Practice Questions - Term 1

Date: 22/11/2021
Subject: Mathematics
Topic : Areas Related to Circles
Class: X

1. If the circumference of a circle exceeds its diameter by 180 cm , then find its radius in cm .
$\times \quad$ A. 32
x B. 36
\times C. 40
(v) D. 42

Let the radius of the circle be rcm .

The circumference of the circle with radius r is given by $2 \pi r$.

So,
$2 \pi r=d+180$
$2 \pi r=2 r+180$
$r=\frac{180}{2(\pi-1)}$
$r=\frac{180}{2(3.14-1)}$
$r=\frac{180}{4.28}=42.06 \mathrm{~cm}$

Practice Questions - Term 1

2.

Find the area of the shaded region in the figure given below, if $A B C D$ is a square of side 14 cm and APD and BPC are semicircles.
(Take $\pi=\frac{22}{7}$)

× A. $45 \mathrm{~cm}^{2}$
(B) $42 \mathrm{~cm}^{2}$
x C. $60 \mathrm{~cm}^{2}$
× D. $35 \mathrm{~cm}^{2}$
Area of a circle
$=\pi r^{2}$

From Figure, the diameter of circle is 14 cm . Two semi-circles make one full circle.
\therefore The area of one full circle is
$=\frac{22}{7} \times 7^{2}=154 \mathrm{~cm}^{2}$
The total area of square
$=14^{2}=196 \mathrm{~cm}^{2}$
The area of shaded portion = [Area of square- Area of full circle]
$=196-154=42 \mathrm{~cm}^{2}$.
Hence, area of shaded region
$=42 \mathrm{~cm}^{2}$

Practice Questions - Term 1

3.

An arc of a circle is of length $5 \pi \mathrm{~cm}$ and the sector it bounds has an area of $20 \pi \mathrm{~cm}^{2}$. The radius of the circle is \qquad (in cm).
x A. 12

X B. 5C. 8
x D. 10
From the given data,
The area of the sector $=\frac{\theta}{360^{\circ}} \pi r^{2}=20 \pi \mathrm{~cm}^{2}--$ (i)
The length of arc $=\frac{\theta}{360^{\circ}} \pi \times 2 r=5 \pi \mathrm{~cm}--$-(ii)
From (i) and (ii),
$\theta r^{2}=7200$ and $\theta r=900$
$\Rightarrow 900 \times r=7200$
$r=8 \mathrm{~cm}$.

Practice Questions - Term 1

4.

Find the area of the shaded region (in cm^{2}) as shown in figure of the two concentric circles with centre O and radius 7 cm and 14 cm respectively. Given $\angle A O C=40^{\circ}$.
(use $\pi=\frac{22}{7}$)

X A. $42.1 \mathrm{~cm}^{2}$
B. $\quad 51.32 \mathrm{~cm}^{2}$
x
C. $\quad 67.8 \mathrm{~cm}^{2}$
x
D. $96.5 \mathrm{~cm}^{2}$

Given: radius for sector OAC $=14 \mathrm{~cm}$ and angle subtended $=40^{\circ}$ and radius for sector $\mathrm{OBD}=7 \mathrm{~cm}$ and angle subtended $=40^{\circ}$

Area of Sector $=\frac{x^{\circ}}{360^{\circ}} \times \pi r^{2}$
Required area $=$ [Area of sector OAC - Area of sector OBD]
$=\frac{40^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14^{2}-\frac{40^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^{2}$
$=68.42$ - 17.1
$=51.32 \mathrm{~cm}^{2}$
\therefore Area of shaded region $=51.32 \mathrm{~cm}^{2}$

Practice Questions - Term 1

5.

A paper is in the form of a rectangle $A B C D$ where $A B=22 \mathrm{~cm}$ and $B C=14$ cm . A semicircle portion with $B C$ as diameter is cut off. Find the area of the remaining paper in cm^{2}.
x A. 221
× B. 210
(v) C. 231
x D. 240

Area of rectangle $=22 \times 14=308 \mathrm{~cm}^{2}$
Area of semicircle
$=\frac{1}{2} \times \frac{22}{7} \times(7)^{2}=77 \mathrm{~cm}^{2}$
Required area $=$ [Area of rectangle - Area of semicircle]
$=308-77=231 \mathrm{~cm}^{2}$

Practice Questions - Term 1

6.

