Practice Questions - Term I

Date: 20/11/2021
Subject: Mathematics
Topic : Pair of Linear Equations in
Two Variables Class: X

1. Consider two equations in the variables \mathbf{x} and \mathbf{y} written in the standard form:
$5 x+6 y+4=0$ and
$10 x+12 y+7=0$
What is the nature of these two lines?
x A. Coincident
x B. Intersecting
C. Parallel
\times
D. Coincident or parallel

Practice Questions - Term I

The equations of the two lines are:
$5 x+6 y+4=0$
$10 x+12 y+7=0$
Here,
$a_{1}=5, b_{1}=6, c_{1}=4, a_{2}=10, b_{2}=12, c_{2}=7$.
$\frac{a_{1}}{a_{2}}=\frac{5}{10}=\frac{1}{2}$
$\frac{b_{1}}{b_{2}}=\frac{6}{12}=\frac{1}{2}$
$\frac{c_{1}}{c_{2}}=\frac{4}{7}$
$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$.
\Rightarrow The pair of equations have no solutions, i.e, they are parallel.
Also, when we plot the graphs of these two equations, it is visible that they are parallel to each other.

Practice Questions - Term I

2. The number of solutions of the given pair of linear equations $3 x-9 y=10$ and $9 x-27 y=30$ is:A. Infinite
x
B. One
x C. Two
x D. Zero
$a_{1}=3, b_{1}=-9$, and $c_{1}=10$
$a_{2}=9, b_{2}=27$, and $c_{2}=30$
$\frac{a_{1}}{a_{2}}=\frac{3}{9}, \frac{b_{1}}{b_{2}}=\frac{-9}{27}, \frac{c_{1}}{c_{2}}=\frac{10}{30}$
$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=\frac{1}{3}$
So, the given pair of straight lines have infinite solutions.

Practice Questions - Term I

3. If the lines given by $3 x+2 k y=2$ and $3 x+5 y=1$ are parallel, then the value of ' k ' is.
A. $\frac{15}{4}$
x
B. $\frac{4}{15}$
\times
C. $\frac{3}{4}$
\times
D. $\frac{4}{3}$

Condition for parallel lines is
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Given $3 x+2 k y-2=0$
And $2 x+5 y-1=0$
Here, $a 1=3, b 1=2 k, c 1=-2$
and $a_{2}=2, b_{2}=5, c_{2}=-1$
From Eq (i), $\frac{3}{2}=\frac{2 k}{5}$
$\therefore k=\frac{15}{4}$
Also, $\frac{c_{1}}{c_{2}}=\frac{-2}{-1}=2$
Thus, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
4. One equation of a pair of dependent linear equations is $x+y=30$. The second equation can be

X A. $4 x+5 y=150$

B. $5 x+5 y=150$
\times
C. $5 x+5 y=15$
\times
D. $4 x+5 y=150$

When we plot the 2 lines, if we get a single line, then the two lines are coincident lines.
We have the equation $x+y=30$.
Multiplying both the sides by 5 , we get $5 x+5 y=150$.
Hence, $x+y=30$ and $5 x+5 y=150$ are coincident lines.

Practice Questions - Term I

5. For what value of k, will the following system of equations have infinitely many solutions?
$2 x+3 y=4,(k+2) x+6 y=3 k+2$A. $k=2$
x
B. $\mathrm{k}=3$
x C. $\mathrm{k}=4$
x D. $\mathrm{k}=5$
Given: $2 x+3 y=4,(k+2) x+6 y=3 k+2$
Condition for infinitely many solutions is
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$a_{1}=2, a_{2}=k+2, b_{1}=3, b_{2}=6, c_{1}=4 c_{2}=3 k+2$
$\frac{2}{k+2}=\frac{3}{6}=\frac{4}{3 k+2}$
$\frac{2}{k+2}=\frac{3}{6}$
$\frac{2}{k+2}=\frac{1}{2}$
$k+2=4$
$k=2$

Practice Questions - Term I

6. Determine the value of k for which the given system of equations has a unique solution:
$x-k y=2,3 x+2 y=-5$
A. The given system of equations will have unique solution for all real values of k other than $-\frac{2}{3}$
x
B. The given system of equations will have unique solution for all real values of k other than $\frac{2}{3}$
x
C. The given system of equations will have unique solution for all real values of k other than $\frac{5}{2}$
x
D. The given system of equations will have unique solution for all real values of k other than $\frac{2}{9}$
Condition for the unique solution the condition is
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{1}{3} \neq \frac{-k}{2}$
$\Rightarrow k \neq \frac{-2}{3}$

