1. If the circumference of a circle exceeds its diameter by 180 cm, then find its radius in cm.

 A. 32
 B. 36
 C. 40
 D. 42

 Let the radius of the circle be \(r \) cm.

 The circumference of the circle with radius \(r \) is given by \(2\pi r \).

 So,
 \[
 2\pi r = d + 180
 \]
 \[
 2\pi r = 2r + 180
 \]
 \[
 r = \frac{180}{2(\pi - 1)}
 \]
 \[
 r = \frac{180}{2(3.14 - 1)}
 \]
 \[
 r = \frac{180}{4.28} = 42.06 \text{ cm}
 \]
2. Find the area of the shaded region in the figure given below, if ABCD is a square of side 14 cm and APD and BPC are semicircles. (Take \(\pi = \frac{22}{7} \))

Area of a circle
\[= \pi r^2 \]

From Figure, the diameter of circle is 14 cm. Two semi-circles make one full circle.

\[\therefore \] The area of one full circle is
\[= \frac{22}{7} \times 7^2 = 154 \text{ cm}^2 \]

The total area of square
\[= 14^2 = 196 \text{ cm}^2 \]

The area of shaded portion = [Area of square - Area of full circle]
\[= 196 - 154 = 42 \text{ cm}^2 \]

Hence, area of shaded region
\[= 42 \text{ cm}^2 \]
3. An arc of a circle is of length 5π cm and the sector it bounds has an area of 20π cm2. The radius of the circle is _______(in cm).

- A. 12
- B. 5
- C. 8
- D. 10

From the given data,
The area of the sector $= \pi r^2 = 20\pi$ cm2 ---(i)
The length of arc $= \frac{\theta}{360}\pi \times 2r = 5\pi$ cm ---(ii)

From (i) and (ii),
$\theta r^2 = 7200$ and $\theta r = 900$
$\Rightarrow 900 \times r = 7200$
$r = 8$ cm.
4. Find the area of the shaded region (in cm^2) as shown in figure of the two concentric circles with centre O and radius 7 cm and 14 cm respectively. Given $\angle AOC = 40^\circ$.

Given: radius for sector OAC = 14 cm, angle subtended = 40° and radius for sector OBD = 7 cm, angle subtended = 40°

Area of Sector = $\frac{x^\circ}{360^\circ} \times \pi r^2$

Required area = [Area of sector OAC – Area of sector OBD]

= $\frac{40^\circ}{360^\circ} \times \frac{22}{7} \times 14^2 - \frac{40^\circ}{360^\circ} \times \frac{22}{7} \times 7^2$

= 68.42 - 17.1

= 51.32 cm^2

\therefore Area of shaded region = 51.32 cm^2
5. A paper is in the form of a rectangle ABCD where AB = 22 cm and BC = 14 cm. A semicircle portion with BC as diameter is cut off. Find the area of the remaining paper in cm2.

- A. 221
- B. 210
- C. 231
- D. 240

Area of rectangle = $22 \times 14 = 308 \text{ cm}^2$

Area of semicircle
$= \frac{1}{2} \times \frac{22}{7} \times (7)^2 = 77 \text{ cm}^2$

Required area = [Area of rectangle - Area of semicircle]
$= 308 - 77 = 231 \text{ cm}^2$
6. Radius of the outer circle is 18 cm and the radius of the inner circle is 7 cm. What is the area of the region between the outer and the inner circles?

A. \(275 \pi \, \text{cm}^2\)
B. \(361 \pi \, \text{cm}^2\)
C. \(133 \, \text{cm}^2\)
D. \(192.5 \, \text{cm}^2\)

Area of the region in between outer and inner circle = Area of outer circle – Area of inner circle

Area of the outer circle = \(\pi (18)^2 = 324 \pi \, \text{cm}^2\)
Area of the inner circle = \(\pi (7)^2 = 49 \pi \, \text{cm}^2\)
So, area of the required region = \(324 \pi - 49\pi = 275 \pi \, \text{cm}^2\)
7. Calculate the area of the shaded region in the figure given in cm^2.

- **A.** 469.3
- **B.** 281.2
- **C.** 1120.4
- **D.** 2499.7
Area of outer sector
\[= \frac{140}{360} \times \pi \times 20 \text{ cm} \times 20 \text{ cm} \]

Area of inner sector
\[= \frac{140}{360} \times \pi \times 4 \text{ cm} \times 4 \text{ cm} \]

Area of shaded region = Outer sector - Inner sector
\[= \frac{140\pi}{360} (400 \text{ cm}^2 - 16 \text{ cm}^2) \]
\[= \frac{7}{18} \times \frac{22}{7} \times 384 \text{ cm}^2 = 469.3 \text{ cm}^2 \]
8. The Yin-Yang symbol can be explained by the following dimensions. What would be the area covered by the Yin (black) region if the radius of the larger circle is, \(R = 8 \) cm?

