

Acids, Bases and Salts

1. Introduction to acids and bases

2. Indicators

3. pH scale

4. Neutralisation reaction

1. Introduction to Acids and Bases

Acid

- Release H ions in aqueous solution
- Sour in taste
- Conduct electricity in solution

Base

- Release OH ions in aqueous solution
- Bitter in taste
- Conduct electricity in solution

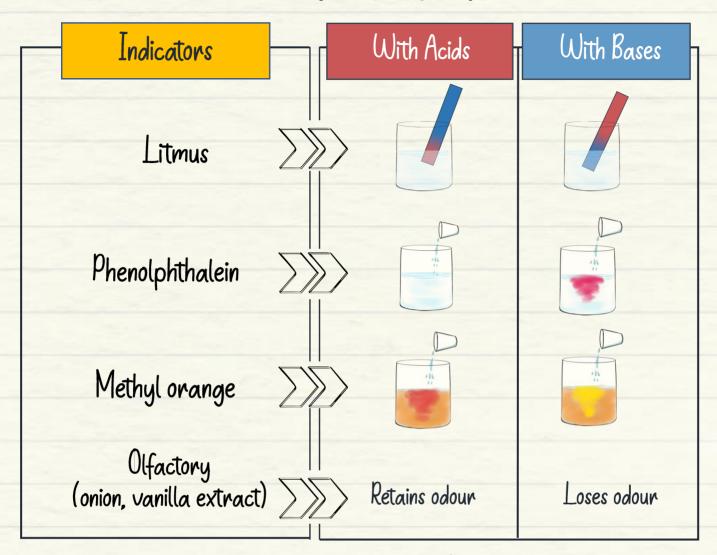
Note: H⁺ ions do not exist by themselves, they combine with water molecules

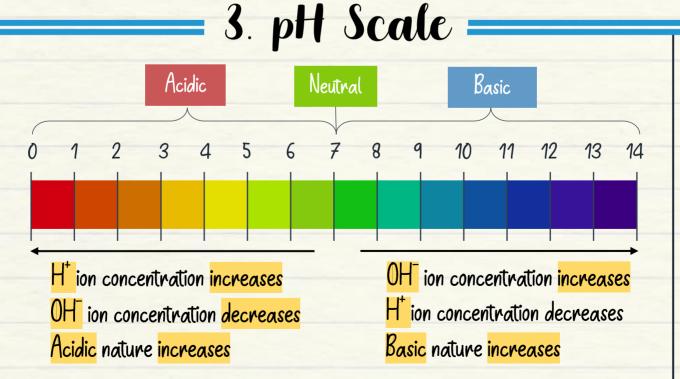
$$H^{+}(aq) + H_{2}O(1) \longrightarrow H_{3}O^{+}(aq)$$

1.1 General Reactions of Acids

- Metal oxide + Acid → Satt + Water
- Metal carbonate + Acid Salt + Water + Carbon dioxide or bicarbonate

1.2 General Reactions of Bases


- Non-metal oxide + Base ----- Salt + Water
- Metals like Al, Zn react with bases like NaOH to form salt and hydrogen gas


1.3 Dilution of Acids or Bases

- Mixing acid or base with water is called dilution
- ❖ Dilution results in decrease in the concentration of ions (H_30^{+}/OH^{-}) in the solution

= 2. Indicators

4. Neutralisation Reaction

4.1 Applications of Neutralisation Reaction

Indigestion

Antacids neutralise excess HCl in stomach and relieve acid indigestion

Toothpaste neutralises the effect of acids in mouth, preventing tooth decay

Nature's cure

Dock plant that grows beside nettle leaves, helps to cure the burning sensation caused by the stinging hair on nettle leaves