Practice Questions - Term I

7. What is the solution of the pair of linear equations: $2 x-3 y=2, x+2 y=8$?
x A. $x=2$ and $y=4$
B. $x=4$ and $y=2$
x C. $x=4$ and $y=4$
(D. $x=2$ and $y=2$
Given,
$2 x-3 y=2 \ldots$ (1)
$x+2 y=8 \ldots$ (2)
From (2), we have,
$x=8-2 y$
Substituting this value of x in (1), we have,
$2(8-2 y)-3 y=2$
i.e., $16-4 y-3 y=2 \Longrightarrow 7 y=14$
$\Longrightarrow y=2$
Now, $x=8-2 y \Longrightarrow x=8-2(2)=4$
Thus, $x=4$ and $y=2$

Practice Questions - Term I

8. The age of the father is twice the sum of the ages of his two children. After 20 years, his age will be equal to the sum of the ages of his children. Find the age of the father.
x A. 45 years
(B. 50 years
C. 40 years
\times
D. 30 years

Let the father's age be x years and the sum of ages of 2 children be y years.
As per the question,
$\mathrm{x}=2 \mathrm{y}$.....(1)
After 20 years,
$x+20=y+20+20$
$\Rightarrow \mathrm{x}+20=\mathrm{y}+40$
$\Rightarrow x=y+20 \ldots . .(2)$
Equating (1) \& (2),
$y=20$
Substituting y = 20 in equation (1), we get $x=40$
Hence, the father's age is 40 years.

Practice Questions - Term I

9. What is the solution of the pair of linear equations $x+y=18$ and $x-2 y=0$?A. $x=12 \& y=6$
x
B. $x=6 \& y=12$
× C. $x=11 \& y=7$
(D. $x=7 \& y=11$
Given $x+y=18---(i)$ and

$$
x-2 y=0---(i i)
$$

Here, we use substitution method to solve the given system of equations.
From (ii) we get $x=2 y$
Substitute the value of x in (i)

$$
\begin{gathered}
\Longrightarrow \quad 2 y+y=18 \\
\Longrightarrow 3 y=18 \\
\Longrightarrow y=6
\end{gathered}
$$

Substitute the value of y in (i)
$\Longrightarrow x+6=18$

$$
x=12
$$

$\therefore x=12 \& y=6$

Practice Questions - Term I

10.

What is the solution of the pair of linear equations $3 x-5 y=4,9 x=2 y+7$?A. $\quad x=\frac{9}{13}, y=\frac{-5}{13}$
x
B. $x=\frac{13}{9}, y=\frac{-13}{5}$
x
C. $x=\frac{-9}{13}, y=\frac{-5}{13}$
x
D. $x=\frac{9}{13}, y=\frac{5}{13}$
$3 x-5 y=4$
$9 x=2 y+7$
$9 x-2 y=7$.

On multiplying equation (1) by 3 , we get
$9 x-15 y=12$.(3)

On subtracting (2) from (3), we get
$-13 y=5$
$\Rightarrow y=\frac{-5}{13}$

On substituting the value of y in (2), we get
$9 x=2 y+7$
$\Rightarrow x=\frac{7+2 y}{9}$
$\Rightarrow x=\frac{7-\frac{10}{13}}{9}=\frac{81}{13 \times 9}$
$\Rightarrow x=\frac{9}{13}$

Practice Questions - Term I

11. The given figure shows the path of two balls.

If path followed by the blue ball and the red ball is $2 x-5 y=4$, and $3 x-k y=6$ respectively.

Determine the value of ' k ' for which both the balls collide.
(v) A. The balls will collide for all the real value of k except $\frac{15}{2}$
x B. The balls will collide for all the real value of k except $\frac{2}{15}$
x C. The balls will collide for all the values of k
x D. The ball will collide at $\mathrm{k}=\frac{15}{2}$

Practice Questions - Term I

For the balls to collide, the path of both the balls should intersect.
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \ldots$ Eq (i)
Given $2 x-5 y=4$, and $3 x-k y=6$
Here, $a_{1}=2, b_{1}=-5, c_{1}=-4$
and $a_{2}=3, b_{2}=-k, c_{2}=-6$
From Eq (i), $\frac{2}{3} \neq \frac{-5}{-k}$
$\therefore k \neq \frac{15}{2}$
so, the balls will collide for all the real value of k except $\frac{15}{2}$

Practice Questions - Term I

12. The given figure shows the path of two balls.

If path followed by the blue ball and the red ball is $2 x-5 y=4$, and $3 x-k y=6$ respectively.