Here we are asked to find the area of the shaded part. The figure can be split into 3 semicircles i.e. a, b and c in order to find the area.

Area of the semicircle a = \(\frac{1}{2} \times \pi \times 8^2 = 100.57 \text{ cm}^2 \).

The diameter of semicircles b and c is equal to the radius of the semicircle a. Therefore the area of both the semicircles will be the same.

Area of the semicircle = \(\frac{1}{2} \times \pi \times 4^2 = 25.14 \text{ cm}^2 \)

The area of the shaded part = Area of semicircle a + Area of semicircle b – Area of the semicircle c = 100.57 + 25.14 – 25.14 = 100.57 \(\text{ cm}^2 \).

The area of the shaded part is 100.57 \(\text{ cm}^2 \).
9. Find the area of the shaded region where ABC is a quadrant of radius 5 cm and a semicircle is drawn with BC as diameter.

\[\text{Area of the shaded region} = \text{Area of semicircle} - \text{Area of segment of the sector BAC} \]

Area of the semicircle with BC as diameter
\[= \frac{1}{2} \times \frac{22}{7} \times \frac{5}{\sqrt{2}} \times \frac{5}{\sqrt{2}} \]
\[= 19.64 \text{ cm}^2 \ldots (i) \]

Area of segment = Area of quadrant - Area of ΔABC
\[= \frac{90}{360} \times \frac{22}{7} \times 5^2 - \frac{1}{2} \times 5 \times 5 \]
\[= 19.64 - 12.5 \]
\[= 7.14 \text{ cm}^2 \ldots (ii) \]

Area of the shaded region
\[= (i) - (ii) \]
\[= 19.64 - 7.14 \]
\[= 12.5 \text{ cm}^2 \]
10. In a cycle race, a boy was cycling in such a way that the wheels are making 200 revolutions per minute. Diameter of the wheel is 50cm, what is the cycling speed per hr?

- A. 14.7 km/hr
- B. 17 km/hr
- C. 18.84 km/hr
- D. 20 km/hr

Diameter of the cycle wheel = 50cm [radius=25cm]

No. of revolutions per minute = 200

∴ No. revolutions in an hour = 200 x 60 = 12000

Distance covered in one revolution = Circumference of the wheel = $\pi d = 50\pi$ cm

∴ Distance covered in an hour = $12000 \times \pi d = 12000 \times 50\pi \, cm = 1884000 \, cm = 18.84 \, km$

Hence the speed of the cyclist is 18.84 km/hr.
11. What will be the circumference of a circle having area 9 times the area of a circle with diameter 8 cm?

A. 88 cm
B. 70 cm
C. 72.51 cm
D. 75.36 cm

Let \(r_1 \) and \(r_2 \) be radii of two circles such that area of circle of radius \(r_1 \) is 9 times the area of circle of radius \(r_2 \).

\[
\pi r_2^2 = 9 \pi r_1^2
\]

\[
\Rightarrow r_1^2 = 9 \times 4^2
\]

\[
\Rightarrow r_1 = 12
\]

Here, radius of the circle cannot be negative.

\[
\therefore r_1 = 12 \text{ cm}
\]

Circumference of the circle of radius \(r_1 \)

\[
= 2\pi r_1 = 2 \times 3.14 \times 12 = 75.36 \text{ cm}
\]
A drain cover is made from a square metal plate of side 40 cm and has 336 holes of radius 1 cm each drilled in it. Find the area in cm2 of the remaining square plate. (Take $\pi = \frac{22}{7}$)

- A. 253 cm2
- B. 544 cm2
- C. 636 cm2
- D. 564 cm2

Area of a square plate

$= \text{side}^2$

Given length of the side of the square plate = 40 cm

Area of square plate

$= 40^2$

$= 1600$ cm2

Area of a circle

$= \pi r^2$

There are 336 holes of radius 1 cm each.

Total area of circles

$= 336 \times \frac{22}{7} \times 1^2$

$= 1056$ cm2

Remaining area = [Area of square plate - Total area of circles]

$= 1600 - 1056$

$= 544$ cm2

∴ Area of remaining square plate

$= 544$ cm2
13. The given figure is a sector of a circle of radius 20 cm. Find the perimeter of the sector.
(Take $\pi = 3.14$)

$\frac{60^\circ}{360^\circ} \times 2\pi R + 2R$

$= \frac{1}{6} \times 2\pi (20) + 2(20)$

$= 20.93 + 40$

$= 60.93 \text{ cm}$
14. A car travels 0.99 km distance in which each wheel makes 450 complete revolutions. Find the radius of its wheel in m.