Radius of the outer circle is 18 cm and the radius of the inner circle is 7 cm .
What is the area of the region between the outer and the inner circles?
A. $275 \pi \mathrm{~cm}^{2}$
x
B. $361 \mathrm{mcm}^{2}$

X C. $133 \mathrm{~cm}^{2}$
X D. $192.5 \mathrm{~cm}^{2}$

inner circle $=$ Area of outer circle - Area of inner circle
Area of the outer circle $=\pi(18)^{2}=324 \pi \mathrm{~cm}^{2}$
Area of the inner circle $=\pi(7)^{2}=49 \pi \mathrm{~cm}^{2}$
So, area of the required region $=324 \pi-49 \pi=275 \pi \mathrm{~cm}^{2}$

Practice Questions - Term 1

7.

Calculate the area of the shaded region in the figure given in cm^{2}.
A. 469.3
x B. 281.2
x C. 1120.4
X D. 2499.7

Area of outer sector
$=\frac{140}{360} \times \pi \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}$

Area of inner sector
$=\frac{140}{360} \times \pi \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}$
Area of shaded region $=$ Outer sector - Inner sector
$=\frac{140 \pi}{360}\left(400 \mathrm{~cm}^{2}-16 \mathrm{~cm}^{2}\right)$
$=\frac{7}{18} \times \frac{22}{7} \times 384 \mathrm{~cm}^{2}=469.3 \mathrm{~cm}^{2}$

Practice Questions - Term 1

8.

The Yin-Yang symbol can be explained by the following dimensions. What would be the area covered by the Yin (black) region if the radius of the larger circle is, $R=8 \mathrm{~cm}$?

X A. $97.75 \mathrm{~cm}^{2}$
X B. $94.54 \mathrm{~cm}^{2}$
× C. $98.12 \mathrm{~cm}^{2}$
(v)
D. $\quad 100.57 \mathrm{~cm}^{2}$

Here we are asked to find the area of the shaded part. The figure can be split into 3 semicircle i.e. a, b and c in order to find the area.

Area of the semicircle $\mathrm{a}=\frac{1}{2} \times \frac{22}{7} \times 8^{2}=100.57 \mathrm{~cm}^{2}$.

The diameter of semicircles b and c is equal to the radius of the semicircle a.Therefore the area of both the semicircles will be the same.

Area of the semicircle $=\frac{1}{2} \times \pi \times r^{2}=\frac{1}{2} \times \frac{22}{7} \times 4^{2}=25.14 \mathrm{~cm}^{2}$
The area of the shaded part = Area of semicircle a + Area of semicircle bArea of the semicircle $c=100.57+25.14-25.14=100.57 \mathrm{~cm}^{2}$

The area of the shaded part is $100.57 \mathrm{~cm}^{2}$.

Practice Questions - Term 1

9.

Find the area of the shaded region where $A B C$ is a quadrant of radius 5 cm and a semicircle is drawn with $B C$ as diameter.

× A. $19.64 \mathrm{~cm}^{2}$
B. $\quad 12.5 \mathrm{~cm}^{2}$
x
C. $7.14 \mathrm{~cm}^{2}$
\times
D. $8.8 \mathrm{~cm}^{2}$

Area of the shaded region = Area of semicircle-Area of segment of the sector BAC

Area of the semicircle with $B C$ as diameter
$=\frac{1}{2} \times \frac{22}{7} \times \frac{5}{\sqrt{2}} \times \frac{5}{\sqrt{2}}$
$=19.64 \mathrm{~cm}^{2} \ldots(i)$
Area of segment $=$ Area of quadrant - Area of $\triangle A B C$
$=\frac{90}{360} \times \frac{22}{7} \times 5^{2}-\frac{1}{2} \times 5 \times 5$
$=19.64-12.5$
$=7.14 \mathrm{~cm}^{2} \ldots(i i)$
Area of the shaded region
$=(i)-(i i)$
$=19.64-7.14$
$=12.5 \mathrm{~cm}^{2}$

Practice Questions - Term 1

10.

In a cycle race, a boy was cycling in such a way that the wheels are making 200 revolutions per minute. Diameter of the wheel is 50 cm , what is the cycling speed per hr?
x A. $\quad 14.7 \mathrm{~km} / \mathrm{hr}$

X B. $17 \mathrm{~km} / \mathrm{hr}$

C. $\quad 18.84 \mathrm{~km} / \mathrm{hr}$

X D. $20 \mathrm{~km} / \mathrm{hr}$
Diameter of the cycle wheel $=50 \mathrm{~cm}$ [radius $=25 \mathrm{~cm}$]
No. of revolutions per minute $=200$
\therefore No. revolutions in an hour $=200 \times 60=12000$
Distance covered in one revolution $=$ Circumference of the wheel $=\pi d=50$ $\pi \mathrm{cm}$
\therefore Distance covered in an hour $=12000 \times \pi d=12000 \times 50 \pi \mathrm{~cm}=1884000$ $\mathrm{cm}=18.84 \mathrm{~km}$

Hence the speed of the cyclist is $18.84 \mathrm{~km} / \mathrm{hr}$.

