

NCERT Solution for Class 10 Maths Chapter 1 Real Numbers

Exercise 1.3 Page: 14

1. Prove that $\sqrt{5}$ is irrational.

Solutions: Let us assume, that **V**5 is rational number.

i.e. $\sqrt{5} = x/y$ (where, x and y are co-primes)

y**√**5= x

Squaring both the sides, we get,

$$(y\sqrt{5})^2 = x^2$$

$$\Rightarrow 5y^2 = x^2$$
....(1)

Thus, x^2 is divisible by 5, so x is also divisible by 5.

Let us say, x = 5k, for some value of k and substituting the value of x in equation (1), we get,

$$5y^2 = (5k)^2$$

$$\Rightarrow$$
y² = 5k²

 y^2 is divisible by 5 it means y is divisible by 5.

Clearly, x and y are not co-primes. Thus, our assumption about $\sqrt{5}$ is rational is incorrect.

Hence, **√**5 is irrational number.

2. Prove that $3 + 2\sqrt{5} + is$ irrational.

Solutions: Let us assume $3 + 2\sqrt{5}$ is rational.

Then we can find co-prime x and y (y \neq 0) such that 3 + 2 $\sqrt{5}$ = x/y

Rearranging, we get,

$$2\sqrt{5} = \frac{x}{v} - 3$$

$$\sqrt{5} = \frac{1}{2} \left(\frac{x}{y} - 3 \right)$$

Since, x and y are integers, thus,

$$\frac{1}{2}(\frac{x}{y}-3)$$
 is a rational number.

Therefore, $\sqrt{5}$ is also a rational number. But this contradicts the fact that $\sqrt{5}$ is irrational.

So, we conclude that $3 + 2\sqrt{5}$ is irrational.

3. Prove that the following are irrationals:

- (i) $1/\sqrt{2}$
- (ii) 7√5
- (iii) $6 + \sqrt{2}$

NCERT Solution for Class 10 Maths Chapter 1 Real Numbers

Solutions:

(i) $1/\sqrt{2}$

Let us assume $1/\sqrt{2}$ is rational. Then we can find co-prime x and y (y \neq 0) such that $1/\sqrt{2} = x/y$ Rearranging, we get, $\sqrt{2} = y/x$

Since, x and y are integers, thus, $\sqrt{2}$ is a rational number, which contradicts the fact that $\sqrt{2}$ is irrational.

Hence, we can conclude that $1/\sqrt{2}$ is irrational.

(ii) 7√5

Let us assume $7\sqrt{5}$ is a rational number. Then we can find co-prime a and b (b \neq 0) such that $7\sqrt{5}$ = x/y Rearranging, we get,

$$\sqrt{5} = x/7y$$

Since, x and y are integers, thus, $\sqrt{5}$ is a rational number, which contradicts the fact that $\sqrt{5}$ is irrational.

Hence, we can conclude that $7\sqrt{5}$ is irrational.

(iii) $6 + \sqrt{2}$

Let us assume $6 + \sqrt{2}$ is a rational number. Then we can find co-primes x and y (y \neq 0) such that $6 + \sqrt{2} = x/y$. Rearranging, we get,

$$\sqrt{2} = (x/y) - 6$$

Since, x and y are integers, thus (x/y) - 6 is a rational number and therefore, $\sqrt{2}$ is rational. This contradicts the fact that $\sqrt{2}$ is an irrational number.

Hence, we can conclude that $6+\sqrt{2}$ is irrational.