We know that, 0.99 km = 990 m

Total Distance traveled = No. of revolutions x Circumference

⇒ 990 = 450 × 2π × r
⇒ 990 = 450 × 2 × \(\frac{22}{7}\) × r
⇒ r = \(\frac{990 \times 7}{450 \times 2 \times 22}\)
⇒ r = \(\frac{7}{20}\) = 0.35 m
15. A circle has radius 5 cm. A section of its circumference has length \(\pi \) cm. What is the angle subtended by this section at the centre?

A. 36°

B. 45°

C. 50°

D. 60°

Radius = 5 cm

Arc length = \(\pi \) cm

Angle subtended

\[
\begin{align*}
\text{Angle subtended} &= \frac{\text{Arc length}}{\text{Circumference}} \times 360° \\
&= \frac{\pi}{2\pi r} \times 360° \\
&= \frac{\pi}{2\pi \times 5} \times 360° \\
&= \frac{\pi}{10\pi} \times 360° \\
&= 36°
\end{align*}
\]
16. A pendulum swings through an angle of 30° and describes an arc 8.8 cm in length. Find the length of pendulum in cm.

- A. 14.5
- B. 15.1
- C. 17.3
- D. 16.8

Let r be the length of the pendulum.

Given: Length of arc = 8.8 cm.
$\angle AOB = 30^\circ$

Length of an arc of a sector of an angle θ

$$= \frac{\theta}{360} \times 2\pi r$$

$$\Rightarrow 8.8 = \frac{30^\circ}{360^\circ} \times 2 \times \frac{22}{7} \times r$$

$$r = \frac{8.8 \times 21}{11} = 16.8 \text{ cm}$$
17. If the perimeter of a circle is equal to that of a square, then the ratio of area of circle to the square is ______.

A. 22 : 07
B. 14 : 11
C. 7 : 22
D. 11 : 14

Let \(a\) be the side of the square and \(r\) be the radius of the circle.

Given, \(4a = 2\pi r \Rightarrow a = \frac{\pi r}{2}\)

Ratio of the areas of circle to square is
\[\frac{\pi r^2}{a^2}\]
\[\Rightarrow \frac{\pi r^2}{\left(\frac{\pi r}{2}\right)^2}\]
\[\Rightarrow 1 : \frac{\pi}{4}\]
\[\Rightarrow 4 : \frac{22}{7}\]
\[\Rightarrow 28 : 22 \Rightarrow 14 : 11\]
A circle having radius 4 cm contains a chord of length 4 cm and subtends an angle of 60 degrees. Find the area of the minor segment of the chord.

\[\text{Area of sector POQ} = \frac{\theta}{360^\circ} \times \pi r^2 \]
\[= \frac{60^\circ}{360^\circ} \times \pi 4^2 = 8.4 \text{ cm}^2 \]

In triangle OSQ which is right angled at S,
\[OO^2 = SQ^2 + OS^2 \]
\[\Rightarrow 16 = 4 + OS^2 \]
\[OS = 2\sqrt{3} \]

Area of triangle POQ
\[= \frac{1}{2} \times \text{base} \times \text{height} \]
\[= \frac{1}{2} \times 4 \times 2\sqrt{3} \]
\[= 6.9 \text{ cm}^2 \]

Now,
Area of segment PSQR = Area of sector POQ - Area of triangle POQ
\[= 8.4 - 6.9 \text{ cm}^2 \]
\[= 1.5 \text{ cm}^2 \]

A. 2 cm\(^2\)
B. 1.5 cm\(^2\)
C. 3 cm\(^2\)
D. 0.5 cm\(^2\)
The radius of the circle given above is 7 cm and the angle subtended by the arc is 60°.
If the area of \(\triangle OAB \) is \(21 \text{ cm}^2 \), then find the area of segment APBA.
\(\pi = \frac{22}{7} \)

A. \(5.8 \text{ cm}^2 \)

B. \(4.7 \text{ cm}^2 \)

C. \(8 \text{ cm}^2 \)

D. \(1 \text{ cm}^2 \)
Area of sector OAPBO = \(\frac{60}{360} \times \pi r^2 \)

\[= \frac{60}{360} \times \frac{22}{7} \times 7^2 = 25.7 \text{ cm}^2 \]

Area of segment APBA
Area of sector OAPBO - Area of triangle OAB

\[= 25.7 - 21 = 4.7 \text{ cm}^2 \]

Therefore, area of segment APBA
\[= 4.7 \text{ cm}^2 \]
20. Given below is a combination figure of square ABCD of side 26 cm and four circles. Find the area of the shaded region.

The given figure forms four sectors:

Area of a sector of angle $\theta = \frac{\theta}{360^\circ} \times \pi r^2$

Area of one sector APS = $\frac{90^\circ}{360^\circ} \times \pi \times 13^2 = 132.66 \text{ cm}^2$

Total area of shaded region = Area of four sectors
= $4 \times 132.66 \text{ cm}^2$
= 530.64 cm^2

- A. 530.64 cm^2
- B. 402.83 cm^2
- C. 360 cm^2
- D. 480.53 cm^2