

Pair of Linear Equations in Two variables

2. Types of Pairs of Linear Equations

3. Methods of Solving Pairs of Linear Equations

4. Solving non-linear pair of equations

1. Lineah Equations in Two Variables:

General Form

Coefficients
$$ax + by + c = 0$$

Variables

where, a and b are non-zero real numbers

Pair of Linear Equations in Two Variables

Consider two different equations in x and y,

$$2x + 7y + 5 = 0$$

$$8x + 3y + 3 = 0$$

These two combined are known as pair of linear equations in two variables.

General Form of Pair of Linear Equations in Two Variables

$$a_1 x + b_1 y + c_1 = 0$$

$$a_2x + b_2y + c_2 = 0$$

2. Types of Pains of Linean Equations

3. Methods of Solving Pains of Linear Equations

3.1 Graphical Method

$$2x - 1y = -1 \quad , \quad 3x + 2y = 9$$

Find points to construct lines on a graph paper for the two given equations

To construct a line, we need at least two point of the line, we find the value substituting values of x and y in the two equations.

$$2x - 1y = -1$$

x	0	$-\frac{1}{2}$	1	
у	1	0	3	

$$3x + 2y = 9$$

x	0	3	1
у	9 2	0	3

Draw the two line on a graph and mark the points at which they intersect.

The x-coordinate and the y-coordinate of the point at which the two lines intersect is the solution(s) of the pair of equations.

3.2 Substitution Method

$$x + y = 4$$
 , $x - y = 2$

Take one of the equations and move 'y' to LHS and the rest to RHS to get the value of 'y' in terms of 'x'.

$$y = 4 - x$$

Substitute the obtained value of 'y' in the other equation to get the numerical value of 'x'.

$$x - y = 2$$

$$x - (4 - x) = 2$$

$$2x - 4 = 2$$

$$x = 3$$

Now, substitute the obtained value of 'x' in either of the equations to get the value of 'y'.

$$x + y = 4$$
$$3 + y = 4$$
$$y = 1$$

3.3 Elimination Method:

$$3x + 2y = 18$$

$$5x + 4y = 32$$

Note down equations aligned to respective variables as shown.

+3 <i>x</i>	+2y	II	+18
+5 <i>x</i>	+4y	II	+32

2

Pick the variable which will be easier to eliminate.

+3 <i>x</i>	+2y	II	+18
+5 <i>x</i>	+4y		+32

3

Equalise the coefficients of the variable to be eliminated by multiplying every term of the equation with the same number.

+3 <i>x</i> × 2	+2 <i>y</i> × 2	II	+18 × 2
+5 <i>x</i>	+4y		+32

4

Subtract the second equation from the first equation by reversing all the signs.

+6 <i>x</i>	+4y	Ш	+36
-5x	-4 <i>y</i>		- 32
+x	+0 <i>y</i>	=	+4

5

Substitute the value of the now known variable into the simpler equation to get the value of the other variable.

We know that,

$$x = 4$$

And, $3x + 2y = 18$
 $\Rightarrow 3 \times 4 + 2y = 18$
 $\Rightarrow 12 + 2 = 18$
 $\Rightarrow 2y = 6$
 $\Rightarrow y = 3$

5x + 4y = 32".

6

Verify the values obtained for x and y by putting them in the given equations

$$3x + 2y = 18$$

 $+ 2y = 18$
 $2 = 18$
 $3x + 2y = 18$
 $= 3x + 2y$
 $= 3 \times 4 + 2 \times 3$
 $= RHS$

From the above,
$$x = 4$$
 and $y = 3$.

Therefore, $(4,3)$ is the solution of the simultaneous equations
$$"3x + 2y = 18"$$
 and

3.4 Choss-Multiplication Method

Write the two equations in the general form:

$$a_1 x + b_1 y + c_1 = 0$$

$$a_2 x + b_2 y + c_2 = 0$$

Now write the coefficients, variables and constants in the pattern shown. After that multiply and subtract in the direction of the arrows as shown:

$$\frac{x}{b_1 c_2 - b_2 c_1} = \frac{y}{c_1 a_2 - c_2 a_1} = \frac{1}{a_1 b_2 - a_2 b_1}$$

Get x and y in the LHS and substitute the respective values to get the answer.

$$x = \frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - a_2 b_1} \qquad y = \frac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1}$$

Solving Non-Linear Pair of Equations

Solve for x and y.

$$\frac{5}{x-1} + \frac{1}{y} = 2 \qquad , \qquad \frac{6}{x-1} - \frac{3}{y} = 1$$

Identify what part can be substituted with some other variables to make the equation linear.

$$5 \times \left(\frac{1}{x-1}\right) + 1 \times \left(\frac{1}{y}\right) = 2$$

$$p=\frac{1}{x-1}$$

$$6 \times \left(\frac{1}{x-1}\right) - 3 \times \left(\frac{1}{y}\right) = 1$$

$$q=\frac{1}{y}$$

Solve the obtained pair of linear equations using any method

$$5p + q = 2$$
 $p = \frac{1}{3}$ $6p - 3q = 1$ $q = \frac{1}{3}$

Now solve for x and y.

$$x = \frac{1}{p} + 1 \qquad y = \frac{1}{q}$$

$$x = \frac{4}{3} \qquad y = 3$$

Parallel Lines

Intersecting lines

Types of Linear equations,

Coincident lines

Pair of Linear equations in two variables

Solving the Pairs of Non-Linear Equations

Solving the Pairs of Linear Equations

Elimination method)

Reducing the Equations into Linear Form

Graphical method

Cross-multiplication method

Substitution Method