Determine the value of ' k ' for which the path of the balls coincides.
(x) A. $\mathrm{k}=\frac{-2}{15}$
(X) B. $\mathrm{k}=\frac{-15}{2}$
(x) C. $\mathrm{k}=\frac{2}{15}$
(v) D. $k=\frac{15}{2}$

Practice Questions - Term I

if the path of both the balls coincides.
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \ldots$ Eq (i)
Given $2 x-5 y=4$, and $3 x-k y=6$
Here, $a_{1}=2, b_{1}=-5, c_{1}=-4$
and $a_{2}=3, b_{2}=-k, c_{2}=-6$
From Eq (i), $\frac{2}{3}=\frac{-5}{-k}=\frac{-4}{-6}$
$\therefore k=\frac{15}{2}$
so, the path of the balls will coincide for $k=\frac{15}{2}$

Practice Questions - Term I

13. The given figure shows the path of two balls.

If path followed by the blue ball and the red ball is $2 x-5 y=4$, and $3 x-k y=6$ respectively.

Determine the value of ' k ' for which the path of the balls is parallel.
(A. $k=\frac{2}{15}$
(X) B. $k=\frac{15}{2}$C. It is not possible for the balls to have parallel path
\times
D. $k=\frac{-15}{2}$

Practice Questions - Term I

If the path of both the balls is parallel,
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \ldots$ Eq (i)
Given $2 x-5 y=4$, and $3 x-k y=6$
Here, $a_{1}=2, b_{1}=-5, c_{1}=-4$
and $a_{2}=3, b_{2}=-k, c_{2}=-6$
From Eq (i), $\frac{2}{3}=\frac{-5}{-k} \neq \frac{-4}{-6}$
but we can see that $\frac{2}{3}=\frac{-4}{-6}$ (i.e. $\frac{a_{1}}{a_{2}}=\frac{c_{1}}{c_{2}}$)
so, it is not possible for the balls to have parallel path.

Practice Questions - Term I

14. The given figure shows the path of two balls.

If path followed by the blue ball and the red ball is $2 x-5 y=4$, and $3 x-k y=6$ respectively.

Determine the nature of linear equations of the given paths. Provided k=7.
x A. Coinciding
x B. ParallelC. Intersecting
\times
D. Parallel or coinciding

Practice Questions - Term I

Given $2 x-5 y=4$, and $3 x-7 y=6$
Here, $a_{1}=2, b_{1}=-5, c_{1}=-4$
and $a_{2}=3, b_{2}=-7, c_{2}=-6$
$\frac{a_{1}}{a_{2}}=\frac{2}{3}$
$\frac{b_{1}}{b_{2}}=\frac{-5}{-7}$
$\frac{c_{1}}{c_{2}}=\frac{-4}{-6}$
$\frac{2}{3} \neq \frac{-5}{-7}$ (i.e. $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$)
so, the nature of the given linear equations is intersecting.

Practice Questions - Term I

15. The given figure shows the path of two balls.

If path followed by the blue ball and the red ball is $2 x-5 y=4$, and $3 x-k y=6$ respectively.

Determine the point of intersection of the path of the balls. Provided $\mathrm{k}=7$.
x A. $(0,2)$
x B. $(2,2)$
x C. $(0,0)$
(D) $(2,0)$

Given $2 x-5 y=4$...eq(1)
and $3 x-7 y=6 \quad . . e q(2)$
from eq(1), $x=\frac{4+5 y}{2} \ldots e q(3)$
substituting eq(3) in eq(2)
so, $3\left(\frac{4+5 y}{2}\right)-7 y=6$
$\therefore 12+15 y-14 y=12$
$\therefore \mathrm{y}=0$
putting the obtained value of y in eq(3)
$\mathrm{x}=\frac{4+0}{2}=2$.
so the point of intersection is $(2,0)$.
16. If $3 x-4 y=1$ and $5 x-6 y=7$, then $x+y=$ \qquad .
x A. 16
x B. 20
x
C. 18
(v)
D. 19

Given,
$3 x-4 y=1 \ldots(i)$
$5 x-6 y=7 \ldots(i i)$
To make the coefficients of x equal, multiply equation (1) by 5 and equation (2) by 3 .

