MATHEMATICS

B BYJU'S

POST CLASS NOTES

Pair of Linear Equations in Two valuables

Topics

1. General Form of a Linear Equation
2. Types of Pairs of Linear Equations
3. Methods of Solving Pairs of Linear Equations
4. Solving non-linear pair of equations

$$
\begin{array}{r}
b_{1} y+c_{1}=0 \\
a_{1} x+b_{2} y+c_{2}=0
\end{array}
$$

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

1. Linear Equations in Two Vahiables

Generenal Form

Coefficients

$$
a x+b y+c=0
$$

where, a and bare non-zeno real numbers

Pain of Linear Equations in Two Variables

Consider two different equations in x and y,

$$
\begin{aligned}
& 2 x+7 y+5=0 \\
& 8 x+3 y+3=0
\end{aligned}
$$

These two combined are known as pair of linear equations in two variables.

General Form of Pair of Linear Equations in Two Variables

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

2. Types of Pails of Lincar Equations

Inconsistent equations No solution

Consistent equations
At least one solution

3. Methods of Soluing Pains of Lincar Equations

Methods of Solving

Graphical Method

Substitution Method
Elimination Method
Cross-Muttiplication Methood

3.1 Ghaphical Method

$$
2 x-1 y=-1, \quad 3 x+2 y=9
$$

Find points to construct lines on a graph paper for the two given equations
To construct a line, we need at least two point of the line, we find the value subsituting values of x and y in the two equations.

$$
2 x-1 y=-1
$$

$$
3 x+2 y=9
$$

x	0	$-\frac{1}{2}$	1
y	1	0	3

x	0	3	1
y	$\overline{9}$	0	3

The x-coordinate and the y-coordinate
of the point at which the two lines
intersect is the solution(s) of the pain of two line on a graph and mark the points at which they intersect.
equations.

3.2 Substitution Method

$$
x+y=4, x-y=2
$$

Take one of the equations and move 'y] to $L H S$ and the rest to RHS to get the value of ' y ' in terms of ' x '.

$$
y=4-x
$$

Substitue the obtained value of ' 'y' in the other equation to get the numerical value of ' x '.

$$
\begin{gathered}
x-y=2 \\
x-(4-x)=2 \\
2 x-4=2 \\
x=3
\end{gathered}
$$

Now, substitute the obtained value of 'x' in either of the equations to get the value of ' y '.

$$
\begin{gathered}
x+y=4 \\
3+y=4 \\
y=1
\end{gathered}
$$

3.3 Elimination Method

Note down equations aligned to respective variables as shown.

$+3 x$	$+2 y$	$=$	+18
$+5 x$	$+4 y$	$=$	+32

2

Pick the variable which will be easier to eliminate.

$+3 x$	$+2 y$	$=$	+18
$+5 x$	$+4 y$	$=$	+32

Equalise the coefficients of the variable to be eliminated by multiplying every term of the equation with the same number.

| $+3 x$ | $+2 y$ |
| :---: | :---: | :---: | :---: |
| $\times 2$ | |\(\left|=\begin{array}{c}+18

\times 2\end{array}\right|\)| +32 |
| :--- |
| $+5 x$ |$+4 y=0$

Substitute the value of the now known variable into the simpler equation to get the value of the other variable. We know that,

$$
x=4
$$

And, $3 x+2 y=18$
$\Rightarrow 3 \times 4+2 y=18$
$\Rightarrow 12+2=18$
$\Rightarrow 2 y=6$
$\Rightarrow y=3$

From the above, $\mathrm{x}=4$ and $\mathrm{y}=3$.
Therefore, $(4,3)$ is the solution of the simultaneous equations
" $3 \mathrm{x}+2 \mathrm{y}=18$ " and
$" 5 x+4 y=32$ ".
4
Subtract the second equation from the first equation by reversing all the signs.

$+6 x$	$+4 y$	$=$	+36
$-5 x$	$-4 y$	$=$	-32
$+x$	$+0 y$	$=$	+4

3.1 Choss-Multiplication Method

Write the wo equations in the general form:

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

Now write the coefficierits, variables and constarits in
the pattern shown. Affer that multiply and subtract in the direction of the arrows as shown:
$\bar{x}^{------------------1 ~}$

$$
\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}
$$

Get x and y in the LHS and subsititite the respective values to get the answer.

$$
x=\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}} \quad y=\frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}
$$

Solving Nontincak Paik of Equations