Practice Questions - Term 1

11.

What will be the circumference of a circle having area 9 times the area of a circle with diameter 8 cm ?
x A. 88 cm
x B. 70 cm
x C. 72.51 cm
(D) 75.36 cm
Let r_{1} and r_{2} be radii of two circles such that area of circle of radius r_{1} is 9 times the area of circle of radius r_{2}.
$r_{2}=\frac{8}{2} \mathrm{~cm}=4 \mathrm{~cm}$

And we know that, area of a circle $=\pi r^{2}$ where r is its radius

Therefore, $\pi r_{1}^{2}=9 \pi r_{2}^{2}$
$\Rightarrow \pi r_{1}^{2}=9 \pi \times 4^{2}$
$\Rightarrow r_{1}^{2}=144$
$\Rightarrow r_{1}= \pm 12$

Here, radius of the circle cannot be negative.
$\therefore r_{1}=12 \mathrm{~cm}$
Circumference of the circle of radius r_{1}
$=2 \pi r_{1}=2 \times 3.14 \times 12=75.36 \mathrm{~cm}$

Practice Questions - Term 1

12.

A drain cover is made from a square metal plate of side 40 cm and has 336 holes of radius 1 cm each drilled in it. Find the area in cm^{2} of the remaining square plate.
(Take $\pi=\frac{22}{7}$)
× A. $253 \mathrm{~cm}^{2}$B. $544 \mathrm{~cm}^{2}$
C. $636 \mathrm{~cm}^{2}$
x
D. $564 \mathrm{~cm}^{2}$

Area of a square plate
$=$ side 2

Given length of the side of the square plate $=40 \mathrm{~cm}$
Area of square plate
$=40^{2}$
$=1600 \mathrm{~cm}^{2}$

Area of a circle
$=\pi r^{2}$
There are 336 holes of radius 1 cm each.

Total area of circles
$=336 \times \frac{22}{7} \times 1^{2}$
$=1056 \mathrm{~cm}^{2}$

Remaining area $=$ [Area of square plate- Total area of circles]
$=1600-1056$
$=544 \mathrm{~cm}^{2}$
\therefore Area of remaining square plate
$=544 \mathrm{~cm}^{2}$

Practice Questions - Term 1

13.

The given figure is a sector of a circle of radius 20 cm . Find the perimeter of the sector.
(Take $\pi=3.14$)

x A. 55.25 cm
B. $\quad 60.93 \mathrm{~cm}$
\times
C. $\quad 65.48 \mathrm{~cm}$
\times
D. $\quad 70.17 \mathrm{~cm}$

The circumference i.e, perimeter of a sector of angle $\backslash 60^{\wedge} \backslash c i r c l$) of a circle with radius R is given by
$\frac{60^{\circ}}{360^{\circ}} \times 2 \pi R+2 R$
$=\frac{1}{6} \times 2 \pi(20)+2(20)$
$=20.93+40$
$=60.93 \mathrm{~cm}$

Practice Questions - Term 1

14.

A car travels 0.99 km distance in which each wheel makes 450 complete revolutions. Find the radius of its wheel in m .
x A. 0.45
B. 0.35
\times C. 0.55
x D. 0.65
We know that, $0.99 \mathrm{~km}=990 \mathrm{~m}$

Total Distance traveled = No. of revolutions x Circumference
$\Rightarrow 990=450 \times 2 \pi \times r$
$\Rightarrow 990=450 \times 2 \times \frac{22}{7} \times r$
$\Rightarrow r=\frac{990 \times 7}{450 \times 2 \times 22}$
$\Rightarrow r=\frac{7}{20}=0.35 \mathrm{~m}$

Practice Questions - Term 1

15.

A circle has radius 5 cm . A section of its circumference has length $\pi \mathrm{cm}$.
What is the angle subtended by this section at the centre?A. 36°
(B. 45°
(C. 50°
(D. 60°

Radius $=5 \mathrm{~cm}$
Arc length $=\pi \mathrm{cm}$
Angle subtended
$=\frac{\text { Arc length }}{\text { Circumference }} \times 360^{\circ}$
$=\frac{\pi}{2 \pi r} \times 360^{\circ}$
$=\frac{\pi}{2 \pi \times 5} \times 360^{\circ}$
$=36^{\circ}$

Practice Questions - Term 1

16.

