Practice Questions - Term I

Date: 15/11/2021
Subject: Mathematics
Topic : Coordinate Geometry
Class: X

1. Find the point (x, y) that divides the join of $A(3,6)$ and $B(7,10)$ in the ratio $3: 1$
x A. $(8,9)$.
x B. $(4,5)$

(v)
C. $(6,9)$
x
D. None of these

If (x, y) divides the join of $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $\mathrm{m}: \mathrm{n}$
Then, $\mathrm{x}=\frac{m x_{2}+n x_{1}}{m+n}$ and $\mathrm{y}=\frac{m y_{2}+n y_{1}}{m+n}$
Here, $x_{1}=3, x_{2}=7, y_{1}=6, y_{2}=10, \mathrm{~m}=3$ and $\mathrm{n}=1$.
$x=\frac{3 \times 7+1 \times 3}{3+1}$ and $y=\frac{3 \times 10+1 \times 6}{3+1}$
$x=6$ and $y=9$
Therefore the point is $(6,9)$
2. $\quad C$ is the mid-point of $P Q$. If P is $(4, x), C$ is $(y,-1)$ and Q is $(-2,4)$, then x and y respectively are \qquad .
A. -6 and 1
x
B. -6 and 2
x
C. 6 and -1
\times
D. 6 and -2

Given points are $P(4, x), Q(-2,4)$ and mid-point is $C(y-1)$
\because Mid point (x, y) of the line joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\mathrm{x}=$
$\left(\frac{x_{2}+x_{1}}{2}\right)$ and $\mathrm{y}=\left(\frac{y_{2}+y_{1}}{2}\right)$
$\therefore \frac{4-2}{2}=y$ and $\frac{4+x}{2}=-1$
$\Rightarrow y=1$ and $x=-6$

Practice Questions - Term I

3. Find the point that divides $A(2,4)$ and $B(6,8)$ in the ratio a : 1 .
x A. $\left(\frac{6 a+1}{a+1}, \frac{8 a+4}{a+1}\right)$
B. $\left(\frac{6 a+2}{a+1}, \frac{8 a+4}{a+1}\right)$
x
C. $\left(\frac{6+2 a}{a+1}, \frac{8+4 a}{a+1}\right)$
\times
D. $\left(\frac{6 a+8}{a+1}, \frac{2 a+4}{a+1}\right)$

The point, say $P(x, y)$, divides the line $A B$ into the ratio $a: 1$.
The equation for the point that divides a line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $\mathrm{m}: \mathrm{n}$ is: $\left(\frac{\left(n \times x_{1}+m \times x_{2}\right)}{m+n}, \frac{n \times y_{1}+m \times y_{2}}{m+n}\right)$

Here, $\left(x_{1}, y_{1}\right)=(2,4)$ and $\left(x_{2}, y_{2}\right)=(6,8)$
Applying the formula, we get $\left(\frac{(1 \times 2+a \times 6)}{a+1}, \frac{(1 \times 4+a \times 8)}{a+1}\right)$

$$
=\left(\frac{6 a+2}{a+1}, \frac{8 a+4}{a+1}\right)
$$

4. If the distance between the points $(4, p)$ and $(1,0)$ is 5 , then $p=$ \qquadA. ± 4
\times
B. ± 2
x
C. $\pm 2 \sqrt{2}$
\times
D. $\pm 4 \sqrt{2}$

Distance between the points $=5$
$\sqrt{(4-1)^{2}+(p-0)^{2}}=5$
$\Rightarrow 9+p^{2}=25 \Rightarrow p^{2}=16 \therefore p= \pm 4$

Practice Questions - Term I

5.

The distance between the points $(5,5)$ and $(3,3)$ is \qquad .
x A. 2 units
B. $2 \sqrt{2}$ units
x
C. $\sqrt{2}$ units
\times
D. $8 \sqrt{2}$ units

The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

Distance between points $(5,5)$ and $(3,3)$
$=\sqrt{(3-5)^{2}+(3-5)^{2}}=\sqrt{4+4}=2 \sqrt{2}$ units

Hence, the distance between the given points is $2 \sqrt{2}$ units.
6. The distance of the point $(-2,-2)$ from the origin is \qquad units.
x A. $\sqrt{9}$

