

PROBABILTY

2. Types of Probability

- 2.1 Theoretical Probability

3. Types of Events

4. Important Formulae

1. Basic Terminology

Random Experiment

- * Has more than one possible outcomes.
- * It is impossible to predict any outcome in advance.
- * Examples:

Tossing a coin

Rolling a dice

Drawing a card from a well-shuffled deck

Outcome

- * A possible result of an experiment or a trial.
- * Examples:

Two outcomes for coin toss: Heads, Tails

Event

- * A set of one or more outcomes for a random experiment.
- * Example:
 - · Getting a tail when a coin is tossed.
 - · Getting an odd number when a dice is rolled.

2. Types of Probability

Types of Probability

Experimental Probability

Theoretical Probability

2.1 Theoretical Probability

 $P(E) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ possible\ outcomes}$

When a coin is tossed:

- \clubsuit The probability of getting a head is $\frac{1}{2}$
- \clubsuit The probability of getting a tail is $\frac{1}{2}$

The probability P(E) of an event will be a number such that,

$$0 \leq P(E) \leq 1$$

3. Types of Events

Elementary Event

- * Has as only one outcome.
- Sum of all the elementary events for an experiment = 1

Equally likely Event

- When all the outcomes of an experiment have the same chance of occurring.
- Example: Tossing a coin

Impossible Event

- ♦ P(E) = 0.
- * Example: Getting a 7 when rolling a die

Sure/Certain Event

- P(E) = 1
- * Example: Christmas being celebrated on the 25th of December

3. Types of Events

Complementary Events

- \clubsuit IF E denotes happening of an event, then \overline{E} denotes NOT happening of that event.
- \clubsuit E and \overline{E} are said to be complementary events.
- \clubsuit \overline{E} is the complement of E.

$$P(\overline{E}) = 1 - P(E)$$

For an event of getting a number less than four on rolling a dice:

1. Important formulae

Theoretical Probability

$$P(E) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ possible\ outcomes}$$

Probability of an event

$$0 \leq P(E) \leq 1$$

For two complementary events, E and \bar{E} ,

$$P(\overline{E}) = 1 - P(E)$$