A pendulum swings through an angle of 30° and describes an arc 8.8 cm in length. Find the length of pendulum in cm .

X A. 14.5

X B. 15.1
x C. 17.3
((D) 16.8

Let r be the length of the pendulum.

Given: Length of arc $=8.8 \mathrm{~cm}$.
$\angle A O B=30^{\circ}$

Length of an arc of a sector of an angle θ
$=\frac{\theta}{360} \times 2 \pi r$
$\Rightarrow 8.8=\frac{30^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times r$
$r=\frac{8.8 \times 21}{11}=16.8 \mathrm{~cm}$

Practice Questions - Term 1

17.

If the perimeter of a circle is equal to that of a square, then the ratio of area of circle to the square is \qquad .
x A. 22:07B. $14: 11$
\times C. 7:22
X D. 11:14
Let a be the side of the square and r be the radius of the circle.
Given, $4 a=2 \pi r \Rightarrow a=\frac{\pi r}{2}$
Ratio of the areas of circle to square is
$\pi r^{2}: a^{2}$
$\Rightarrow \pi r^{2}:\left(\frac{\pi r}{2}\right)^{2}$
$\Rightarrow 1: \frac{\pi}{4}$
$\Rightarrow 4: \frac{22}{7}$
$\Rightarrow 28: 22 \Rightarrow 14: 11$

Practice Questions - Term 1

18.

A circle having radius 4 cm contains a chord of length 4 cm and subtends an angle of 60 degrees. Find the area of the minor segment of the chord.

X A. $2 \mathrm{~cm}^{2}$
B. $1.5 \mathrm{~cm}^{2}$
× C. $3 \mathrm{~cm}^{2}$
× D. $0.5 \mathrm{~cm}^{2}$

Area of sector POQ
$=\frac{\theta}{360^{\circ}} \times \pi r^{2}$
$=\frac{60^{\circ}}{360^{\circ}} \times \pi 4^{2}=8.4 \mathrm{~cm}^{2}$

In triangle OSQ which is right angled at S ,
$O Q^{2}=S Q^{2}+O S^{2}$
$\Rightarrow 16=4+O S^{2}$
$O S=2 \sqrt{3}$

Area of triangle POQ
$=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 4 \times 2 \sqrt{3}$
$=6.9 \mathrm{~cm}^{2}$

Now,
Area of segment PSQR = Area of sector POQ - Area of triangle POQ
$=8.4-6.9 \mathrm{~cm}^{2}$
$=1.5 \mathrm{~cm}^{2}$
19.

The radius of the circle given above is 7 cm and the angle subtended by the arc is 60°.
If the area of $\triangle \mathrm{OAB}$ is $21 \mathrm{~cm}^{2}$, then find the area of segment APBA.
$\left(\pi=\frac{22}{7}\right)$
(A. $5.8 \mathrm{~cm}^{2}$
(v)
B. $4.7 \mathrm{~cm}^{2}$
× C. $8 \mathrm{~cm}^{2}$
\times
D. $1 \mathrm{~cm}^{2}$

P
Area of sector OAPBO $=\frac{60}{360} \times \pi r^{2}$
$=\frac{60}{360} \times \frac{22}{7} \times 7^{2}=25.7 \mathrm{~cm}^{2}$

Area of segment APBA
Area of sector OAPBO - Area of triangle OAB
$=25.7-21=4.7 \mathrm{~cm}^{2}$

Therefore, area of segment APBA $=4.7 \mathrm{~cm}^{2}$

Practice Questions - Term 1

20.

Given below is a combination figure of square ABCD of side 26 cm and four circles. Find the area of the shaded region.

A. $\quad 530.64 \mathrm{~cm}^{2}$
\times
B. $402.83 \mathrm{~cm}^{2}$
\times
C. $360 \mathrm{~cm}^{2}$
\times
D. $\quad 480.53 \mathrm{~cm}^{2}$

The given figure forms four sectors:
Area of a sector of angle $\theta=\frac{\theta}{360^{\circ}} \times \pi r^{2}$
Area of one sector APS $=\frac{90^{\circ}}{360^{\circ}} \times \pi \times 13^{2}=132.66 \mathrm{~cm}^{2}$
Total area of shaded region = Area of four sectors
$=4 \times 132.66 \mathrm{~cm}^{2}$
$=530.64 \mathrm{~cm}^{2}$

