been made in the shape of an isosceles triangle with its base as the breadth of the
rectangular park and of altitude 12 m (see Fig. 4.3). Find its length and breadth.

Solution : Let the breadth of the rectangular park be x m.
So, its length = (x + 3) m.
Therefore, the area of the rectangular park = x(x + 3) m? = (x> + 3x) m>. 12

Now, base of the isosceles triangle = x m.

1
Therefore, its area = 5 X xx 12 =6xm>

According to our requirements, x+3
X*+3x=6x+4
ie., xX>=-3x-4=0

Using the quadratic formula, we get

Fig. 4.3
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But x # — 1 (Why?). Therefore, x = 4.
So, the breadth of the park = 4m and its length will be 7m.
Verification : Area of rectangular park = 28 m?,

area of triangular park = 24 m* = (28 — 4) m?

Example 13 : Find the roots of the following quadratic equations, if they exist, using
the quadratic formula:

() 3x2-5x+2=0 () ¥+4x+5=0 (iii) 2x2-22x+1=0
Solution :

() 3x*-5x+2=0.Here,a=3,b= -5,c=2.S0,b*—4ac =25-24=1>0.

541 5%l
6 6

Therefore, x = ,le,x=1 or x=

[SSHN )

2
So, the roots are 5 and 1.

(i) x>+4x+5=0.Here,a=1,b=4,¢c=5.50,b>-4ac=16-20=-4<0.

Since the square of a real number cannot be negative, therefore , /bz — 4qc will

not have any real value.

So, there are no real roots for the given equation.

(iii) 2x2— 2+/2x+ 1=0.Here,a=2,b= -2:2,c=1.

So, b*—4ac=8-8=0

2240 _2

2
—=*0 1e., x=
4 2 ’

-

Therefore, x =
1
So, the roots are i,

N
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Example 14 : Find the roots of the following equations:

1 1 1
(i) x+—=3x#0 (i) ————=3,x%0,2
x x x=2
Solution :
. 1 o
1 x+ . =3 Multiplying throughout by x, we get
xX*+1=73x
ie., x* = 3x+ 1 = 0, which is a quadratic equation.
Here, a=1,b=-3,c=1
So, b*—4ac=9-4=5>0
345
Therefore, X = T\/_ (Why?)
3+45 3-45
So, the roots are \/_ and \/_
2 2
1 1
(i) ————==3x%0, 2,
x x=2

As x # 0, 2, multiplying the equation by x (x — 2), we get

x-2)—x=3x(x-2)

= 3x* - 6x

So, the given equation reduces to 3x?— 6x + 2 = 0, which is a quadratic equation.

Here, a=3,b=—-6,c=2. So, b’-4ac=36-24=12>0
6+/12 6+2/3 3+3
Therefore, X = = = .
6 6 3
So, the roots are 3+\/§ and 3_3\/5 .
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Example 15 : A motor boat whose speed is 18 km/h in still water takes 1 hour more
to go 24 km upstream than to return downstream to the same spot. Find the speed of
the stream.

Solution : Let the speed of the stream be x km/h.

Therefore, the speed of the boat upstream = (18 — x) km/h and the speed of the boat
downstream = (18 + x) km/h.

distance 24

The time taken to go upstream = speed 18— x hours.
. . 24
Similarly, the time taken to go downstream = 13+ hours.
X

According to the question,

% 24
18—x 18+x

ie., 24(18 + x) — 24(18 = x) = (18 —x) (18 + x)

ie., xX>+48x-324=0

Using the quadratic formula, we get

—48++/48% +1296  —48+/3600

X = =

2 2

_ —48%60
B 2

=6o0or->54

Since x is the speed of the stream, it cannot be negative. So, we ignore the root
x =—54. Therefore, x = 6 gives the speed of the stream as 6 km/h.

EXERCISE 4.3

1. Find the roots of the following quadratic equations, if they exist, by the method of
completing the square:

i 2x*-7x+3=0 () 2x*+x-4=0
i) 4x% +43x+3=0 (iv) 2% +x+4=0
2. Find the roots of the quadratic equations given in Q.1 above by applying the quadratic
formula.
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3. Find the roots of the following equations:

. 1 . 1 1 11
@ x—-—=3,x20 (ii) - =
X x+4 x-=7 30

4. The sum of the reciprocals of Rehman’s ages, (in years) 3 years ago and 5 years from
now is g Find his present age.

5. Inaclass test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got
2 marks more in Mathematics and 3 marks less in English, the product of their marks
would have been 210. Find her marks in the two subjects.

6. The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer
side is 30 metres more than the shorter side, find the sides of the field.

7. The difference of squares of two numbers is 180. The square of the smaller number is 8
times the larger number. Find the two numbers.

8. A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would
have taken 1 hour less for the same journey. Find the speed of the train.

9. Two water taps together can fill a tank in 9 % hours. The tap of larger diameter takes 10

hours less than the smaller one to fill the tank separately. Find the time in which each tap
can separately fill the tank.

10. An express train takes 1 hour less than a passenger train to travel 132 km between
Mysore and Bangalore (without taking into consideration the time they stop at
intermediate stations). If the average speed of the express train is 1 1km/h more than that
of the passenger train, find the average speed of the two trains.

11. Sum of the areas of two squares is 468 m> If the difference of their perimeters is 24 m,
find the sides of the two squares.