4.2 Types of Salts

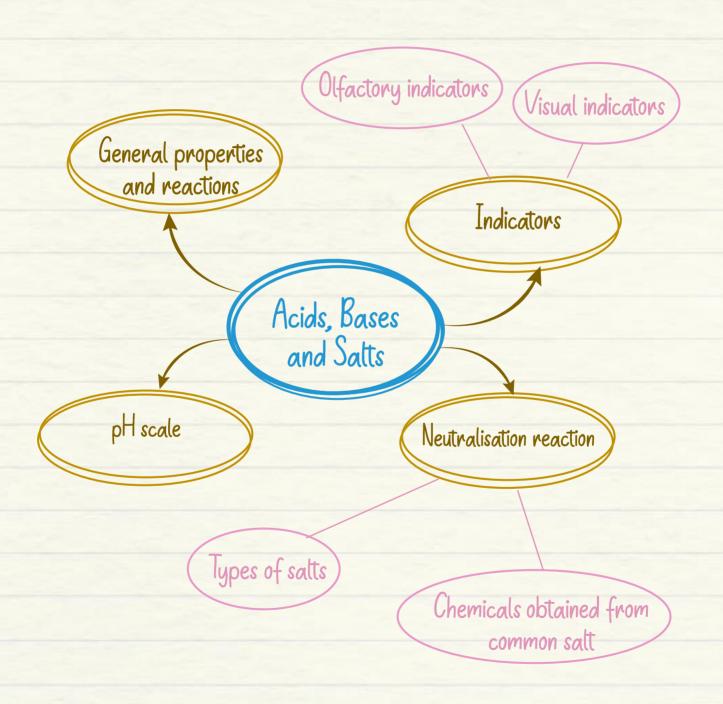
- Strong acid + Strong base Neutral salt (pH = 7)
- Strong acid + Weak base Acidic satt (pH < 7)
- Weak acid + Strong base Basic satt (pH > 7)

4.3 Chemicals Obtained from Common Salt

- Chemical	Preparation
Sodium hydroxide (NaOH)	Chlor-alkali process – passing electricity through an aqueous solution of sodium chloride (called brine)
Chlorine gas (Cl ₂) Hydrogen gas (H ₂)	2NaCl(aq) + 2H ₂ O(l) \longrightarrow 2NaOH(aq) + Cl ₂ (g) + H ₂ (g) (Brine) near cathode at anode at cathode
Bleaching powder (CaOCl ₂)	$C_a(OH)_2 + Cl_2 \longrightarrow C_aOCl_2 + H_2O$ (Dry slaked lime)
Baking soda (NaHCO ₃)	$NH_3 + H_2O + CO_2 + NaCl \longrightarrow NaHCO_3 + NH_4Cl$ (Sodium bicarbonate)
Washing soda (Na ₂ CO ₃ ·10H ₂ O)	$2NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$ (Sodium carbonate)
	$Na_2CO_3 + 10H_2O \longrightarrow Na_2CO_3.10H_2O$

4.4 Water of Crystallisation

Fixed number of water molecules present in one formula unit of a salt


Example: Washing soda (Na₂CO₃.10H₂O), hydrated copper sulphate (CuSO₄.5H₂O), gypsum (CaSO₄.2H₂O), plaster of Paris (CaSO₄. $\frac{1}{2}$ H₂O)

4.5 Uses of Different Chemicals Chemical Uses	
Sodium chloride (NaCl)	♣ Preserving pickles ♣ Flavouring food ♣ In medicines
Sodium hydroxide (NaOH)	 De-greasing metals Making soaps and detergents Paper making Making of artificial fibres
Chlorine gas (Cl ₂)	→ Water treatment → Disinfectants → Pesticides
Hydrogen gas (H ₂)	Fuels ★ Ammonia for fertilisersMargarine, Vanaspati ghee
Bleaching powder (CaOCl ₂)	 Textile industries □ Disinfectant □ Paper manufacture
Baking soda (NaHCO3)	CookingMaking baking powderAntacidFire extinguishers
Washing soda (Na ₂ CO ₃ ·10H ₂ O)	 Cleaning agent Removing permanent hardness Glass, soap and paper industries Manufacture of borax
Plaster of Paris $(CaSO_4, \frac{1}{2}H_2O))$	 Setting fractured bones Toys and decorative items
	$(CaSO_4, \frac{1}{2}H_20) + \frac{3}{2}H_20 \longrightarrow (CaSO_4, 2H_20)$ (Gypsum)