Equation $(1) \times 5 \Rightarrow$
$15 x-20 y=5 \ldots(i i i)$
Equation(2) $\times 3 \Rightarrow$
$15 x-18 y=21 \ldots(i v)$
(iv) - (iii)
$\Rightarrow 2 y=21-5=16$
$\Rightarrow y=8$
Substitute the value of y in (i) $3 x-4 \times 8=1$
$3 x=33$
$\Rightarrow x=11$
$\Rightarrow x+y=11+8=19$

Practice Questions - Term I

17.

Six years hence, Rahul's age will be three times his son's age and three years ago, he was nine times as old as his son. Rahul's present age is:
x
A. 28 yearsB. 30 years
x
C. 32 years
x
D. 34 years

Practice Questions - Term I

Let Rahul's present age be x years and his son's age be y years.

Six years hence, Rahul's age $=(x+6)$ years
Son's age $=(y+6)$ years.

According to the question
$x+6=3(y+6)$
$\Rightarrow x+6=3 y+18$
$\Rightarrow x-3 y=12$

Now, three years ago, Rahul's age $=(x-3)$ years
Son's age $=y-3$ years

According to the question
$x-3=9(y-3)$
$\Rightarrow x-3=9 y-27$
$\Rightarrow x-9 y=-24$

On subtracting (ii) from (i) we get
$6 y=36 \Rightarrow y=6$.

On substituting the value of y in (i), we get
$x-18=12$
$\Rightarrow x=30$ years
\therefore Rahul's present age is 30 years.

For verification,

Presently Rahul's age is 30 years and his son's age is 6 years.
3 years back, Rahul was 27 years and son was 3 years old.
That is correct according to the given condition,
His age was 9 times more than his son's age.

6 years hence he will be 36 years and son will be 12 years old.
That is correct according to the given condition.
His age will be 3 times of his son's age.

Practice Questions - Term I

18.

54 is divided into two parts such that sum of 10 times the first part and 22 times the second part is 780 . What is the bigger part?A. 34
x B. 32
x C. 30
(D) 24

Let the 2 parts of 54 be x and y
$x+y=54$
and $10 x+22 y=780$
Multiply (i) by 10 , we get
$10 x+10 y=540$
Subtracting (ii) from (iii)
$-12 \mathrm{y}=-240$
$y=20$
Subsituting $y=20$ in $x+y=54$,
$\Longrightarrow x+20=54$
$\Longrightarrow x=34$
Hence, $x=34$ and $y=20$

Practice Questions - Term I

19.

Find the value of k for which each of the following systems of equations has no solution:
$k x+3 y=3,12 x+k y=6$.
x A. $k=6$
B. $k=-6$
x C. $k=-3$
x D. $k=3$
Equations are written as
$k x+3 y-3=0$
$12 x+k y-6=0$ \qquad
$a_{1}=k, b_{1}=3, c_{1}=-3$
$a_{2}=12, b_{2}=k, c_{2}=-6$
for no solution we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Now,
$\frac{k}{12}=\frac{3}{k} \neq \frac{-3}{-6}$
$\frac{k}{12}=\frac{3}{k}$
and
$\frac{3}{k} \neq \frac{1}{2}$
$k^{2}=36, k \neq 6$
Hence, $\mathrm{k}=-6$
Hence, the given system of equations is has no solution if $k=-6$.

Practice Questions - Term I

20. 5 chairs and 4 tables together cost Rs. 5600 , while 4 chairs and 3 tables together cost Rs. 4340 . Find the cost of a chair and that of a table respectively.
x A. 700,560
× B. 700,700
x C. 560,560
(D) 560,700
Let the price of one chair is x and the price of one table is y
According to question
$5 x+4 y=5600--(1)$
$4 x+3 y=4340--(2)$
$4 \times(1)$
$20 x+16 y=22400--(3)$
$5 \times(2)$
$20 x+15 y=21700--(4)$
(3) - (4)
$y=700$
put y in (1)
$5 x+4(700)=5600$
$5 \mathrm{x}=5600-2800=2800$
$x=560$

So the price of one chair is 560 and the price of one table is 700