4.5 Nature of Roots

In the previous section, you have seen that the roots of the equation ax* + bx + ¢ =0

are given by
~b+\b*—4ac

t= 2a
2
-4
If b* — 4ac > 0, we get two distinct real roots —2i+¥ and
a a
b Jb* — 4dac
2a 2a .
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If b? — 4ac = 0, th =40 e, x=—2 or -2
—4ac =0, then x = g e e " S

So, the roots of the equation ax® + bx + ¢ = 0 are both 2
a

Therefore, we say that the quadratic equation ax* + bx + ¢ = 0 has two equal
real roots in this case.

If b> - 4ac < 0, then there is no real number whose square is b*> — 4ac. Therefore,
there are no real roots for the given quadratic equation in this case.

Since b* — 4ac determines whether the quadratic equation ax* + bx + ¢ = 0 has
real roots or not, b* — 4ac is called the discriminant of this quadratic equation.
So, a quadratic equation ax* + bx + ¢ = 0 has
(i) two distinct real roots, if b*> — dac > 0,
(ii) two equal real roots, if b? — 4ac = 0,
(iii) no real roots, if b? — 4ac < 0.

Let us consider some examples.

Example 16 : Find the discriminant of the quadratic equation 2x*> — 4x + 3 = 0, and
hence find the nature of its roots.

Solution : The given equation is of the form ax? + bx + ¢ =0, where a =2, b =—4 and
¢ = 3. Therefore, the discriminant

b*—4ac=(-4)-(4x2x3)=16-24=-8<0

So, the given equation has no real roots.

Example 17 : A pole has to be erected at a point on the boundary of a circular park
of diameter 13 metres in such a way that the differences of its distances from two
diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible to
do so? If yes, at what distances from the two gates should the pole be erected?

Solution : Let us first draw the diagram
(see Fig. 4.4). A\

Let P be the required location of the
pole. Let the distance of the pole from the
gate B be x m, i.e., BP = x m. Now the
difference of the distances of the pole from
the two gates = AP — BP (or, BP — AP) = P
7 m. Therefore, AP = (x + 7) m.

Fig. 4.4
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Now, AB = 13m, and since AB is a diameter,
ZAPB = 90° (Why?)

Therefore, AP? + PB2 = AB*  (By Pythagoras theorem)

ie., (x+7)?+x*= 132

ie., x>+ 14x + 49 + x> = 169

ie., 2x* 4+ 14x-120= 0

So, the distance ‘x’ of the pole from gate B satisfies the equation
xX*+7x-60=0

So, it would be possible to place the pole if this equation has real roots. To see if this
18 so or not, let us consider its discriminant. The discriminant is

b*—4ac=7"-4x 1 x (- 60)=289>0.

So, the given quadratic equation has two real roots, and it is possible to erect the
pole on the boundary of the park.

Solving the quadratic equation x*> + 7x — 60 = 0, by the quadratic formula, we get

—7+4289 -7%17
2 T2

X =

Therefore, x =5 or — 12.

Since x is the distance between the pole and the gate B, it must be positive.
Therefore, x = — 12 will have to be ignored. So, x = 5.

Thus, the pole has to be erected on the boundary of the park at a distance of Sm
from the gate B and 12m from the gate A.

1
Example 18 : Find the discriminant of the equation 3x* — 2x + 3= 0 and hence find

the nature of its roots. Find them, if they are real.

1
Solution : Here a = 3, b = -2 and C=§.

1
Therefore, discriminant b> — 4ac = (- 2)> -4 x 3 x 3= 4-4=0.

Hence, the given quadratic equation has two equal real roots.

-b —-b . 2 2 . 1 1
> » le., — —, l.e, — —.
2a 2a 6 6 33

The roots are
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EXERCISE 4.4

Find the nature of the roots of the following quadratic equations. If the real roots exist,
find them:

() 22-3x+5=0 (i) 32 —43x+4=0
(i) 2x*-6x+3=0

Find the values of k for each of the following quadratic equations, so that they have two
equal roots.

i) 2x*+kx+3=0 () kx (x-=2)+6=0
Is it possible to design a rectangular mango grove whose length is twice its breadth,
and the area is 800 m*? If so, find its length and breadth.

Is the following situation possible? If so, determine their present ages.
The sum of the ages of two friends is 20 years. Four years ago, the product of their ages
in years was 48.

Is it possible to design a rectangular park of perimeter 80 m and area 400 m*? If so, find
its length and breadth.

4.6 Summary

In this chapter, you have studied the following points:

1.

A quadratic equation in the variable x is of the form ax*+ bx + ¢ =0, where a, b, ¢ are real
numbers and a # 0.

A real number o is said to be a root of the quadratic equation ax* + bx + ¢ = 0, if
ao*+ ba.+ ¢ =0. The zeroes of the quadratic polynomial ax? + bx + ¢ and the roots of the
quadratic equation ax’ + bx + ¢ = 0 are the same.

If we can factorise ax? + bx + ¢, a # 0, into a product of two linear factors, then the roots
of the quadratic equation ax’ + bx + ¢ = 0 can be found by equating each factor to zero.

4. A quadratic equation can also be solved by the method of completing the square.

5. Quadratic formula: The roots of a quadratic equation ax* + bx + ¢ = 0 are given by

—b++b* —4ac
2a

A quadratic equation ax® + bx + ¢ =0 has

, provided b*—4ac = 0.

(i) two distinct real roots, if b> —4ac >0,
(ii) two equal roots (i.e., coincident roots), if b* —4ac =0, and

(iii) no real roots, if b*>—4ac < 0.
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A NOTE TO THE READER

In case of word problems, the obtained solutions should always be
verified with the conditions of the original problem and not in the
equations formed (see Examples 11, 13, 19 of Chapter 3 and
Examples 10, 11, 12 of Chapter 4).
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