B. $2 \sqrt{2}$
\times
C. 8
\times
D. $\sqrt{2}$

Let the origin be O and the point A be $(-2,-2)$
Using distance formula between two points,
$O A^{2}=\left(2^{2}+2^{2}\right)$
$\Rightarrow O A^{2}=8$
$\Rightarrow O A=\sqrt{8}=2 \sqrt{2}$

Practice Questions - Term I

7. P is the point on the y-axis which is equidistant from $A(-5,-2)$ and $B(3,2)$, then $\mathrm{PA}=$ \qquad cm .
x A. 2
\times
B. 6
x C. 3
(v)
D. 5

Given, $A(-5,-2), B(3,2)$.
Let, the coordinates of P be $(0, y)$
We have,
$\mathrm{PA}=\mathrm{PB}$
$\Rightarrow P A^{2}=P B^{2}$
$\Rightarrow(-5-0)^{2}+(-2-y)^{2}=(3-0)^{2}+(2-y)^{2}$
$\Rightarrow 25+4+y^{2}+4 y=9+4+y^{2}-4 y$
$\Rightarrow 8 y=-16$
$\Rightarrow y=-2$
Therefore coordinates of P is $(0,-2)$

$$
\begin{aligned}
\mathrm{PA} & =\sqrt{(-5-0)^{2}+(-2+2)^{2}} \\
& =\sqrt{25} \\
& =5 \mathrm{~cm}
\end{aligned}
$$

Practice Questions - Term I

8.

The ratio in which the line segment $P Q$, where $P(-5,2)$ and $Q(2,3)$, is divided by the y-axis is
$\times \quad$ A. $6: 5$
\times B. 3:5
$\times \quad$ C. $7: 2$
(D) $5: 2$
All points on Y-axis can be expressed as $(0, y)$ where y is the y-coordinate of the point.

Therefore, let the point of intersection of Y -axis and line PQ be $\mathrm{R}(0, \mathrm{y})$.
Let the ratio in which the line segment $P Q$ is divided by point R be $k: 1$.

Applying section formula, we get
$0=\frac{2 k+1(-5)}{k+1}$
$2 k-5=0$
$k=\frac{5}{2}$
\therefore The required ratio is $5: 2$.

Practice Questions - Term I

9.

Determine the ratio in which the graph of the equation $3 x+y=9$ divides line segment joining the points $A(2,7)$ and $B(1,3)$.
A. $\frac{4}{3}$
\times
B. $\frac{2}{3}$
x
C. $\frac{1}{3}$
\times
D. $\frac{3}{4}$

Let $P(x, y)$ be the point which lies on line representing $3 x+y=9$ and dividing $A B$ in the ratio $k: 1$
$P(x, y)$

So $\mathrm{X}=\frac{k \times 1+1 \times 2}{k+1}=\frac{k+2}{k+1}$
And $\mathrm{y}=\frac{k \times 3+1 \times 7}{k+1}=\frac{3 k+7}{k+1}$
Thus point P is $\left(\frac{k+2}{k+1}, \frac{3 k+7}{k+1}\right)$
As P lies on $3 x+y=9$,
So, $3 \frac{k+2}{k+1}+\frac{3 k+7}{k+1}=9$
$\Rightarrow 3 k+6+3 k+7=9 k+9$
$\Rightarrow 3 k=4$
$\Rightarrow k=\frac{4}{3}$
Thus the required ratio is $\mathrm{k}: 1$, i.e., $4: 3$

Practice Questions - Term I

10. If Point $P(-4,6)$ divides the line segment $A B$ with $A(-6,10)$ and $B(x, y)$ in the ratio 3:2, find the co-ordinates of B.

X A. $\left(\frac{11}{3}, \frac{14}{3}\right)$
(B. $\left(\frac{8}{3}, \frac{-10}{3}\right)$
(V) C. $\left(\frac{-8}{3}, \frac{10}{3}\right)$
(X) D. $\left(\frac{-16}{3}, \frac{8}{3}\right)$

The equation for the point that divides a line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $\mathrm{m}: \mathrm{n}$ is: $\left(\frac{\left(n \times x_{1}+m \times x_{2}\right)}{m+n}, \frac{n \times y_{1}+m \times y_{2}}{m+n}\right)$

Here,
$\left(x_{1}, y_{1}\right)=(-6,10)$,
$\left(x_{2}, y_{2}\right)=(x, y)$,
$m: n=3: 2$
According to Section Formula:
$(x, y)=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$
$\Rightarrow(-4,6)=\left(\frac{3 x+(-12)}{3+2}, \frac{3 y+20}{3+2}\right)$
$\Rightarrow-4=\frac{3 x-12}{5}$ and $6=\frac{3 y+20}{5}$
$\Rightarrow 3 x=-20+12$ and $3 y=30-20$
$\Rightarrow x=\frac{-8}{3}$ and $y=\frac{10}{3}$
\therefore Co-ordinates of B are $\left(\frac{-8}{3}, \frac{10}{3}\right)$.

Practice Questions - Term I

11.

The point on the x-axis which is equidistant from $(2,-5)$ and $(-2,9)$ is
x A. $(-2,0)$
\times
B. $(2,0)$
(v)
C. $(-7,0)$
\times
D. $(7,0)$

We know that a point on the x-axis is of form ($x, 0$). Let the point on the $x-$ axis be $P(x, 0)$ and the given points are $A(2,-5)$ and $B(-2,9)$
Now, $\mathrm{PA}=\sqrt{(2-x)^{2}+(-5-0)^{2}}$ and

$$
\mathrm{PB}=\sqrt{(-2-x)^{2}+(9-0)^{2}}
$$

Since $P A=P B$
$\Rightarrow \sqrt{(2-x)^{2}+(-5-0)^{2}}=\sqrt{(-2-x)^{2}+(9-0)^{2}}$
$\Rightarrow(2-x)^{2}+(-5-0)^{2}=(-2-x)^{2}+(9-0)^{2}$
$\Rightarrow 4-4 \mathrm{x}+x^{2}+25=4+4 \mathrm{x}+x^{2}+81$
$\Rightarrow-8 \mathrm{x}=56$
$\Rightarrow x=-7$
Hence, the required point is $(-7,0)$

Practice Questions - Term I

12.

If $A(-2,-1), B(a, 0), C(4, b)$ and $D(1,2)$ are the vertices of a parallelogram, find the values of a and b.
A. $a=1$ and $b=3$
\times
B. $a=2$ and $b=3$
x C. $a=1$ and $b=1$
x D. $\mathrm{a}=1$ and $\mathrm{b}=4$
We know that the diagonals of a parallelogram bisect each other. Therefore, the coordinates of the mid-point of AC are same as the coordinates of the mid-point of BD.

The coordinates of the mid-point of a line formed by joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Midpoint of $A C=\left(\frac{-2+4}{2}, \frac{-1+b}{2}\right)$
Midpoint of $\mathrm{BD}=\left(\frac{a+1}{2}, \frac{0+2}{2}\right)$
$\Rightarrow\left(\frac{-2+4}{2}, \frac{-1+b}{2}\right)=\left(\frac{a+1}{2}, \frac{0+2}{2}\right)$
$\Rightarrow\left(1, \frac{b-1}{2}\right)=\left(\frac{a+1}{2}, 1\right)$
$\Rightarrow \frac{a+1}{2}=1$ and $\frac{b-1}{2}=1$
$\Rightarrow a+1=2$ and $b-1=2$
$\Rightarrow \mathrm{a}=1$ and $\mathrm{b}=3$

Practice Questions - Term I

13. If the points $A(1,2), B(4,3), C(1,0)$ and $D(p,-1)$ are the vertices of a parallelogram then, find the value of p.
x A. 3
B. -2
x C. 4

- D. 0

In a parallelogram, the diagonals bisect each other.
So the midpoints of both the diagonals will coincide.
Midpoint of $A C=$ Midpoint of BD
$\left(\frac{1+1}{2}, \frac{2+0}{2}\right)=\left(\frac{4+p}{2}, \frac{3-1}{2}\right)$
$\Rightarrow(1,1)=\left(\frac{4+p}{2}, 1\right)$
$\Rightarrow 1=\frac{4+p}{2}$
$\Rightarrow p=-2$

Practice Questions - Term I

14.

the Midpoint of $A B$. Find the value of m.
x A. -10
\times
B. -1
\times
C. -6
(v)
D. -12

Co-ordinates of $\mathrm{P}(4,-3)$ by midpoint theorem, $\mathrm{P}(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Here,
$x_{1}=3, x_{2}=5, y_{1}=6 \& y_{2}=m$
$\Rightarrow-3=\frac{y_{1}+y_{2}}{2}$
$\Rightarrow-3=\frac{6+m}{2}$
$\Rightarrow m+6=-6$
$\therefore m=-12$.

Practice Questions - Term I

15.

The distance between $A(1,3)$ and $B(x, 7)$ is 5 . The value of x if $x>0$ is :
A. 4
\times
B. 2
x
C. 1
\times
D. 3

Given points are $A=(1,3)$ and $B=(x, 7)$
\because The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\Rightarrow A B^{2}=(x-1)^{2}+(7-3)^{2}$
Given, distance between A and B is 5 units.
$\Rightarrow 5^{2}=(x-1)^{2}+16$
$\Rightarrow 9=(x-1)^{2}$
$\Rightarrow x-1= \pm 3$
$\Rightarrow x=4,-2$

Since, $x>0$
Therefore, the value of ' x ' is 4 .

Practice Questions - Term I

16. In a classroom, 4 friends are seated at the points A, B, C and D as shown in the following figure. The point $A(3,4), B(6,7), C(9,4)$ and $D(6,1)$ taken in order form the vertices of \qquad

2.amazonaws.com/infinitestudent-
images/ckeditor_assets/pictures/10467/content_31.jpg)
A. Square
x
B. Rectangle
\times
C. Rhombus
\times
D. Rhombus

Practice Questions - Term I

Distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$A B^{2}=(6-3)^{2}+(7-4)^{2}$
$=9+9$
$=18$
$A B=\sqrt{18}$ units
$B C^{2}=(9-6)^{2}+(4-7)^{2}$
$=9+9$
$=18$
$B C=\sqrt{18}$ units
$C D^{2}=(6-9)^{2}+(1-4)^{2}$
$=9+9$
$=18$
$C D=\sqrt{18}$ units
$D A^{2}=(3-6)^{2}+(4-1)^{2}$
$=9+9$
$=18$
$D A=\sqrt{18}$ units
Since all the sides are equal, from the given options we can say that the figure is a square

Practice Questions - Term I

17. From the figure, find the ratio in which the line segment joining the points $A(3,4)$ and $C(9,4)$ is divided by $x=5$.
(A. 1:1
x B. $2: 1$
C. $1: 2$
\times
D. $3: 1$

Let $O(5, y)$ divide $A B$ in the ratio $k: 1$.
By section formula, the coordinates of O are given by: $\left(\frac{9 k+3}{k+1}, \frac{4 k+4}{k+1}\right)$
But $O(5, y)=\left(\frac{9 k+3}{k+1}, \frac{4 k+4}{k+1}\right) \Rightarrow \frac{9 k+3}{k+1}=5$
$\Rightarrow 9 k+3=5 \mathrm{k}+5$
$\Rightarrow 4 k=2$
$\Rightarrow k=\frac{1}{2}$
i.e., the line $\mathrm{x}=5$ divides $A B$ in the ratio $1: 2$.
18. From the figure, the distance between the points $A(3,4)$ and $C(9,4)$ is
x A. 3
X B. 4
\times C. 5
(V) D. 6

Given A(3,4), C(9,4)
\because Distance between points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) i s \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\therefore A B=\sqrt{(9-3)^{2}+(4-4)^{2}}=\sqrt{36+0}=6$

Practice Questions - Term I

19. Mid-point of the line-segment joining the points $A(3,4)$ and $C(9,4)$ is:
x A. $(3,6)$
x B. $(4,3)$
C. $(6,4)$
\times D. $(4,6)$
Midpoint of the line segment joining (x_{1}, y_{1}) and (x_{2}, y_{2}) is given by $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
\therefore Mid-point of the line-segment joining the points $(3,4)$ and $(9,4)=$
$\left(\frac{3+9}{2}, \frac{4+4}{2}\right)=(6,4)$
20. From the figure, find the ratio in which the line segment joining the points $B(6,7)$ and $D(6,1)$ is divided by $y=4$.
A. $1: 1$
x B. 1:2
x C. 2:1
(D. 3:2
Let $P(x, 4)$ divide $A B$ in the ratio $k: 1$.
By section formula, the coordinates of P are given by: $\left(\frac{6 k+6}{k+1}, \frac{k+7}{k+1}\right)$
But $P(x, 4)=\left(\frac{6 k+6}{k+1}, \frac{k+7}{k+1}\right) \Rightarrow \frac{k+7}{k+1}=4$
$\Rightarrow k+7=4 \mathrm{k}+4$
$\Rightarrow 3 k=3$
$\Rightarrow k=\frac{1}{1}$
i.e., the line $\mathrm{y}=4$ divides $A B$ in the ratio $1: 1$.
